Increasing Bending Strength of Polycarbonate Reinforced by Carbon Fiber Irradiated by Electron Beam
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials and Fabrication of [PC]4[CF]3 Samples
2.2. Condition of HLEBI
2.3. Bending Tests
2.4. Accumulative Probability
3. Results
3.1. Effects of HLEBI to CF on Elastic Modulus of [PC]4[CF]3 Samples
3.2. Effects of HLEBI to CF on Bending Strength of [PC]4[CF]3 Samples
4. Discussion
4.1. Three-Parameter Weibull Calculation for Statistically Lowest Bending Strength, σs, at Pa = 0
4.2. Effects of HLEBI on ESR Signals and σb
5. Conclusions
- Experimental results showed that the 215 kGy HLEBI dose appeared to be at or near optimum, raising bending strength at all accumulative probabilities, Pa. At low, median, and high Pa of 0.06, 0.50, and 0.94, bending strength was increased by 8.4%, 25%, and 19% from 71, 84, 98 MPa for untreated, to 77, 105, 117 MPa for the 215 kGy samples.
- Three-parameter Weibull analysis showed that, when quality can be controlled, 215 kGy HLEBI can raise the statistically lowest bending strength, σs (94.3 MPa), at Pa = 0 with a high correlation coefficient. This is because, although higher than the other experimental conditions, the weakest sample of the 215 kGy data set had a much lower σb than the others. When the single weakest sample in each data set was omitted, σs was higher in the 215 kGy samples than the untreated and the 43, 129, 301, and 430 kGy samples.
- Interestingly, electron spin resonance (ESR) of the CF showed that naturally occurring dangling bonds were reduced by 43 kGy but sharply increased at 129 kGy and 215 kGy. As far as the authors know, this is the first time this increase is reported. The σb appears to be controlled by an increase or decrease in dangling bond density in the CF by HLEBI.
- Improvements are most likely from charge transfer from the activated highly conductive CF to the PC generating strong bonds, which are possibly covalent, of CF:C:O:C:PC and CF:C:C:PC at the CF/PC interface. The 215 HLEBI treatment enhanced adhesion to PC around the CF circumference, along with preventing fiber pull-out and ply delamination. The CF itself is also strengthened by the HLEBI. However, carefulness is highly recommended in each situation when applying practically, since higher doses can lower the strength of the composite.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sood, M.; Dwivedi, G. Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egypt J. Pet. 2018, 27, 775–783. [Google Scholar] [CrossRef]
- Okamoto, M. Relationship between the end-cap structure of polycarbonates and their impact resistance. Polymer 2001, 42, 8355–8359. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Sun, J.; Liu, X.; Li, H.; Gu, X.; Zhao, J.; Zhang, S. Improve the flame retardancy and scratch resistance of polycarbonate by introducing Si/P/N contained transparent coatings. Prog. Org. Coat. 2024, 186, 108022. [Google Scholar] [CrossRef]
- James, A.; Lord, M. Macmillan’s Chemical and Physical Data, London and Basingstoke; The Macmillan Press, Ltd.: London, UK, 1992; pp. 398–399, 484–485. [Google Scholar]
- Shackelford, J.F. Introduction to Materials Science for Engineers, 5th ed.; Prentice Hall International: London, UK, 2000; p. 273. [Google Scholar]
- Zhang, Y.; Gao, D. Tensile property analysis of carbon/glass hybrid fibers-reinforced graphene-modified polymer bars. Constr. Build. Mater. 2023, 403, 133178. [Google Scholar] [CrossRef]
- Ramkumar, R.; Rajaram, K.; Saravanan, P.; Venkatesh, R.; Saranya, K.; Jenaris, D.S. Determination of mechanical properties of CFRP composite reinforced with Abaca and Kenaf fibres. Mater. Today Proc. 2022, 62, 5311–5316. [Google Scholar]
- Dvir, H.; Jopp, J.; Gottlieb, M. Estimation of polymer–surface interfacial interaction strength by a contact AFM technique. J. Colloid Interf. Sci. 2006, 304, 58–66. [Google Scholar] [CrossRef]
- Jaing, J.; Wang, H. The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites. J. Mater. Sci. 2000, 35, 2297–2303. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, B.J. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior. Mater. Sci. Eng. A 2005, 408, 269–274. [Google Scholar] [CrossRef]
- Tiwari, S.; Bijwe, J. Surface Treatment of Carbon Fibers—A Review. Procedia Tech. 2004, 14, 505–512. [Google Scholar] [CrossRef]
- Sharma, M.; Gao, S.; Mader, E.; Sharma, H.; Wei, L.-Y.; Bijwe, J. Carbon fiber surfaces and composite interphases. Compos. Sci. Technol. 2014, 102, 35–50. [Google Scholar] [CrossRef]
- Wu, Z.; Pittman, C.U. Nitric acid oxidation of carbon fibers and the effects of subsequent treatment in refluxing aqueous NaOH. Polym. Compos. 1995, 33, 597–605. [Google Scholar] [CrossRef]
- Cai, G.; Wada, M.; Ohsawa, I.; Kitaoka, S.; Takahashi, J. Interfacial adhesion of recycled carbon fibers to polypropylene resin: Effect of superheated steam on the surface chemical state of carbon fiber. Compos. A 2019, 120, 33–40. [Google Scholar] [CrossRef]
- Jones, C. Effects of electrochemical and plasma treatments on carbon fibre surfaces. Surf. Interface Anal. 1993, 20, 357–367. [Google Scholar] [CrossRef]
- Tiwari, S.; Sharma, M.; Panier, S.; Mutel, B.; Mitschang, P.; Bijwe, J. Influence of cold remote nitrogen oxygen plasma treatment on carbon fabric and its composites with specialty polymers. J. Mater. Sci. 2011, 46, 964–974. [Google Scholar] [CrossRef]
- Pittman, C.U.; Jiang, W.; He, G.R.; Gardner, S.D. Oxygen Plasma and Isobutylene Plasma Treatments of Carbon Fibers: Determination of Surface Functionality and Effects on Composite Properties. Carbon 1998, 36, 25–37. [Google Scholar] [CrossRef]
- Sherwood, P.M.A. Surface analysis of carbon and carbon fibers for composites. J. Electron. Spectrosc. Relat. Phenom. 1996, 81, 319–342. [Google Scholar] [CrossRef]
- Montes-Morán, M.A.; Martínez-Alonso, A.; Tascón, J.M.D.; Young, R.J. Effects of plasma oxidation on the surface and interfacial properties of ultra-high modulus carbon fibres. Compos. Part A 2001, 32, 361–371. [Google Scholar] [CrossRef]
- Hung, K.B.; Li, J.; Fan, Q.; Chen, Z.H. The enhancement of carbon fiber modified with electropolymer coating to the mechanical properties of epoxy resin composites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1133–1140. [Google Scholar] [CrossRef]
- Pittman, C.U., Jr.; Jiang, W.; Yue, Z.R.; Gardner, S.; Wang, L.; Toghiani, H.; Leon y Leon, C.A. Surface properties of electrochemically oxidized carbon fibers. Carbon 1999, 37, 1797–1807. [Google Scholar] [CrossRef]
- Bao, D.; Cheng, X. Evaluation of Tribological Performance of PTFE Composite Filled with Rare Earths Treated Carbon Fibers under Water-Lubricated Condition. J. Rare Earths 2006, 24, 564–568. [Google Scholar] [CrossRef]
- Zhang, X.R.; Zhao, P.; Pei, X.Q.; Wang, Q.H.; Jia, Q. Flexural strength and tribological properties of rare earth treated short carbon fiber/polyimide composites. Express Polym. Lett. 2006, 1, 667–672. [Google Scholar] [CrossRef]
- Clough, R.L. High-energy radiation and polymers: A review of commercial processes and emerging applications. Nucl. Instrum. Methods Phys. Res. B 2001, 185, 8–23. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, Y.; Zhang, C.; Liu, L.; Zhang, Y.; Wang, L. Effect of γ-ray irradiation grafting on the carbon fibers and interfacial adhesion of epoxy composites. Compos. Sci. Technol. 2007, 67, 3261–3270. [Google Scholar] [CrossRef]
- Wan, Y.Z.; Wang, Y.L.; Huang, Y.; Luo, H.L.; Chen, G.C.; Yuan, C.D. Effect of surface treatment of carbon fibers with gamma-ray radiation on mechanical performance of their composites. J. Mater. Sci. 2005, 40, 3355–3359. [Google Scholar] [CrossRef]
- Li, J.; Huang, Y.; Xu, Z.; Wang, Z. High-energy radiation technique treat on the surface of carbon fiber. Mater. Chem. Phys. 2005, 94, 315–321. [Google Scholar] [CrossRef]
- Geisler, M.; Pal, T.S.; Arnhold, K.; Malanin, M.; Müller, M.T.; Voit, B.; Pionteck, J.; Lederer, A. Impact of Electron Beam Irradiation on Thermoplastic Polyurethanes Unraveled by Thermal Field-Flow Fractionation. Polym. Degrad. Stab. 2021, 183, 109423. [Google Scholar] [CrossRef]
- Adem, E.; Angulo-Cervera, E.; González-Jiménez, A.; Valentín, J.L.; Marcos-Fernández, A. Effect of dose and temperature on the physical properties of an aliphatic thermoplastic polyurethane irradiated with an electron beam. Radiat. Phys. Chem. 2015, 112, 61–70. [Google Scholar] [CrossRef]
- Steller, R.; Żuchowska, D.; Meissner, W.; Paukszta, D.; Garbarczyk, J. Crystalline structure of polypropylene in blends with thermoplastic elastomers after electron beam irradiation. Radiat. Phys. Chem. 2006, 75, 259–267. [Google Scholar] [CrossRef]
- Park, S.-K.; Jung, S.; Lee, D.-Y.; Ghim, H.-D.; Seung, H.-Y. Effects of electron-beam irradiation and radiation cross-linker on tensile properties and thermal stability of polypropylene-based carbon fiber reinforced thermoplastic. Polym. Degrad. Stab. 2020, 181, 109301. [Google Scholar] [CrossRef]
- Nishi, Y.; Takei, H.; Iwata, K.; Salvia, M.; Vautrin, A. Effects of electron beam irradiation on impact value of carbon fiber reinforced thermoplastic polyetheretherketone. Mater. Trans. 2009, 50, 2826–2832. [Google Scholar] [CrossRef]
- Szabó, L.; Imanishi, S.; Tetsuo, F.; Nishio, M.; Hirose, D.; Tsukegi, T.; Taki, K.; Ninomiya, K.; Takahashi, K. Electron beam induced strengthening of a short carbon fiber reinforced green thermoplastic composite: Key factors determining materials performance. Compos. A 2019, 121, 386–396. [Google Scholar] [CrossRef]
- Park, M.-S.; Jung, M.-J.; Lee, Y.-S. Significant reduction in stabilization temperature and improved mechanical/electrical properties of pitch-based carbon fibers by electron beam irradiation. J. Indust. Eng. Chem. 2016, 37, 277–287. [Google Scholar] [CrossRef]
- Nishi, Y.; Mizutani, A.; Kimura, A.; Toriyama, T.; Oguri, K.; Tonegawa, A. Effects of sheet electron beam irradiation on aircraft design stress of carbon fiber. J. Mater. Sci. 2003, 38, 89–92. [Google Scholar] [CrossRef]
- Takeda, K.; Kimura, H.; Faudree, M.C.; Uchida, H.T.; Sagawa, K.; Miura, E.; Salvia, M.; Nishi, Y. A New Strengthening Process for Carbon-Fiber-Reinforced Thermoplastic Polyphenylene Sulfide (CFRTP-PPS) Interlayered Composite by Electron Beam Irradiation to PPS Prior to Lamination Assembly and Hot Press. Materials 2023, 16, 2823. [Google Scholar] [CrossRef]
- Nishi, Y.; Kitagawa, S.; Faudree, M.C.; Uchida, H.T.; Kanda, M.; Takase, S.; Kaneko, S.; Endo, T.; Tonegawa, A.; Salvia, M.; et al. Ch. 12 Improvements of strength of layered polypropylene reinforced by carbon fiber by its sizing film and electron beam under protective nitrogen gas atmosphere. In Carbon Related Materials; Kaneko, S., Aono, M., Pruna, A., Can, M., Mele, P., Ertugrul, M., Endo, T., Eds.; Springer: Singapore, 2021; pp. 279–302. [Google Scholar]
- Sagawa, K.; Kimura, H.; Ishiwata, T.; Faudree, M.C.; Uchida, H.T.; Nishi, Y. Effects of Irradiation Dose of Sheet-Like Electron Beam and its Cathode Voltage on Impact Strength of Carbon Fiber Reinforced Thermoplastic Polyamide just before Shipping. Mater. Sci. Forum 2023, 1094, 25–33. [Google Scholar] [CrossRef]
- Gordon, A.; Ford, R. The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References; Wiley Interscience Publication: New York, NY, USA, 1972; pp. 112–113. [Google Scholar]
- JIS K 7074; Testing Methods for Flexural Properties of Carbon Fiber Reinforced Plastics. Japanese Industrial Standard: Tokyo, Japan, 1988.
- Technical Sheet for CF. Available online: https://shop.lab-cast.com/?pid=93479046 (accessed on 5 August 2023).
- Christenhusz, R.; Reimer, L. Schichtdickenabhangigkeit der warmerzeugungdurch elektronenbestrahlung im energiebereich zwischen 9 und 100 keV. Z Angew. Phys. 1967, 23, 396–404. [Google Scholar]
- Kimura, H.; Takeda, K.; Uchida, H.T.; Faudree, M.C.; Sagawa, K.; Kaneko, S.; Salvia, M.; Nishi, Y. Strengthening Process by Electron Beam to Carbon Fiber for Impact Strength Enhancement of Interlayered Thermoplastic-Polypropylene Carbon Fiber Composite. Materials 2022, 15, 7620. [Google Scholar] [CrossRef] [PubMed]
- Nishida, T.; Yasuda, E. Evaluation of dynamic properties of ceramics. In Ceramics no Rikigaku Tokusei Hyouka; Nikkan Kogyou Shimbun Sha: Tokyo, Japan, 1986; pp. 50–51. [Google Scholar]
- Weibull, W. A Statistical Theory of the Strength of Materials; Ingeniörs Vetenskaps Akademien; nr. 151; Generalstabens Litografiskaanstalts Förlag; Engineer Science Academy; Lithographic Institution Publisher: Stockholm, Sweden, 1939; pp. 12–14. [Google Scholar]
- Weibull, W. A Statistical Theory of the Strength of Materials; Ingeniörs Vetenskaps Akademien; nr. 153; Generalstabens Litografiskaanstalts Förlag; Engineer Science Academy; Lithographic Institution Publisher: Stockholm, Sweden, 1939; pp. 16–22. [Google Scholar]
- Quinn, J.B.; Quinn, G.D. A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent. Mater. 2010, 26, 135–147. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishi, Y.; Tsuyuki, N.; Uchida, H.T.; Faudree, M.C.; Sagawa, K.; Kanda, M.; Matsumura, Y.; Salvia, M.; Kimura, H. Increasing Bending Strength of Polycarbonate Reinforced by Carbon Fiber Irradiated by Electron Beam. Polymers 2023, 15, 4350. https://doi.org/10.3390/polym15224350
Nishi Y, Tsuyuki N, Uchida HT, Faudree MC, Sagawa K, Kanda M, Matsumura Y, Salvia M, Kimura H. Increasing Bending Strength of Polycarbonate Reinforced by Carbon Fiber Irradiated by Electron Beam. Polymers. 2023; 15(22):4350. https://doi.org/10.3390/polym15224350
Chicago/Turabian StyleNishi, Yoshitake, Naruya Tsuyuki, Helmut Takahiro Uchida, Michael C. Faudree, Kouhei Sagawa, Masae Kanda, Yoshihito Matsumura, Michelle Salvia, and Hideki Kimura. 2023. "Increasing Bending Strength of Polycarbonate Reinforced by Carbon Fiber Irradiated by Electron Beam" Polymers 15, no. 22: 4350. https://doi.org/10.3390/polym15224350
APA StyleNishi, Y., Tsuyuki, N., Uchida, H. T., Faudree, M. C., Sagawa, K., Kanda, M., Matsumura, Y., Salvia, M., & Kimura, H. (2023). Increasing Bending Strength of Polycarbonate Reinforced by Carbon Fiber Irradiated by Electron Beam. Polymers, 15(22), 4350. https://doi.org/10.3390/polym15224350