MOC Composites for Construction: Improvement in Water Resistance by Addition of Nanodopants and Polyphenol
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Meng, D.; Unluer, C.; Yang, E.-H.; Qian, S. Recent advances in magnesium-based materials: CO2 sequestration and utilization, mechanical properties and environmental impact. Cem. Concr. Compos. 2023, 138, 104983. [Google Scholar] [CrossRef]
- Kastiukas, G.; Ruan, S.; Unluer, C.; Liang, S.; Zhou, X. Environmental Assessment of Magnesium Oxychloride Cement Samples: A Case Study in Europe. Sustainability 2019, 11, 6957. [Google Scholar] [CrossRef]
- Faltysová, I.; Lauermannová, A.-M.; Lojka, M.; Pavlík, Z.; Pavlíková, M.; Keppert, M. Study of formation of magnesium oxychloride phase MOC-518 by isothermal calorimetry. AIP Conf. Proc. 2022, 2488, 020003. [Google Scholar]
- Dehua, D.; Chuanmei, Z. The formation mechanism of the hydrate phases in magnesium oxychloride cement11This paper was originally submitted to Advanced Cement Based Materials. It was received at the Editorial Office of Cement and Concrete Research on 20 August 1998 and accepted in final form on 16 December 1998. Cem. Concr. Res. 1999, 29, 1365–1371. [Google Scholar]
- Jiříčková, A.; Lojka, M.; Lauermannová, A.-M.; Antončík, F.; Sedmidubský, D.; Pavlíková, M.; Záleská, M.; Pavlík, Z.; Jankovský, O. Synthesis, structure, and thermal stability of magnesium oxychloride 5Mg(OH)2·MgCl2·8H2O. Appl. Sci. 2020, 10, 1683. [Google Scholar] [CrossRef]
- Maier, A.; Manea, D.L. Perspective of Using Magnesium Oxychloride Cement (MOC) and Wood as a Composite Building Material: A Bibliometric Literature Review. Materials 2022, 15, 1772. [Google Scholar] [CrossRef]
- Nie, Y.; Lu, J.; Liu, Z.; Meng, D.; He, Z.; Shi, J. Mechanical, water resistance and environmental benefits of magnesium oxychloride cement incorporating rice husk ash. Sci. Total Environ. 2022, 849, 157871. [Google Scholar] [CrossRef]
- Ma, C.; Chen, G.; Cao, L.; Zhou, H.; Ren, W. Effects and mechanisms of waste gypsum influencing the mechanical properties and durability of magnesium oxychloride cement. J. Clean. Prod. 2022, 339, 130679. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Z.; Gao, X. Sustainable Improvement of Magnesium Oxychloride Cement Solidified Waste Sludge with Fly-Ash Inclusion. J. Mater. Civ. Eng. 2022, 34, 04022317. [Google Scholar] [CrossRef]
- Cao, F.; Qiao, H.; Shu, X.; Cui, L.; Zhang, T. Potential application of highland barley straw ash as a new active admixture in magnesium oxychloride cement. J. Build. Eng. 2022, 59, 105108. [Google Scholar] [CrossRef]
- He, Z.; Han, X.; Zhang, Y.; Zhang, Z.; Si, J.; Gencel, O. Development of a new magnesium oxychloride cement board by recycling of waste wood, rice husk ash and flue gas desulfurization gypsum. J. Build. Eng. 2022, 61, 105206. [Google Scholar] [CrossRef]
- Davraz, M.; Koru, M.; Akdağ, A.E. The Effect of Mixing Ratios on Physical, Mechanical, and Thermal Properties in Lightweight Composite with Magnesium Oxychloride Cement. Int. J. Thermophys. 2022, 44, 3. [Google Scholar] [CrossRef]
- Abd-El-Raoof, F.; Hegazy, A.A.; Rashwan, M.A.; Mohamed, W.S.; Tawfik, A. Dual-functional polymer-modified magnesium oxychloride cement pastes: Physico-mechanical, phase, and microstructure characterizations. J. Build. Eng. 2022, 57, 104898. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, P.; Huang, J.; Jia, Q.; Wen, J.; Dong, J.; Zheng, W.; Chang, C.; Wang, H.; Chen, R. Promoting effect and mechanism of several inorganic salts on hydration reaction of magnesium oxychloride cement at low temperature. Constr. Build. Mater. 2022, 317, 126171. [Google Scholar] [CrossRef]
- El-Feky, M.S.; Mohsen, A.; El-Tair, A.M.; Kohail, M. Microstructural investigation for micro-nano-silica engineered magnesium oxychloride cement. Constr. Build. Mater. 2022, 342, 127976. [Google Scholar] [CrossRef]
- Luo, X.; Fan, W.; Li, C.; Wang, Y.; Yang, H.; Liu, X.; Yang, S. Effect of hydroxyacetic acid on the water resistance of magnesium oxychloride cement. Constr. Build. Mater. 2020, 246, 118428. [Google Scholar] [CrossRef]
- Deng, D. The mechanism for soluble phosphates to improve the water resistance of magnesium oxychloride cement. Cem. Concr. Res. 2003, 33, 1311. [Google Scholar] [CrossRef]
- Sun, X.; Ye, Q.; Zhou, W.; Han, Y.; Gong, S.; Zhou, W.; Shi, S.Q.; Li, J.; Fang, Z. Tannin-modified magnesium oxychloride cement with high-strength and reinforced water-resistance. J. Clean. Prod. 2022, 374, 133543. [Google Scholar] [CrossRef]
- Lauermannová, A.-M.; Lojka, M.; Sklenka, J.; Záleská, M.; Pavlíková, M.; Pivák, A.; Pavlík, Z.; Jankovský, O. Magnesium oxychloride-graphene composites: Towards high strength and water resistant materials for construction industry. FlatChem 2021, 29, 100284. [Google Scholar] [CrossRef]
- Du, M.; Jing, H.; Gao, Y.; Su, H.; Fang, H. Carbon nanomaterials enhanced cement-based composites: Advances and challenges. Nanotechnol. Rev. 2020, 9, 115–135. [Google Scholar] [CrossRef]
- Chen, S.J.; Wang, W.; Sagoe-Crentsil, K.; Collins, F.; Zhaou, X.L.; Majumder, M.; Duan, W.H. Distribution of carbon nanotubes in fresh ordinary Portland cement pastes: Understanding from a two-phase perspective. RSC Adv. 2016, 6, 5745. [Google Scholar] [CrossRef]
- Makar, J.M.; Chan, G.W. Growth of Cement Hydration Products on Single-Walled Carbon Nanotubes. J. Am. Ceram. Soc. 2009, 92, 1303. [Google Scholar] [CrossRef]
- Wang, B.; Jiang, R.; Wu, Z. Investigation of the mechanical properties and microstructure of graphene nanoplatelet-cement composite. Nanomaterials 2016, 6, 200. [Google Scholar] [CrossRef]
- Shamsaei, E.; Basquiroto de Souza, F.; Yao, X.; Benhelal, E.; Akbari, A.; Duan, W. Graphene-based nanosheets for stronger and more durable concrete: A review. Constr. Build. Mater. 2018, 183, 642–660. [Google Scholar] [CrossRef]
- Xu, Y.; Zeng, J.; Chen, W.; Jin, R.; Li, B.; Pan, Z. A holistic review of cement composites reinforced with graphene oxide. Constr. Build. Mater. 2018, 171, 291–302. [Google Scholar] [CrossRef]
- Sanchez, F.; Zhang, L.; Ince, C. Multi-scale Performance and Durability of Carbon Nanofiber/Cement Composites. In Nanotechnology in Construction; Bittnar, Z., Bartos, P.J.M., Němeček, J., Šmilauer, V., Zeman, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 3, pp. 345–350. [Google Scholar]
- Lu, L.; Ouyang, D.; Xu, W. Mechanical properties and durability of ultra high strength concrete incorporating multi-walled carbon nanotubes. Materials 2016, 9, 419. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.-M.; Liu, S.; Han, Y.; Leng, P. Preparation and Durability of Cement-Based Composites Doped with Multi-Walled Carbon Nanotubes. Nanosci. Nanotechnol. Lett. 2015, 7, 411. [Google Scholar] [CrossRef]
- Del Carmen Camacho, M.; Galao, O.; Baeza, F.J.; Zornoza, E.; Garcés, P. Mechanical Properties and Durability of CNT Cement Composites. Materials 2014, 7, 1640–1651. [Google Scholar] [CrossRef]
- Copolla, L.; Buosa, A.; Corazza, F. Electrical Properties of Carbon Nanotubes Cement Composites for Monitoring Stress Conditions in Concrete Structures. Appl. Mech. Mater. 2011, 82, 118. [Google Scholar] [CrossRef]
- Bai, S.; Jiang, L.; Xu, N.; Jin, M.; Jiang, S. Enhancement of mechanical and electrical properties of graphene/cement composite due to improved dispersion of graphene by addition of silica fume. Constr. Build. Mater. 2018, 164, 433. [Google Scholar] [CrossRef]
- Le, J.-L.; Du, H.; Pang, S.D. Use of 2D Graphene Nanoplatelets (GNP) in cement composites for structural health evaluation. Compos. B Eng. 2014, 67, 555–563. [Google Scholar] [CrossRef]
- Jang, S.-H.; Hochstein, D.P.; Kawashima, S.; Yin, H. Experiments and micromechanical modeling of electrical conductivity of carbon nanotube/cement composites with moisture. Cem. Concr. Compos. 2017, 77, 49–59. [Google Scholar] [CrossRef]
- Sheikh, T.M.; Anwar, M.P.; Muthoosamy, K.; Jaganathan, J.; Chan, A.; Mohamed, A.A. The mechanics of carbon-based nanomaterials as cement reinforcement—A critical review. Constr. Build. Mater. 2021, 303, 124441. [Google Scholar] [CrossRef]
- Kim, H.-K. Chloride penetration monitoring in reinforced concrete structure using carbon nanotube/cement composite. Constr. Build. Mater. 2015, 96, 29–36. [Google Scholar] [CrossRef]
- Pang, S.D.; Gao, H.J.; Xu, C.; Quek, S.T.; Du, H. Strain and damage self-sensing cement composites with conductive graphene nanoplatelet. Proc. SPIE 2014, 9061, 906126. [Google Scholar]
- Li, X.; Wei, W.; Qin, H.; Hang Hu, Y. Co-effects of graphene oxide sheets and single wall carbon nanotubes on mechanical properties of cement. J. Phys. Chem. Solids 2015, 85, 39–43. [Google Scholar] [CrossRef]
- Lu, Z.; Hou, D.; Meng, L.; Sun, G.; Lu, C.; Li, Z. Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties. RSC Adv. 2015, 5, 100598. [Google Scholar] [CrossRef]
- Liu, J.; Fu, J.; Ni, T.; Yang, Y. Fracture toughness improvement of multi-wall carbon nanotubes/graphene sheets reinforced cement paste. Constr. Build. Mater. 2019, 200, 530–538. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; You, I.; Lee, S.-J. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers. Sensors 2017, 17, 1064. [Google Scholar] [CrossRef]
- Chen, S.J.; Collins, F.G.; Macleod, A.J.N.; Pan, Z.; Duan, W.H.; Wang, C.M. Carbon nanotube–cement composites: A retrospect. IES J. Part A Civ. Struct. Eng. 2011, 4, 254–265. [Google Scholar] [CrossRef]
- Collins, F.; Lambert, J.; Duan, W.H. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–OPC paste mixtures. Cem. Concr. Compos. 2012, 34, 201–207. [Google Scholar] [CrossRef]
- De Jong, K.P.; Geus, J.W. Carbon Nanofibers: Catalytic Synthesis and Applications. Sci. Eng. 2000, 42, 481–510. [Google Scholar] [CrossRef]
- Popov, V.N. Carbon nanotubes: Properties and application. Mater. Sci. Eng. R Rep. 2004, 43, 61–102. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 5226. [Google Scholar] [CrossRef]
- Gómez-Navarro, C.; Meyer, J.C.; Sundaram, R.S.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic Structure of Reduced Graphene Oxide. Nano Lett. 2010, 10, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
- Chuah, S.; Li, W.; Chen, S.J.; Sanjayan, J.G.; Duan, W.H. Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments. Constr. Build. Mater. 2018, 161, 519–527. [Google Scholar] [CrossRef]
- Sobolkina, A.; Mechtcherine, V.; Khavrus, V.; Maier, D.; Mende, M.; Ritschel, M.; Leonhardt, A. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem. Concr. Compos. 2012, 34, 1104–1113. [Google Scholar] [CrossRef]
- Higashitani, K.; Yoshida, K.; Tanise, N.; Murata, H. Dispersion of coagulated colloids by ultrasonication. Colloids Surf. A 1993, 81, 167–175. [Google Scholar] [CrossRef]
- Borode, A.O.; Ahmed, N.A.; Olubambi, P.A. Surfactant-aided dispersion of carbon nanomaterials in aqueous solution. Phys. Fluids 2019, 31, 071301. [Google Scholar] [CrossRef]
- Borovskaya, A.O.; Idiatullin, B.Z.; Zueva, O.S. Carbon nanotubes in the surfactants dispersion: Formation of the microenvironment. J. Phys. Conf. Ser. 2016, 690, 012030. [Google Scholar] [CrossRef]
- Gao, Y.; Jing, H.; Du, M.; Chen, W. Dispersion of Multi-Walled Carbon Nanotubes Stabilized by Humic Acid in Sustainable Cement Composites. Nanomaterials 2018, 8, 858. [Google Scholar] [CrossRef] [PubMed]
- Negm, N.A.; El Farargy, A.F.M.; Mohammed, D.E.; Mohamad, H.N. Environmentally Friendly Nonionic Surfactants Derived from Tannic Acid: Synthesis, Characterization and Surface Activity. J. Surfact. Deterg. 2012, 15, 433–443. [Google Scholar] [CrossRef]
- Lin, D.; Xing, B. Tannic Acid Adsorption and Its Role for Stabilizing Carbon Nanotube Suspensions. Environ. Sci. Technol. 2008, 42, 5917–5923. [Google Scholar] [CrossRef]
- Wang, T.; Jing, L.C.; Zhu, Q.; Ethiraj, A.S.; Fan, X.; Liu, H.; Tian, Y.; Zhu, Z.; Meng, Z.; Geng, H.-Z. Tannic acid modified graphene/CNT three-dimensional conductive network for preparing high-performance transparent flexible heaters. J. Colloid Interface Sci. 2020, 577, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Liu, N.; Yang, K.; Zhu, L.; Xu, Y.; Xing, B. The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions. Carbon 2009, 47, 2875–2882. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, J.; Qian, X.; Wang, L.; Dong, Y.; Qiao, P. Low-cost, ubiquitous biomolecule as a strength enhancer for cement mortars. Constr. Build. Mater. 2021, 311, 125305. [Google Scholar] [CrossRef]
- Shutava, T.; Prouty, M.; Kommireddy, D.; Lvov, Y. pH responsive decomposable layer-by-layer nanofilms and capsules on the basis of tannic acid. Macromolecules 2005, 38, 2850–2858. [Google Scholar] [CrossRef]
- Erel-Unal, I.; Sukhishvili, S.A. Hydrogen-bonded multilayers of a neutral polymer and a polyphenol. Macromolecules 2008, 41, 3962–3970. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, J.; Qian, X.; Wang, L.; Chen, P.; Qiao, P. A renewable admixture to enhance the performance of cement mortars through a pre-hydration method. J. Clean. Prod. 2022, 332, 130095. [Google Scholar] [CrossRef]
- Pavlíková, M.; Kapicová, A.; Záleská, M.; Pivák, A.; Jankovský, O.; Lauermannová, A.-M.; Lojka, M.; Faltysová, I.; Slámová, J.; Pavlík, Z. Ultra-high strength multicomponent composites based on reactive magnesia: Tailoring of material properties by addition of 1D and 2D carbon nanoadditives. J. Build. Eng. 2022, 50, 104122. [Google Scholar] [CrossRef]
- Jankovský, O.; Lojka, M.; Lauermannová, A.-M.; Antončík, F.; Pavlíková, M.; Záleská, M.; Pavlík, Z.; Pivák, A.; Sedmidubský, D. Towards novel building materials: High-strength nanocomposites based on graphene, graphite oxide and magnesium oxychloride. Appl. Mater. Today 2020, 20, 100766. [Google Scholar] [CrossRef]
- Sugimoto, K.; Dinnebier, R.E.; Hanson, J.C. Structures of three dehydration products of bischofite from in situ synchrotron powder diffraction data (MgCl2.nH2O; n = 1, 2, 4). Acta Cryst. 2007, 63, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Zayakina, N.; Ugapeva, S.; Oleinikov, O. Rare hydrated magnesium carbonate minerals of the kimberlite pipe Obnazhennaya, The Yakutian Kimberlite Province. IOP Conf. Ser. Earth Environ. Sci. 2020, 609, 012007. [Google Scholar] [CrossRef]
- Henry, P.F.; Weller, M.T.; Wilson, C.C. Hydrogenous materials using powder neutron diffraction: Full structural determination of adsorbed water molecules in a zeolite. Chem. Commun. 2008, 13, 1557–1559. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.T.C.; Lee, T.S. The effect of aggregate condition during mixing on the mechanical properties of oil palm shell (OPS) concrete. MATEC Web Conf. 2017, 87, 01019. [Google Scholar] [CrossRef]
- Takakura, A.; Beppu, K.; Nishihara, T.; Fukui, A.; Kozeki, T.; Namazu, T.; Miyauchi, Y.; Itami, K. Strength of carbon nanotubes depends on their chemical structures. Nat. Commun. 2019, 10, 3040. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, W.; Liu, W.; Yang, L.; Wang, L. A new approach to improving the water resistance of MOC-solidified sludge using HCO3 ions. Constr. Build. Mater. 2023, 401, 132959. [Google Scholar] [CrossRef]
- Huang, Q.; Wen, J.; Li, Y.; Zheng, W.; Chang, C.; Dong, J.; Man, Y.; Zhou, A.; Xiao, X. The effect of silica fume on the durability of magnesium oxychloride cement. Ceram.-Silika 2019, 63, 338–346. [Google Scholar] [CrossRef]
- He, P.; Poon, C.S.; Richardson, I.G.; Tsang, D.C.W. The mechanism of supplementary cementitious materials enhancing the water resistance of magnesium oxychloride cement (MOC): A comparison between pulverized fuel ash and incinerated sewage sludge ash. Cem. Concr. Res. 2020, 109, 103562. [Google Scholar] [CrossRef]
- Wen, J.; Yu, H.; Wu, C.; Li, Y.; Dong, J.; Zheng, L. Hydration kinetic and influencing parameters in hydration process of magnesium oxychloride cement. J. Chin. Ceram. Soc. 2013, 41, 588–596. [Google Scholar]
- EN 1015-11; Methods of Test for Mortar for Masonry-Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. CEN: Brussels, Belgium, 1999.
Mixture | Mass (g) | ||||||||
---|---|---|---|---|---|---|---|---|---|
MgO | MgCl2∙6H2O | Water | PG1 | PG2 | PG3 | TA | 1D | 2D | |
PASTE | 450.0 | 453.97 | 281.60 | - | - | - | - | - | - |
REF | 450.0 | 453.97 | 281.60 | 450.0 | 450.0 | 450.0 | - | - | - |
TA | 450.0 | 453.97 | 281.60 | 450.0 | 450.0 | 450.0 | 2.37 | - | - |
1D-TA | 450.0 | 453.97 | 281.60 | 450.0 | 450.0 | 450.0 | 2.37 | 5.92 | - |
2D-TA | 450.0 | 453.97 | 281.60 | 450.0 | 450.0 | 450.0 | 2.37 | - | 5.92 |
1D-2D-TA | 450.0 | 453.97 | 281.60 | 450.0 | 450.0 | 450.0 | 2.37 | 2.96 | 2.96 |
Mixture | wt. % | ||||
---|---|---|---|---|---|
O | Mg | Si | Cl | C | |
REF | 41.5 | 21.6 | 13.1 | 12.4 | 11.4 |
TA | 39.4 | 24.3 | 11.2 | 13.8 | 11.2 |
1D-TA | 42.6 | 18.6 | 17.5 | 10.2 | 11.1 |
2D-TA | 38.5 | 26.3 | 6.8 | 16.1 | 12.3 |
1D-2D-TA | 39.8 | 26.1 | 6.6 | 14.3 | 13.2 |
Mixture | Bulk Density | Specific Density | Porosity (MIP) | Total Pore Volume | Average Pore Diameter |
---|---|---|---|---|---|
(kg·m−3) | (kg·m−3) | (%) | (cm−3·g−1) | (μm) | |
REF | 2029 ± 28 | 2251 ± 27 | 10.6 ± 0.2 | 0.052 | 0.047 |
TA | 2030 ± 28 | 2260 ± 27 | 10.5 ± 0.2 | 0.058 | 0.043 |
1D-TA | 2035 ± 28 | 2269 ± 27 | 8.8 ± 0.2 | 0.045 | 0.046 |
2D-TA | 2031 ± 28 | 2279 ± 27 | 10.5 ± 0.2 | 0.058 | 0.049 |
1D-2D-TA | 2035 ± 29 | 2266 ± 27 | 9.2 ± 0.2 | 0.048 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauermannová, A.-M.; Jankovský, O.; Jiříčková, A.; Sedmidubský, D.; Záleská, M.; Pivák, A.; Pavlíková, M.; Pavlík, Z. MOC Composites for Construction: Improvement in Water Resistance by Addition of Nanodopants and Polyphenol. Polymers 2023, 15, 4300. https://doi.org/10.3390/polym15214300
Lauermannová A-M, Jankovský O, Jiříčková A, Sedmidubský D, Záleská M, Pivák A, Pavlíková M, Pavlík Z. MOC Composites for Construction: Improvement in Water Resistance by Addition of Nanodopants and Polyphenol. Polymers. 2023; 15(21):4300. https://doi.org/10.3390/polym15214300
Chicago/Turabian StyleLauermannová, Anna-Marie, Ondřej Jankovský, Adéla Jiříčková, David Sedmidubský, Martina Záleská, Adam Pivák, Milena Pavlíková, and Zbyšek Pavlík. 2023. "MOC Composites for Construction: Improvement in Water Resistance by Addition of Nanodopants and Polyphenol" Polymers 15, no. 21: 4300. https://doi.org/10.3390/polym15214300
APA StyleLauermannová, A. -M., Jankovský, O., Jiříčková, A., Sedmidubský, D., Záleská, M., Pivák, A., Pavlíková, M., & Pavlík, Z. (2023). MOC Composites for Construction: Improvement in Water Resistance by Addition of Nanodopants and Polyphenol. Polymers, 15(21), 4300. https://doi.org/10.3390/polym15214300