Adsorption Characteristics for Cu(II) and Phosphate in Chitosan Beads under Single and Mixed Conditions
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals
2.2. Preparation of Four Types of CB
2.3. Batch Removal Test
2.4. Adsorption Isotherm Studies
2.5. Kinetic Test
2.6. Chemical Analyses
3. Results and Discussion
3.1. Batch Removal Experiments Using Four Types of CB
3.2. Effect of the Initial Concentration of Cu(II) and Phosphate
3.3. Adsorption Isotherm Studies
3.4. Adsorption Kinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sessarego, S.; Rodrigues, S.C.G.; Xiao, Y.; Lu, Q.; Hill, J.M. Phosphonium-enhanced chitosan for Cr(VI) adsorption in wastewater treatment. Carbohydr. Polym. 2019, 211, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Patrulea, V.; Negrulescu, A.; Mincea, M.M.; Pitulice, L.D.; Spiridon, O.B.; Ostafe, V. Optimization of the removal of copper(II) ions from aqueous solution on chitosan and cross-linked chitosan beads. Bioresources 2019, 8, 1147–1165. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Wang, M.; Zhou, L.; Ma, X.; Zhou, Y. Removal of Cd(II) from aqueous solution using cross-linked chitosan–zeolite composite. Desalin. Water Treat. 2015, 54, 2546–2556. [Google Scholar] [CrossRef]
- Anwar, M.; Anggraeni, A.S.; Al Amin, M.H. Comparison of green method for chitin deacetylation. AIP Conf. Proc. 2017, 1823, 020071. [Google Scholar]
- Wang, Q.Z.; Chen, X.G.; Liu, N.; Wang, S.X.; Liu, C.S.; Meng, X.H.; Liu, C.G. Protonation constants of chitosan with different molecular weight and degree of deacetylation. Carbohydr. Polym. 2006, 65, 194–201. [Google Scholar] [CrossRef]
- Rhazi, M.; Desbrieres, J.; Tolaimate, A.; Rinaudo, M.; Vottero, P.; Alagui, A. Contribution to the study of the complexation of copper by chitosan and oligomers. Polymer 2002, 43, 1267–1276. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Hubicki, Z.; Kołodyńska, D. Selective removal of heavy metal ions from waters and waste waters using ion exchange methods. In Ion Exchange Technologies; Kilislioglu, A., Ed.; Intechopen: London, UK, 2012; Volum 7, pp. 193–240. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Ma, X.-S.; Xu, L.-Y.; Wang, L.-H.; Liu, G.-Y.; Xu, Q.-F.; Lu, J.-M.; Zhang, Y. Applications of chelating resin for heavy metal removal from wastewater. e-Polymers 2015, 15, 161–167. [Google Scholar] [CrossRef]
- Grinstead, R. Selective absorption of copper, nickel, cobalt and other transition metal ions from sulfuric acid solutions with the chelating ion exchange resin XFS 4195. Hydrometallurgy 1984, 12, 387–400. [Google Scholar] [CrossRef]
- Helfferich, F. Ion Exchange; McGraw-Hill: New York, NY, USA, 1962. [Google Scholar]
- Jóźwiak, T.; Kowalkowska, A.; Filipkowska, U.; Struk-Sokołowska, J.; Bolozan, L.; Gache, L.; Ilie, M. Recovery of phosphorus as soluble phosphates from aqueous solutions using chitosan hydrogel sorbents. Sci. Rep. 2021, 11, 16766. [Google Scholar] [CrossRef]
- Szymczyk, P.; Filipkowska, U.; Kuczajowska-Zadrożna, M. Phosphate removal from aqueous solutions by chitin and chitosan in flakes. Prog. Chem. Appl. Chitin Deriv. 2016, 21, 192–202. [Google Scholar] [CrossRef]
- Gérente, C.; Andrès, Y.; McKay, G.; Le Cloirec, P. Removal of arsenic(V) onto chitosan: From sorption mechanism explanation to dynamic water treatment process. Chem. Eng. J. 2010, 158, 593–598. [Google Scholar] [CrossRef]
- Snoeyink, V.L.; Jenkins, D. Water Chemistry; Wiley: Hoboken, NJ, USA, 1980. [Google Scholar]
- Pakdel, P.M.; Peighambardoust, S.J. Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr. Polym. 2018, 201, 264–279. [Google Scholar] [CrossRef]
- Ruiz, M.; Sastre, A.; Guibal, E. Pd and Pt recovery using chitosan gel beads. I. Influence of the drying process on diffusion properties. Sep. Sci. Technol. 2002, 37, 2143–2166. [Google Scholar] [CrossRef]
- Guibal, E.; Milot, C.; Tobin, J.M. Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Ind. Eng. Chem. Res. 1998, 37, 1454–1463. [Google Scholar] [CrossRef]
- Shin, J.; Kim, T.; Lee, Y.; An, B. The effect of crosslinking and dry for the adsorption rate on the chitosan bead. J. Korean Soc. Water Wastewater 2021, 35, 301. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Lagergren, S. About the theory of so-called adsorption of soluble substances. Sven Vetensk. Handingarl. 1898, 24, 1–39. [Google Scholar]
- Blanchard, G.; Maunaye, M.; Martin, G. Removal of heavy metals from waters by means of natural zeolites. Water Res. 1984, 18, 1501–1507. [Google Scholar] [CrossRef]
- Ho, Y.S. Adsorption of Heavy Metals from Waste Streams by Peat. Ph.D. Dissertation, The University of Birmingham, Birmingham, UK, 1995. [Google Scholar]
- Kildeeva, N.R.; Perminov, P.A.; Vladimirov, L.V.; Novikov, V.V.; Mikhailov, S.N. About mechanism of chitosan cross-linking with glutaraldehyde. Russ. J. Bioorg. Chem. 2009, 35, 360–369. [Google Scholar] [CrossRef]
- Monteiro, C., Jr.; Airoldi, O.A.C. Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogenous system. Int. J. Biol. Macromol. 1999, 26, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Navarro, D.A.; Du, J.; Ying, G.; Yang, B.; McLaughlin, M.J.; Kookana, R.S. Increasing ionic strength and valency of cations enhance sorption through hydrophobic interactions of PFAS with soil surfaces. Sci. Tot. Environ. 2022, 817, 152975. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Sen Gupta, A.K. Ultimate removal and recovery of phosphate from wastewater using a new class of polymeric exchangers. Water Res. 1998, 32, 1613–1625. [Google Scholar] [CrossRef]
- An, B.; Jung, K.Y.; Lee, S.H.; Lee, S.; Choi, J.W. Effective phosphate removal from synthesized wastewater using copper-chitosan bead: Batch and fixed-bed column studies. Water Air Soil Pollut. 2014, 225, 2050. [Google Scholar] [CrossRef]
- Ho, Y.S.; Porter, J.F.; McKay, G. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water Air Soil Pollut. 2002, 141, 1–33. [Google Scholar] [CrossRef]
- Na, C.-K.; Han, M.-Y.; Park, H.-J. Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents. J. Korean Soc. Environ. Eng. 2011, 33, 606–616. [Google Scholar] [CrossRef]
- Treybal, R.E. Mass-Transfer Operations, 3rd ed.; McGraw Hill: New York, NY, USA, 1981. [Google Scholar]
- Hamdaoui, O. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. J. Hazard. Mater. 2006, 135, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Moussout, H.; Ahlafi, H.; Aazza, M.; Maghat, H. Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala Int. J. Mod. Sci. 2018, 4, 244–254. [Google Scholar] [CrossRef]
- Lin, J.; Wang, L. Comparison between linear and non-linear forms of pseudo first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front. Environ. Sci. Engin. China 2009, 3, 320–324. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistake and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical Review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef] [PubMed]
- Magdy, Y.H.; Altaher, H. Kinetic analysis of the adsorption of dyes from high strength wastewater on cement kiln dust. J. Environ. Chem. Eng. 2018, 6, 834–841. [Google Scholar] [CrossRef]
- Lee, C.H.; Park, J.M.; Lee, M.G. Competitive adsorption in binary solution with different mole ratio of Sr and Cs by aeolite A: Adsorption isotherm and kinetics. J. Environ. Sci. Int. 2015, 24, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Zhang, X.; Wu, Y.; Liu, T. Kinetic mechanism of competitive adsorption of disperse dye and anionic dye on fly ash. Int. J. Environ. Sci. Technol. 2013, 10, 799–808. [Google Scholar] [CrossRef] [Green Version]
- Kurczewska, J. Chitosan-montmorillonite hydrogel beads for effective dye adsorption. J. Water Process. Eng. 2022, 48, 102928. [Google Scholar] [CrossRef]
- Li, H.; Ji, H.; Cui, X.; Che, X.; Zhang, Q.; Zhong, J.; Jin, R.; Wang, L.; Luo, Y. Kinetics, thermodynamics, and equilibrium of As(III), Cd(II), Cu(II) and Pb(II) adsorption using porous chitosan bead-supported MnFe2O4 nanoparticles. Int. Min. Sci. Technol. 2021, 31, 1107–1115. [Google Scholar] [CrossRef]
Species | Ratio of Cu(II) to Phosphate | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1:0 | 0:1 | 1:1 | 2:0 | 0:2 | 2:1 | 1:2 | 2:2 | 3:0 | 0:3 | 3:1 | 1:3 | 3:2 | 2:3 | 3:3 | |
Cu(II), % | 99.5 | - | 97.6 | 99.5 | - | 97.8 | 95.6 | 95.9 | 99.4 | - | 97.6 | 94.1 | 95.9 | 94.3 | 94.6 |
H2PO4−, % | - | 99.1 | 97.0 | - | 99.1 | 95.2 | 97.0 | 95.3 | - | 99.0 | 93.7 | 97.1 | 93.8 | 95.4 | 93.9 |
Condition | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Q | b | R2 | kf | n | R2 | |
Cu—single | 0.0379 | 402,853 | 0.923 | 1.00 | 0.100 | 0.00431 |
Cu—mixed | 0.353 | 2.48 | 0.999 | 0.277 | 1.90 | 1.00 |
Phosphate—single | 0.820 | 1.02 | 0.995 | 0.466 | 1.33 | 0.992 |
Phosphate—mixed | 0.850 | 2.97 | 0.985 | 0.839 | 1.60 | 0.975 |
Kinetic Model | Parameter | Cu(II) Single | Cu(II) Mixed | Phosphate Single | Phosphate Mixed | Average |
---|---|---|---|---|---|---|
Nonlinear PFO | qe, mg/g | 3.57 | 5.93 | 8.89 | 14.1 | |
k1 | 0.328 | 0.381 | 1.49 | 0.722 | ||
Δk1, % | +16.2 | −51.4 | ||||
R2 | 0.963 | 0.959 | 0.989 | 0.983 | 0.974 | |
χ2 | 0.319 | 0.566 | 0.105 | 0.367 | 0.339 | |
Linear PFO | qe, mg/g | 3.59 | 5.85 | 8.04 | 13 | |
k1 | 0.256 | 0.271 | 1.04 | 0.439 | ||
Δk1, % | +5.86 | −57.8 | ||||
R2 | 0.94 | 0.937 | 0.993 | 0.958 | 0.957 | |
Nonlinear PSO | qe, mg/g | 3.96 | 6.54 | 9.26 | 15.2 | |
k2 | 0.112 | 0.0796 | 0.277 | 0.0657 | ||
Δk2, % | −28.9 | −76.2 | ||||
R2 | 0.992 | 0.991 | 0.98 | 0.999 | 0.991 | |
χ2 | 0.0624 | 0.115 | 0.168 | 0.0174 | 0.0907 | |
Linear PSO | qe, mg/g | 4.03 | 6.69 | 9.16 | 14.9 | |
k2 | 0.124 | 0.0842 | 0.279 | 0.0801 | ||
Δk2, % | −32.1 | −71.3 | ||||
R2 | 0.997 | 0.997 | 0.999 | 0.999 | 0.998 |
PFO | PSO | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
qt/qe, % | Cu(II) | Phosphate | qt/qe, % | Cu(II) | Phosphate | ||||||||
Single | Mixed | Ratio | Single | Mixed | Ratio | Single | Mixed | Ratio | Single | Mixed | Ratio | ||
Time, h | Time, h | Single/Mixed | Time, h | Time, h | Single/Mixed | Time, h | Time, h | Single/Mixed | Time, h | Time, h | Single/Mixed | ||
30 | 1.09 | 0.935 | 1.17 | 0.240 | 0.494 | 0.486 | 30 | 3.19 | 4.48 | 0.712 | 1.29 | 5.43 | 0.238 |
50 | 2.12 | 1.82 | 1.16 | 0.467 | 0.959 | 0.4487 | 50 | 6.19 | 8.71 | 0.711 | 2.51 | 10.6 | 0.237 |
80 | 4.91 | 4.22 | 1.16 | 1.08 | 2.23 | 0.484 | 80 | 14.4 | 20.2 | 0.713 | 5.82 | 24.5 | 0.238 |
95 | 9.13 | 7.86 | 1.16 | 2.02 | 4.15 | 0.487 | 95 | 26.8 | 37.6 | 0.713 | 10.8 | 45.6 | 0.237 |
average | 1.16 | 0.486 | 0.712 | 0.237 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Shin, J.; An, B. Adsorption Characteristics for Cu(II) and Phosphate in Chitosan Beads under Single and Mixed Conditions. Polymers 2023, 15, 421. https://doi.org/10.3390/polym15020421
Kim T, Shin J, An B. Adsorption Characteristics for Cu(II) and Phosphate in Chitosan Beads under Single and Mixed Conditions. Polymers. 2023; 15(2):421. https://doi.org/10.3390/polym15020421
Chicago/Turabian StyleKim, Taehoon, Jeongwoo Shin, and Byungryul An. 2023. "Adsorption Characteristics for Cu(II) and Phosphate in Chitosan Beads under Single and Mixed Conditions" Polymers 15, no. 2: 421. https://doi.org/10.3390/polym15020421
APA StyleKim, T., Shin, J., & An, B. (2023). Adsorption Characteristics for Cu(II) and Phosphate in Chitosan Beads under Single and Mixed Conditions. Polymers, 15(2), 421. https://doi.org/10.3390/polym15020421