Preparation and Photovoltaic Performance of a Composite TiO2 Nanotube Array/Polyaniline UV Photodetector
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Preparation of TiO2 NTAs
2.3. Preparation of TiO2 NTAs/PANI Composite Nanomaterials
2.4. Characterization
2.5. Photoelectric Measurements
3. Results and Discussion
3.1. Regulation of Process Parameters
3.2. Characterization of TiO2 NTA/PANI Nanocomposites
3.3. Optoelectronic Property Testing of TiO2 NTA/PANI Nanocomposites
3.4. Internal Electron Transfer Mechanism of TiO2 NTA/PANI Materials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rogalski, A.; Bielecki, Z.; Mikołajczyk, J.; Wojtas, J. Ultraviolet Photodetectors: From Photocathodes to Low-Dimensional Solids. Sensors 2023, 23, 4452. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, Z.; Huang, L.; Cheng, C. High Sensitivity UV Photodetectors Based on Low-Cost TiO2 P25-Graphene Hybrids. Nanotechnology 2022, 33, 08LT01. [Google Scholar] [CrossRef]
- El-Hossary, F.M.; Ghitas, A.; Abd El-Rahman, A.M.; Ebnalwaled, A.A.; Abdelhamid Shahat, M.; Fawey, M.H. Effect of UV-Activated TiO2 Nanoparticles on the Properties and Performance of PAni-TiO2 Nanocomposite Films for Solar Cell Applications. IOP Conf. Ser. Mater. Sci. Eng. 2020, 956, 012015. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Ni, F.; Ouyang, W.; Fang, X. Bio-Inspired Transparent MXene Electrodes for Flexible UV Photodetectors. Mater. Horiz. 2020, 7, 1828–1833. [Google Scholar] [CrossRef]
- Deb, P.; Dhar, J.C. Fast Response UV Photodetection Using TiO2 Nanowire/Graphene Oxide Thin-Film Heterostructure. IEEE Photonics Technol. Lett. 2019, 31, 571–574. [Google Scholar] [CrossRef]
- Ding, L.; Ma, C.; Li, L.; Zhang, L.; Yu, J. A Photoelectrochemical Sensor for Hydrogen Sulfide in Cancer Cells Based on the Covalently and in Situ Grafting of CdS Nanoparticles onto TiO2 Nanotubes. J. Electroanal. Chem. 2016, 783, 176–181. [Google Scholar] [CrossRef]
- Yang, W.; Xu, W.; Zhang, N.; Lai, X.; Peng, J.; Cao, Y.; Tu, J. TiO2 Nanotubes Modified with Polydopamine and Graphene Quantum Dots as a Photochemical Biosensor for the Ultrasensitive Detection of Glucose. J. Mater. Sci. 2020, 55, 6105–6117. [Google Scholar] [CrossRef]
- Yin, B.; Zhang, Y.; Li, K.; Zhou, J.; Liu, C.; Zhang, M.; Ruan, S. UV Detector Based on an FTO/TiO2/MoO3 Heterojunction with a Potential Well Trapping Electrons in the Dark. Nanotechnology 2019, 30, 465501. [Google Scholar] [CrossRef]
- Ferhati, H.; Djeffal, F. Role of Optimized Grooves Surface-Textured Front Glass in Improving TiO2Thin-Film UV Photodetector Performance. IEEE Sens. J. 2016, 16, 5618–5625. [Google Scholar] [CrossRef]
- Mondal, S.; Basak, D. Very High Photoresponse towards Low-Powered UV Light under Low-Biased Condition by Nanocrystal Assembled TiO2 Film. Appl. Surf. Sci. 2018, 427, 814–822. [Google Scholar] [CrossRef]
- Dai, H.; Chen, S.; Li, Y.; Zeng, B.; Zhang, S.; Hong, Z.; Lin, Y. Photoelectrochemical Biosensor Constructed Using TiO2 Mesocrystals Based Multipurpose Matrix for Trypsin Detection. Biosens. Bioelectron. 2017, 92, 687–694. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Gao, X.; Shen, Y.; Xie, A. Ordered CdSe-Sensitized TiO2 Inverse Opal Film as Multifunctional Surface-Enhanced Raman Scattering Substrate. Appl. Surf. Sci. 2019, 463, 357–362. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Gao, Y.-D.; Chen, Y.-S.; Hsueh, T.-J. Vertical P-Type Cu-Doped ZnO/n-Type ZnO Homojunction Nanowire-Based Ultraviolet Photodetector by the Furnace System with Hotwire Assistance. ACS Appl. Mater. Interfaces 2014, 6, 4277–4285. [Google Scholar] [CrossRef]
- Zhou, M.; Wu, B.; Zhang, X.; Cao, S.; Ma, P.; Wang, K.; Fan, Z.; Su, M. Preparation and UV Photoelectric Properties of Aligned ZnO-TiO2 and TiO2-ZnO Core-Shell Structured Heterojunction Nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 38490–38498. [Google Scholar] [CrossRef]
- Reddy, Y.A.K.; Ajitha, B.; Sreedhar, A.; Varrla, E. Enhanced UV Photodetector Performance in Bi-Layer TiO2/WO3 Sputtered Films. Appl. Surf. Sci. 2019, 494, 575–582. [Google Scholar] [CrossRef]
- Lee, C.-T.; Liu, Y.-H.; Lee, H.-Y. Stacked Triple Ultraviolet-Band Metal–Semiconductor–Metal Photodetectors. IEEE Photonics Technol. Lett. 2019, 31, 15–18. [Google Scholar] [CrossRef]
- Elsayed, A.M.; Shaban, M.; Aly, A.H.; Ahmed, A.M.; Rabia, M. Preparation and Characterization of a High-Efficiency Photoelectric Detector Composed of Hexagonal Al2O3/ TiO2/TiN/Au Nanoporous Array. Mater. Sci. Semicond. Process. 2022, 139, 106348. [Google Scholar] [CrossRef]
- Rawat, G.; Somvanshi, D.; Kumar, H.; Kumar, Y.; Kumar, C.; Jit, S. Ultraviolet Detection Properties of P-Si/n-TiO2 Heterojunction Photodiodes Grown by Electron-Beam Evaporation and Sol–Gel Methods: A Comparative Study. IEEE Trans. Nanotechnol. 2016, 15, 193–200. [Google Scholar] [CrossRef]
- Mondal, S.; Ghosh, A.; Piton, M.R.; Gomes, J.P.; Felix, J.F.; Gobato, Y.G.; Galeti, H.V.A.; Choudhuri, B.; Dhar Dwivedi, S.M.M.; Henini, M.; et al. Investigation of Optical and Electrical Properties of Erbium-Doped TiO2 Thin Films for Photodetector Applications. J. Mater. Sci. Mater. Electron. 2018, 29, 19588–19600. [Google Scholar] [CrossRef]
- Liao, Y.; Zheng, Y.; Shin, S.; Zhao, Z.; An, S.; Seo, J.; Jeong, J.; Kim, M. Distinct UV–Visible Responsivity Enhancement of GaAs Photodetectors via Monolithic Integration of Antireflective Nanopillar Structure and UV Absorbing IGZO Layer. Adv. Opt. Mater. 2022, 10, 2200062. [Google Scholar] [CrossRef]
- Pooja, P.; Chinnamuthu, P. Annealed N-TiO2/In2O3 Nanowire Metal-Insulator-Semiconductor for Highly Photosensitive Low-Noise Ultraviolet Photodetector. J. Alloys Compd. 2021, 854, 157229. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Wang, W.; Wang, Y.; Hu, X.; Liu, J.; Gong, X.; Miao, W.; Ding, L.; Li, X.; et al. Synthesis, Modification and Application of Titanium Dioxide Nanoparticles: A Review. Nanoscale 2022, 14, 6709–6734. [Google Scholar] [CrossRef]
- Yan, W.; Shao, P. Study on the Performance of Titanium Materials Based on Nano Silver Particles in Orthodontic Healing. J. Nanosci. Nanotechnol. 2021, 21, 1135–1141. [Google Scholar] [CrossRef]
- Ghosh, C.; Dhar Dwivedi, S.M.M.; Ghosh, A.; Dalal, A.; Mondal, A. A Novel Ag Nanoparticles/ TiO2 Nanowires-Based Photodetector and Glucose Concentration Detection. Appl. Phys. A 2019, 125, 810. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Li, M.-J.; Wang, H.-J.; Yuan, R.; Wei, S.-P. Supersensitive Photoelectrochemical Aptasensor Based on Br,N-Codoped TiO2 Sensitized by Quantum Dots. Anal. Chem. 2019, 91, 10864–10869. [Google Scholar] [CrossRef]
- Yıldırım, M. Characterization of the Framework of Cu Doped TiO2 Layers: An Insight into Optical, Electrical and Photodiode Parameters. J. Alloys Compd. 2019, 773, 890–904. [Google Scholar] [CrossRef]
- Wei, C.; Xu, J.; Shi, S.; Cao, R.; Chen, J.; Dong, H.; Zhang, X.; Yin, S.; Li, L. Self-Powered Visible-Blind UV Photodetectors Based on p-NiO Nanoflakes/n-ZnO Nanorod Arrays with an MgO Interfacial Layer. J. Mater. Chem. C 2019, 7, 9369–9379. [Google Scholar] [CrossRef]
- Gu, P.; Zhu, X.; Wu, H.; Li, J.; Yang, D. Influence of Oxygen Vacancy on the Response Properties of TiO2 Ultraviolet Detectors. J. Alloys Compd. 2019, 779, 821–830. [Google Scholar] [CrossRef]
- Deb, P.; Dhar, J.C. Low Dark Current and High Responsivity UV Detector Based on TiO2 Nanowire/RGO Thin Film Heterostructure. IEEE Trans. Electron Devices 2019, 66, 3874–3880. [Google Scholar] [CrossRef]
- Gao, C.; Li, X.; Wang, Y.; Chen, L.; Pan, X.; Zhang, Z.; Xie, E. Titanium Dioxide Coated Zinc Oxide Nanostrawberry Aggregates for Dye-Sensitized Solar Cell and Self-Powered UV-Photodetector. J. Power Sources 2013, 239, 458–465. [Google Scholar] [CrossRef]
- Wu, P.; Song, X.; Si, S.; Ke, Z.; Cheng, L.; Li, W.; Xiao, X.; Jiang, C. Significantly Enhanced Visible Light Response in Single TiO2 Nanowire by Nitrogen Ion Implantation. Nanotechnology 2018, 29, 184005. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, C.; Xu, R.; Yin, B.; Chen, Y.; Zhang, X.; Gao, F.; Ruan, S. The Effect of Self-Depleting in UV Photodetector Based on Simultaneously Fabricated TiO2/NiO Pn Heterojunction and Ni/Au Composite Electrode. Nanotechnology 2017, 28, 365505. [Google Scholar] [CrossRef]
- Zhao, W.; He, L.; Feng, X.; Xiao, H.; Luan, C.; Ma, J. Deposition and Characterization of Epitaxial Ta-Doped TiO2 Films for Ultraviolet Photoelectric Detectors. Ceram. Int. 2018, 44, 21114–21119. [Google Scholar] [CrossRef]
- He, C.; Peng, L.; Lv, L.; Cao, Y.; Tu, J.; Huang, W.; Zhang, K. In Situ Growth of Carbon Dots on TiO2 NTAs for PEC Enzyme Biosensors with Visible Light Response. RSC Adv. 2019, 9, 15084–15091. [Google Scholar] [CrossRef]
- Ghasem Hosseini, M.; Shahryari, E. A Novel High-Performance Supercapacitor Based on Chitosan/Graphene Oxide-MWCNT/Polyaniline. J. Colloid Interface Sci. 2017, 496, 371–381. [Google Scholar] [CrossRef]
- Gu, H.; Zhang, H.; Lin, J.; Shao, Q.; Young, D.P.; Sun, L.; Shen, T.D.; Guo, Z. Large Negative Giant Magnetoresistance at Room Temperature and Electrical Transport in Cobalt Ferrite-Polyaniline Nanocomposites. Polymer 2018, 143, 324–330. [Google Scholar] [CrossRef]
- Cui, X.; Zhu, G.; Pan, Y.; Shao, Q.; Zhao, C.; Dong, M.; Zhang, Y.; Guo, Z. Polydimethylsiloxane-Titania Nanocomposite Coating: Fabrication and Corrosion Resistance. Polymer 2018, 138, 203–210. [Google Scholar] [CrossRef]
- Wang, X.; Feng, W.; Chen, Y.; Ge, N. Coverage Optimization for UAV-Aided Internet of Things with Partial Channel Knowledge. J. Commun. Inf. Netw. 2018, 3, 55–63. [Google Scholar] [CrossRef]
- Wang, L.; Tang, G.; Liu, S.; Dong, H.; Liu, Q.; Sun, J.; Tang, H. Interfacial Active-Site-Rich 0D Co3O4/1D TiO2 p-n Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Chem. Eng. J. 2022, 428, 131338. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, T.; Wang, J.; Wang, Y.; Chen, Z.; Liu, B.; Ji, H.; Wang, W.; Zhang, G.; Li, Y. Fabrication of G-C3N4/PW12/TiO2 Composite with Significantly Enhanced Photocatalytic Performance under Visible Light. J. Alloys Compd. 2021, 860, 157924. [Google Scholar] [CrossRef]
- Megha, R.; Ravikiran, Y.T.; Vijaya Kumari, S.C.; Raj Prakash, H.G.; Ramana, C.H.V.V.; Thomas, S. Enhancement in Alternating Current Conductivity of HCl Doped Polyaniline by Modified Titania. Compos. Interfaces 2019, 26, 309–324. [Google Scholar] [CrossRef]
- Vaez, M.; Alijani, S.; Omidkhah, M.; Zarringhalam Moghaddam, A. Synthesis, Characterization and Optimization of N-TiO2/PANI Nanocomposite for Photodegradation of Acid Dye under Visible Light. Polym. Compos. 2018, 39, 4605–4616. [Google Scholar] [CrossRef]
- Xiao, T.; Wang, X.; Wang, X.; Li, Z.; Zhang, L.; Lv, P.; Zhao, J. Effects of Monomer Solvent on the Supercapacitance Performance of PANI/ TiO2 NTAs Composite Electrode. Mater. Lett. 2018, 230, 245–248. [Google Scholar] [CrossRef]
- Ali, A.; Chowdhury, S.; Carr, M.A.; Janorkar, A.V.; Marquart, M.; Griggs, J.A.; Bumgardner, J.D.; Roach, M.D. Antibacterial and Biocompatible Polyaniline-doped Titanium Oxide Layers. J. Biomed. Mater. Res. Part B Appl. Biomater. 2023, 111, 1100–1111. [Google Scholar] [CrossRef]
- Hashemi Monfared, A.; Jamshidi, M. Synthesis of Polyaniline/Titanium Dioxide Nanocomposite (PANi/TiO2) and Its Application as Photocatalyst in Acrylic Pseudo Paint for Benzene Removal under UV/VIS Lights. Prog. Org. Coat. 2019, 136, 105257. [Google Scholar] [CrossRef]
- Wang, H.; Han, B.; Lu, J.; Wu, P.; Cui, W. Excellent Photoelectrocatalytic Degradation and Superior Charge Separation of Polyaniline Nanosheets Wrapped TiO2 NTAs. Mater. Lett. 2020, 260, 126906. [Google Scholar] [CrossRef]
- Chen, J.; Xia, Z.; Li, H.; Li, Q.; Zhang, Y. Preparation of Highly Capacitive Polyaniline/Black TiO2 Nanotubes as Supercapacitor Electrode by Hydrogenation and Electrochemical Deposition. Electrochim. Acta 2015, 166, 174–182. [Google Scholar] [CrossRef]
- Xie, S.; Gan, M.; Ma, L.; Li, Z.; Yan, J.; Yin, H.; Shen, X.; Xu, F.; Zheng, J.; Zhang, J.; et al. Synthesis of Polyaniline-Titania Nanotube Arrays Hybrid Composite via Self-Assembling and Graft Polymerization for Supercapacitor Application. Electrochim. Acta 2014, 120, 408–415. [Google Scholar] [CrossRef]
- Heshmatpour, F.; Zarrin, S. A Probe into the Effect of Fixing the Titanium Dioxide by a Conductive Polymer and Ceramic on the Photocatalytic Activity for Degradation of Organic Pollutants. J. Photochem. Photobiol. A Chem. 2017, 346, 431–443. [Google Scholar] [CrossRef]
- Nunes, W.G.; Pires, B.M.; Thaines, E.H.N.S.; Pereira, G.M.A.; Da Silva, L.M.; Freitas, R.G.; Zanin, H. Operando Raman Spectroelectrochemical Study of Polyaniline Degradation: A Joint Experimental and Theoretical Analysis. J. Energy Storage 2022, 55, 105770. [Google Scholar] [CrossRef]
- Zu, X.; Wang, H.; Yi, G.; Zhang, Z.; Jiang, X.; Gong, J.; Luo, H. Self-Powered UV Photodetector Based on Heterostructured TiO2 Nanowire Arrays and Polyaniline Nanoflower Arrays. Synth. Met. 2015, 200, 58–65. [Google Scholar] [CrossRef]
- Kang, Q.; Cao, J.; Zhang, Y.; Liu, L.; Xu, H.; Ye, J. Reduced TiO2 Nanotube Arrays for Photoelectrochemical Water Splitting. J. Mater. Chem. A 2013, 1, 5766. [Google Scholar] [CrossRef]
- Chinnamuthu, P.; Dhar, J.C.; Mondal, A.; Bhattacharyya, A.; Singh, N.K. Ultraviolet Detection Using TiO2 Nanowire Array with Ag Schottky Contact. J. Phys. D Appl. Phys. 2012, 45, 135102. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, X.; Kuang, X.; Xu, S. High Performance Flexible Ultraviolet Photodetectors Based on TiO2/Graphene Hybrid for Irradiation Monitoring Applications. J. Micromech. Microeng. 2016, 26, 075003. [Google Scholar] [CrossRef]
- Morávková, Z.; Dmitrieva, E. Structural Changes in Polyaniline near the Middle Oxidation Peak Studied by in Situ Raman Spectroelectrochemistry. J. Raman Spectrosc. 2017, 48, 1229–1234. [Google Scholar] [CrossRef]
- Kinoshita, M.; Kamizato, T.; Shimoyama, Y. Effect of Precursor Structure on Mixed-Crystal Phase Titanium Oxide Synthesized by Sol-Gel Reaction in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2018, 138, 193–199. [Google Scholar] [CrossRef]
- Zhu, C.; Cakmak, U.; Sheikhnejad, O.; Cheng, X.; Zhang, X.; Xu, Y.; Gao, S.; Zhao, H.; Huo, L.; Major, Z. One Step Synthesis of PANI/Fe2O3 Nanocomposites and Flexible Film for Enhanced NH3 Sensing Performance at Room Temperature. Nanotechnology 2019, 30, 255502. [Google Scholar] [CrossRef]
- Feizpoor, S.; Habibi-Yangjeh, A.; Yubuta, K. Integration of Carbon Dots and Polyaniline with TiO2 Nanoparticles: Substantially Enhanced Photocatalytic Activity to Removal Various Pollutants under Visible Light. J. Photochem. Photobiol. A Chem. 2018, 367, 94–104. [Google Scholar] [CrossRef]
- Srivastava, S.; Kumar, S.; Singh, V.N.; Singh, M.; Vijay, Y.K. Synthesis and Characterization of TiO2 Doped Polyaniline Composites for Hydrogen Gas Sensing. Int. J. Hydrogen Energy 2011, 36, 6343–6355. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Huang, P.; Wang, W.; Tan, M.; Fu, F.; Feng, Y. Preparation and Photovoltaic Performance of a Composite TiO2 Nanotube Array/Polyaniline UV Photodetector. Polymers 2023, 15, 4400. https://doi.org/10.3390/polym15224400
Liu C, Huang P, Wang W, Tan M, Fu F, Feng Y. Preparation and Photovoltaic Performance of a Composite TiO2 Nanotube Array/Polyaniline UV Photodetector. Polymers. 2023; 15(22):4400. https://doi.org/10.3390/polym15224400
Chicago/Turabian StyleLiu, Chunlian, Peipei Huang, Wei Wang, Miao Tan, Fangbao Fu, and Yunhui Feng. 2023. "Preparation and Photovoltaic Performance of a Composite TiO2 Nanotube Array/Polyaniline UV Photodetector" Polymers 15, no. 22: 4400. https://doi.org/10.3390/polym15224400
APA StyleLiu, C., Huang, P., Wang, W., Tan, M., Fu, F., & Feng, Y. (2023). Preparation and Photovoltaic Performance of a Composite TiO2 Nanotube Array/Polyaniline UV Photodetector. Polymers, 15(22), 4400. https://doi.org/10.3390/polym15224400