Utilizing Drug Amorphous Solid Dispersions for the Preparation of Dronedarone per os Formulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermophysical Characterization of DRN
2.2.1. DRN’s Glass Forming Ability (GFA)
2.2.2. Thermal Stability
2.3. Selection of the ASD Matrix/Carrier
2.3.1. Miscibility Evaluation
2.3.2. Film Casting Film Method
2.3.3. Solvent-Shift Method
2.4. Preparation of Amorphous and ASD Samples
2.5. Physicochemical and Thermophysical Characterization of ASDs
2.5.1. Differential Scanning Calorimetry (DSC)
2.5.2. Powder X-ray Diffractometry (pXRD)
2.5.3. Molecular Interactions
2.6. Saturation Solubility and Dissolution Studies
2.6.1. DRN’s Crystalline Saturation Solubility Determination
2.6.2. Non-Sink Condition Dissolution Studies
2.7. Stability Studies
3. Results and Discussion
3.1. Thermophysical Properties of DRN
3.1.1. GFA Classification of DRN
3.1.2. Thermal Stability of DRN
3.2. Selection of the ASD Matrix/Carrier
3.2.1. Miscibility Evaluation Results
3.2.2. Film-Casting Method
3.2.3. Solvent-Shift Method
3.3. Preparation and Evaluation of ASDs
3.3.1. Evaluation of DRN’s Physical State
3.3.2. In Vitro Supersaturation Studies
3.3.3. Molecular Interactions
ATR-FTIR
MD Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zareba, K.M. Dronedarone: A new antiarrhythmic agent. Drugs Today 2006, 42, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Jardan, Y.A.B.; Brocks, D.R. The pharmacokinetics of dronedarone in normolipidemic and hyperlipidemic rats. Biopharm. Drug Dispos. 2016, 37, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Hohnloser, S.H.; Crijns, H.J.; van Eickels, M.; Gaudin, C.; Page, R.L.; Torp-Pedersen, C.; Connolly, S.J. Effect of dronedarone on cardiovascular events in atrial fibrillation. N. Engl. J. Med. 2009, 360, 668–678. [Google Scholar] [CrossRef]
- Touboul, P.; Brugada, J.; Capucci, A.; Crijns, H.J.; Edvardsson, N.; Hohnloser, S.H. Dronedarone for prevention of atrial fibrillation: A dose-ranging study. Eur. Heart J. 2003, 24, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Han, S.D.; Jung, S.W.; Jang, S.W.; Jung, H.J.; Son, M.; Kim, B.M.; Kang, M.J. Preparation of solid dispersion of dronedarone hydrochloride with Soluplus(®) by hot melt extrusion technique for enhanced drug release. Chem. Pharm. Bull. 2015, 63, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Marcolino, A.I.P.; Macedo, L.B.; Nogueira-Librelotto, D.R.; Fernandes, J.R.; Bender, C.R.; Wust, K.M.; Frizzo, C.P.; Mitjans, M.; Vinardell, M.P.; Rolim, C.M.B. Preparation, characterization and in vitro cytotoxicity study of dronedarone hydrochloride inclusion complexes. Mater. Sci. Eng. 2019, 100, 48–61. [Google Scholar] [CrossRef]
- Han, S.D.; Jung, S.W.; Jang, S.W.; Son, M.; Kim, B.M.; Kang, M.J. Reduced Food-Effect on Intestinal Absorption of Dronedarone by Self-microemulsifying Drug Delivery System (SMEDDS). Biol. Pharm. Bull. 2015, 38, 1026–1032. [Google Scholar] [CrossRef]
- Abramovici, B.; Gautier, J.-C.; Gromenil, J.-C.; Marrier, J.-M. Solid Pharmaceutical Composition Containing Benzofuran Derivatives. U.S. Patent 7323493B1, 29 January 2008. [Google Scholar]
- Mahapatra, A.K.; Samoju, S.; Patra, R.K.; Pn, M. Dissolution enhancement of dronedarone hydrochloride by complexation with β-CD and HP β-CD: Dissolution and physicochemical characterization. Thai J. Pharm. Sci. 2014, 38, 139–148. [Google Scholar]
- Kordić, Š.; Matijašić, G.; Gretić, M. Prediction of particle size distribution of dronedarone hydrochloride in spiral jet mill using design of experiments. Chem. Eng. Commun. 2018, 205, 197–206. [Google Scholar] [CrossRef]
- Kovvasu, S.P.; Kunamaneni, P.; Yeung, S.; Rueda, J.; Betageri, G.V. Formulation of Dronedarone Hydrochloride-Loaded Proliposomes: In Vitro and In Vivo Evaluation Using Caco-2 and Rat Model. AAPS PharmSciTech 2019, 20, 226. [Google Scholar] [CrossRef]
- Jung, H.J.; Han, S.D.; Kang, M.J. Enhanced Dissolution Rate of Dronedarone Hydrochloride via Preparation of Solid Dispersion using Vinylpyrrolidone-Vinyl Acetate Copolymer (Kollidone® VA 64). Bull. Korean Chem. Soc. 2015, 36, 2320–2324. [Google Scholar] [CrossRef]
- Kapourani, A.; Palamidi, A.; Kontogiannopoulos, K.N.; Bikiaris, N.D.; Barmpalexis, P. Drug Amorphous Solid Dispersions Based on Poly(vinyl Alcohol): Evaluating the Effect of Poly(propylene Succinate) as Plasticizer. Polymers 2021, 13, 2922. [Google Scholar] [CrossRef] [PubMed]
- Chiou, W.L.; Riegelman, S. Pharmaceutical Applications of Solid Dispersion Systems. J. Pharm. Sci. 1971, 60, 1281–1302. [Google Scholar] [CrossRef] [PubMed]
- Pandi, P.; Bulusu, R.; Kommineni, N.; Khan, W.; Singh, M. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int. J. Pharm. 2020, 586, 119560. [Google Scholar] [CrossRef]
- Tran, T.; Le, L. Hybrid Backscatter and Underlay Transmissions in RF-Powered Cognitive Radio Networks. In Proceedings of the 2019 26th International Conference on Telecommunications (ICT), Hanoi, Vietnam, 8–10 April 2019; IEEE: New York, NY, USA; pp. 11–15. [Google Scholar]
- Cai, T.; Zhu, L.; Yu, L. Crystallization of Organic Glasses: Effects of Polymer Additives on Bulk and Surface Crystal Growth in Amorphous Nifedipine. Pharm. Res. 2011, 28, 2458–2466. [Google Scholar] [CrossRef]
- DeBoyace, K.; Wildfong, P.L.D. The Application of Modeling and Prediction to the Formation and Stability of Amorphous Solid Dispersions. J. Pharm. Sci. 2018, 107, 57–74. [Google Scholar] [CrossRef]
- Diaz-Mora, N.; Zanotto, E.D.; Hergt, R.; Müller, R. Surface crystallization and texture in cordierite glasses. J. Non Cryst. Solids 2000, 273, 81–93. [Google Scholar] [CrossRef]
- Hasebe, M.; Musumeci, D.; Powell, C.T.; Cai, T.; Gunn, E.; Zhu, L.; Yu, L. Fast Surface Crystal Growth on Molecular Glasses and Its Termination by the Onset of Fluidity. J. Phys. Chem. B 2014, 118, 7638–7646. [Google Scholar] [CrossRef]
- Haser, A.; Zhang, F. New Strategies for Improving the Development and Performance of Amorphous Solid Dispersions. AAPS PharmSciTech 2018, 19, 978–990. [Google Scholar] [CrossRef]
- Huang, S.; Williams, R.O. Effects of the Preparation Process on the Properties of Amorphous Solid Dispersions. AAPS PharmSciTech 2018, 19, 1971–1984. [Google Scholar] [CrossRef]
- Kawakami, K. Supersaturation and crystallization: Non-equilibrium dynamics of amorphous solid dispersions for oral drug delivery. Expert Opin. Drug Deliv. 2017, 14, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Sun, Y.; Li, N.; de Villiers, M.M.; Yu, L. Inhibiting Surface Crystallization of Amorphous Indomethacin by Nanocoating. Langmuir 2007, 23, 5148–5153. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Yu, L. Surface Crystallization of Indomethacin Below Tg. Pharm. Res. 2006, 23, 2350–2355. [Google Scholar] [CrossRef]
- Baghel, S.; Cathcart, H.; O’Reilly, N.J. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J. Pharm. Sci. 2016, 105, 2527–2544. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Meng, F.; Tsutsumi, Y.; Amoureux, J.-P.; Xu, W.; Lu, X.; Zhang, F.; Su, Y. Understanding Molecular Interactions in Rafoxanide–Povidone Amorphous Solid Dispersions from Ultrafast Magic Angle Spinning NMR. Mol. Pharm. 2020, 17, 2196–2207. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.D.; Tran, P.H.L. Molecular Interactions in Solid Dispersions of Poorly Water-Soluble Drugs. Pharmaceutics 2020, 12, 745. [Google Scholar]
- Baird, J.A.; Van Eerdenbrugh, B.; Taylor, L.S. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J. Pharm. Sci. 2010, 99, 3787–3806. [Google Scholar] [CrossRef]
- Tung, N.-T.; Tran, C.-S.; Nguyen, T.-L.; Pham, T.-M.-H.; Chi, S.-C.; Nguyen, H.-A.; Bui, Q.-D.; Bui, D.-N.; Tran, T.-Q. Effect of surfactant on the in vitro dissolution and the oral bioavailability of a weakly basic drug from an amorphous solid dispersion. Eur. J. Pharm. Sci. 2021, 162, 105836. [Google Scholar] [CrossRef]
- Koromili, M.; Kapourani, A.; Barmpalexis, P. Preparation and Evaluation of Amorphous Solid Dispersions for Enhancing Luteolin’s Solubility in Simulated Saliva. Polymers 2023, 15, 169. [Google Scholar]
- Engers, D.; Teng, J.; Jimenez-Novoa, J.; Gent, P.; Hossack, S.; Campbell, C.; Thomson, J.; Ivanisevic, I.; Templeton, A.; Byrn, S.; et al. A solid-state approach to enable early development compounds: Selection and animal bioavailability studies of an itraconazole amorphous solid dispersion. J. Pharm. Sci. 2010, 99, 3901–3922. [Google Scholar] [CrossRef]
- Kapourani, A.; Vardaka, E.; Katopodis, K.; Kachrimanis, K.; Barmpalexis, P. Rivaroxaban polymeric amorphous solid dispersions: Moisture-induced thermodynamic phase behavior and intermolecular interactions. Eur. J. Pharm. Biopharm. 2019, 145, 98–112. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Panchal, K.; Mafi, R.; Xi, L. An Atomistic Evaluation of the Compatibility and Plasticization Efficacy of Phthalates in Poly(vinyl chloride). Macromolecules 2018, 51, 6997–7012. [Google Scholar] [CrossRef]
- van Gunsteren, W.F.; Mark, A.E. Validation of molecular dynamics simulation. J. Chem. Phys. 1998, 108, 6109–6116. [Google Scholar] [CrossRef]
- Koromili, M.; Kapourani, A.; Koletti, A.; Papandreou, G.; Assimopoulou, A.N.; Lazari, D.; Barmpalexis, P. Preparation and Evaluation of Siderol Amorphous Solid Dispersions: Selection of Suitable Matrix/Carrier. AAPS PharmSciTech 2022, 23, 214. [Google Scholar] [CrossRef]
- Verma, S.; Rudraraju, V.S. A Systematic Approach to Design and Prepare Solid Dispersions of Poorly Water-Soluble Drug. AAPS PharmSciTech 2014, 15, 641–657. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, D.J.; Williams, A.C.; Timmins, P.; York, P. Solubility parameters as predictors of miscibility in solid dispersions. J. Pharm. Sci. 1999, 88, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Marom, E.; Rubnov, S. Amorphous Form of. Dronedarone. Patent WO2012001673A1, 5 January 2012. [Google Scholar]
- Obata, T.; Suzuki, Y.; Ogawa, N.; Kurimoto, I.; Yamamoto, H.; Furuno, T.; Sasaki, T.; Tanaka, M. Improvement of the antitumor activity of poorly soluble sapacitabine (CS-682) by using Soluplus® as a surfactant. Biol. Pharm. Bull. 2014, 37, 802–807. [Google Scholar] [CrossRef]
- Zi, P.; Zhang, C.; Ju, C.; Su, Z.; Bao, Y.; Gao, J.; Sun, J.; Lu, J.; Zhang, C. Solubility and bioavailability enhancement study of lopinavir solid dispersion matrixed with a polymeric surfactant—Soluplus. Eur. J. Pharm. Sci. 2019, 134, 233–245. [Google Scholar] [CrossRef]
- Ogawa, N.; Hiramatsu, T.; Suzuki, R.; Okamoto, R.; Shibagaki, K.; Fujita, K.; Takahashi, C.; Kawashima, Y.; Yamamoto, H. Improvement in the water solubility of drugs with a solid dispersion system by spray drying and hot-melt extrusion with using the amphiphilic polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer and d-mannitol. Eur. J. Pharm. Sci. 2018, 111, 205–214. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Luo, Y.; Yao, Q.; Zhong, Y.; Tian, B.; Tang, X. Extruded Soluplus/SIM as an oral delivery system: Characterization, interactions, in vitro and in vivo evaluations. Drug Deliv. 2016, 23, 1902–1911. [Google Scholar] [CrossRef]
- Zhu, C.; Gong, S.; Ding, J.; Yu, M.; Ahmad, E.; Feng, Y.; Gan, Y. Supersaturated polymeric micelles for oral silybin delivery: The role of the Soluplus–PVPVA complex. Acta Pharm. Sin. B 2019, 9, 107–117. [Google Scholar] [CrossRef] [PubMed]
Structural Group | N | N·Fdi (J1/2 cm3/2 mol−1/2) | N·Fpi2 (J cm3 mol−2) | N·Ehi (J mol−1) |
---|---|---|---|---|
−CH3 | 4 | 1680 | 0 | 0 |
−CH2− | 12 | 3240 | 0 | 0 |
=C< | 2 | 140 | 0 | 0 |
−CO− | 1 | 290 | 770 | 2000 |
−O− | 2 | 200 | 320,000 | 6000 |
−N< | 1 | 20 | 800 | 5000 |
−NH− | 1 | 160 | 210 | 3100 |
Benzyl ring | 2 | 2860 | 24,200 | 0 |
−SO2 | 1 | 1129 | 1,844,164 | 11,670 |
δt (MPa1/2) | δd (MPa1/2) | δp (MPa1/2) | δh (MPa1/2) | |
18.5 | 16.6 | 3.6 | 7.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapourani, A.; Manioudaki, A.-E.; Kontogiannopoulos, K.N.; Barmpalexis, P. Utilizing Drug Amorphous Solid Dispersions for the Preparation of Dronedarone per os Formulations. Polymers 2023, 15, 4292. https://doi.org/10.3390/polym15214292
Kapourani A, Manioudaki A-E, Kontogiannopoulos KN, Barmpalexis P. Utilizing Drug Amorphous Solid Dispersions for the Preparation of Dronedarone per os Formulations. Polymers. 2023; 15(21):4292. https://doi.org/10.3390/polym15214292
Chicago/Turabian StyleKapourani, Afroditi, Alexandra-Eleftheria Manioudaki, Konstantinos N. Kontogiannopoulos, and Panagiotis Barmpalexis. 2023. "Utilizing Drug Amorphous Solid Dispersions for the Preparation of Dronedarone per os Formulations" Polymers 15, no. 21: 4292. https://doi.org/10.3390/polym15214292
APA StyleKapourani, A., Manioudaki, A. -E., Kontogiannopoulos, K. N., & Barmpalexis, P. (2023). Utilizing Drug Amorphous Solid Dispersions for the Preparation of Dronedarone per os Formulations. Polymers, 15(21), 4292. https://doi.org/10.3390/polym15214292