Synthesis and Properties of Cefixime Core–Shell Magnetic Nano-Molecularly Imprinted Materials
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Characterization
2.3. Preparation of MMIPs and Magnetic Non-Molecularly Imprinted Polymers (MNIPs)
2.3.1. Preparation and Modification of Fe3O4
2.3.2. Synthesis of MMIPs and MNIPs
2.4. Binding Experiments
2.4.1. Static Adsorption
2.4.2. Adsorption Kinetics
2.5. Selectivity
2.6. Reusability
3. Results and Discussion
3.1. Preparation of MMIPs and MNIPs
3.2. Optimization of the Synthesis Conditions
3.2.1. The Ratio of the Reactants
3.2.2. Influence of Polymerization Time
3.3. Characteristics of MMIPs and MNIPs
3.4. Adsorption Properties of MMIPs and MNIPs
3.4.1. Dynamic Adsorption
3.4.2. Static Adsorption
3.5. Specificity
3.6. Reusability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Masoudyfar, Z.; Elhami, S. Surface plasmon resonance of gold nanoparticles as a colorimetric sensor for indirect detection of Cefixime. Spectrochim. Acta Part A 2019, 211, 234–238. [Google Scholar] [CrossRef]
- Karimian, N.; Gholivand, M.; Malekzadeh, G. Cefixime detection by a novel electrochemical sensor based on glassy carbon electrode modified with surface imprinted polymer/multiwall carbon nanotubes. J. Electroanal. Chem. 2016, 771, 64–72. [Google Scholar] [CrossRef]
- Jaiswal, V.; Rastogi, R.B.; Kumar, D. Tribological investigations on β-lactam cephalosporin antibiotics as efficient ashless antiwear additives with low SAPS and their theoretical studies. RSC Adv. 2014, 4, 30500–30510. [Google Scholar]
- Dubala, A.; Nagarajan, J.S.K.; Vimal, C.S.; George, R. Simultaneous liquid chromatography–mass spectrometry quantification of cefixime and clavulanic acid in human plasma. J. Chromatogr. Sci. 2015, 53, 694–701. [Google Scholar] [CrossRef]
- Chowdhury, A.M.A.; Uddin, K.N. Analysis of the Occurrence of Antibiotic Resistant Bacteria in the Hospital’s Effluent and its Receiving Environment. Microbiol. Insights 2022, 15, 11786361221078211. [Google Scholar] [CrossRef]
- Shao, S.; Hu, Y.; Cheng, J.; Chen, Y. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment. Crit. Rev. Biotechnol. 2018, 38, 1195–1208. [Google Scholar] [CrossRef]
- Turolla, A.; Cattaneo, M.; Marazzi, F.; Mezzanotte, V.; Antonelli, M. Antibiotic resistant bacteria in urban sewage: Role of full-scale wastewater treatment plants on environmental spreading. Chemosphere 2018, 191, 761–769. [Google Scholar] [CrossRef]
- Ayodele, O.B. Effect of phosphoric acid treatment on kaolinite supported ferrioxalate catalyst for the degradation of amoxicillin in batch photo-Fenton process. Appl. Clay Sci. 2013, 72, 74–83. [Google Scholar] [CrossRef]
- Acayanka, E.; Tarkwa, J.-B.; Takam, B.; Abia, D.; Serge, N.; Kamgang, G.Y.; Laminsi, S. Removal of various pollutants from wastewater using plasma-modified lignocellulose-derived as a low-cost adsorbent: An overview. Mini-Rev. Org. Chem. 2021, 18, 434–449. [Google Scholar] [CrossRef]
- Hasanzadeh, V.; Rahmanian, O.; Heidari, M. Cefixime adsorption onto activated carbon prepared by dry thermochemical activation of date fruit residues. Microchem. J. 2020, 152, 104261. [Google Scholar] [CrossRef]
- Bay, A.; Yazdanbakhsh, A.; Eslami, A.; Rafiee, M. Investigation of sequencing batch moving-bed biofilm reactor to biodegradation of cefixime as emerging pollutant in percent of easily degradable co-substrate. Int. J. Environ. Anal. Chem. 2023, 103, 2142–2151. [Google Scholar] [CrossRef]
- Hasani, K.; Peyghami, A.; Moharrami, A.; Vosoughi, M.; Dargahi, A. The efficacy of sono-electro-Fenton process for removal of Cefixime antibiotic from aqueous solutions by response surface methodology (RSM) and evaluation of toxicity of effluent by microorganisms. Arab. J. Chem. 2020, 13, 6122–6139. [Google Scholar] [CrossRef]
- Zouaoui, F.; Bourouina-Bacha, S.; Bourouina, M.; Jaffrezic-Renault, N.; Zine, N.; Errachid, A. Electrochemical sensors based on molecularly imprinted chitosan: A review. TrAC, Trends Anal. Chem. 2020, 130, 115982. [Google Scholar] [CrossRef]
- Fang, L.; Miao, Y.; Wei, D.; Zhang, Y.; Zhou, Y. Efficient removal of norfloxacin in water using magnetic molecularly imprinted polymer. Chemosphere 2021, 262, 128032. [Google Scholar] [CrossRef]
- Liao, S.; Zhang, W.; Long, W.; Hou, D.; Yang, X.; Tan, N. Adsorption characteristics, recognition properties, and preliminary application of nordihydroguaiaretic acid molecularly imprinted polymers prepared by sol–gel surface imprinting technology. Appl. Surf. Sci. 2016, 364, 579–588. [Google Scholar] [CrossRef]
- Arabi, M.; Ostovan, A.; Li, J.; Wang, X.; Zhang, Z.; Choo, J.; Chen, L. Molecular imprinting: Green perspectives and strategies. Adv. Mater. 2021, 33, 2100543. [Google Scholar] [CrossRef]
- Speltini, A.; Scalabrini, A.; Maraschi, F.; Sturini, M.; Profumo, A. Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: A review. Anal. Chim. Acta 2017, 974, 1–26. [Google Scholar] [CrossRef]
- Asiabi, H.; Yamini, Y.; Seidi, S.; Ghahramanifard, F. Preparation and evaluation of a novel molecularly imprinted polymer coating for selective extraction of indomethacin from biological samples by electrochemically controlled in-tube solid phase microextraction. Anal. Chim. Acta 2016, 913, 76–85. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Shakerpoor, A.; Tehrani, Z.M.; Bumajdad, A. Magnetic graphene oxide mesoporous silica hybrid nanoparticles with dendritic pH sensitive moieties coated by PEGylated alginate-co-poly (acrylic acid) for targeted and controlled drug delivery purposes. J. Polym. Res. 2015, 22, 156. [Google Scholar] [CrossRef]
- Fu, H.; Xu, W.; Wang, H.; Liao, S.; Chen, G. Preparation of magnetic molecularly imprinted polymers for the identification of zearalenone in grains. Anal. Bioanal. Chem. 2020, 412, 4725–4737. [Google Scholar] [CrossRef]
- Fan, Y.; Zeng, G.; Ma, X. Multi-templates surface molecularly imprinted polymer for rapid separation and analysis of quinolones in water. Environ. Sci. Pollut. Res. 2020, 27, 7177–7187. [Google Scholar] [CrossRef]
- Huang, S.; Xu, J.; Zheng, J.; Zhu, F.; Xie, L.; Ouyang, G. Synthesis and application of magnetic molecularly imprinted polymers in sample preparation. Anal. Bioanal. Chem. 2018, 410, 3991–4014. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, S.; Wu, Q. Surface molecular imprinting on polypropylene fibers for rhodamine B selective adsorption. J. Colloid Interface Sci. 2012, 385, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Tang, J.; Liu, H. Rapid determination of lambda-cyhalothrin using a fluorescent probe based on ionic-liquid-sensitized carbon dots coated with molecularly imprinted polymers. Anal. Bioanal. Chem. 2019, 411, 5309–5316. [Google Scholar] [CrossRef]
- Gao, B.; Wang, J.; An, F.; Liu, Q. Molecular imprinted material prepared by novel surface imprinting technique for selective adsorption of pirimicarb. Polymer 2008, 49, 1230–1238. [Google Scholar] [CrossRef]
- Ding, S.; Li, Z.; Cheng, Y.; Du, C.; Gao, J.; Zhang, Y.-W.; Zhang, N.; Li, Z.; Chang, N.; Hu, X. Enhancing adsorption capacity while maintaining specific recognition performance of mesoporous silica: A novel imprinting strategy with amphiphilic ionic liquid as surfactant. Nanotechnology 2018, 29, 375604. [Google Scholar] [CrossRef]
- Dinc, M.; Esen, C.; Mizaikoff, B. Recent advances on core–shell magnetic molecularly imprinted polymers for biomacromolecules. TrAC Trends Anal. Chem. 2019, 114, 202–217. [Google Scholar] [CrossRef]
- Chen, N. Application of Magnetic Molecular Imprinted Technology in Fluoroquinolone Antibiotics. In Proceedings of the 2020 5th International Conference on Materials Science, Energy Technology and Environmental Engineering, Shanghai, China, 7–9 August 2020; IOP Conference Series: Earth and Environmental Science. p. 012106. [Google Scholar]
- Kryscio, D.R.; Peppas, N.A. Surface imprinted thin polymer film systems with selective recognition for bovine serum albumin. Anal. Chim. Acta 2012, 718, 109–115. [Google Scholar] [CrossRef]
- Canfarotta, F.; Waters, A.; Sadler, R.; McGill, P.; Guerreiro, A.; Papkovsky, D.; Haupt, K.; Piletsky, S. Biocompatibility and internalization of molecularly imprinted nanoparticles. Nano Res. 2016, 9, 3463–3477. [Google Scholar] [CrossRef]
- Mirzapour, F.; Sadeghi, M. Magnetic molecular imprinted polymers for in vitro controlled release and solid-phase extraction of dextromethorphan: Synthesize, characterization, and application. Iran. Polym. J. 2022, 31, 553–571. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, N.; Guan, P.; Chen, P.; Ding, S.; Hou, T.; Hu, X.; Wang, J.; Wang, C. Drug-based magnetic imprinted nanoparticles: Enhanced lysozyme amyloid fibrils cleansing and anti-amyloid fibrils toxicity. Int. J. Biol. Macromol. 2020, 153, 723–735. [Google Scholar] [PubMed]
- Bhogal, S.; Mohiuddin, I.; Kim, K.-H.; Malik, A.K.; Kaur, K. Restricted access medium magnetic molecularly imprinted polymers: Validation of their suitability as an effective quantitation tool against phthalates in food products packaged in plastic. Chem. Eng. J. 2023, 457, 141270. [Google Scholar]
- Lu, Z.; Zhou, G.; Song, M.; Liu, X.; Tang, H.; Dong, H.; Huo, P.; Yan, F.; Du, P.; Xing, G. Development of magnetic imprinted PEDOT/CdS heterojunction photocatalytic nanoreactors: 3-Dimensional specific recognition for selectively photocatalyzing danofloxacin mesylate. Appl. Catal. B 2020, 268, 118433. [Google Scholar]
- Gaho, M.M.; Memon, G.Z.; Arain, J.B.; Arain, A.J.; Shah, A.; Samejo, M.Q. Synthesis of novel magnetic molecularly imprinted polymers by solid-phase extraction method for removal of norfloxacin. Chin. J. Anal. Chem 2022, 50, 100079. [Google Scholar]
- Li, Z.; Tian, W.; Chu, M.; Zou, M.; Zhao, J. Molecular imprinting functionalization of magnetic biochar to adsorb sulfamethoxazole: Mechanism, regeneration and targeted adsorption. Process Saf. Environ. Prot. 2023, 171, 238–249. [Google Scholar]
- Chang, T.; Liu, Y.; Yan, X.; Liu, S.; Zheng, H. One-pot synthesis of uniform and monodisperse superparamagnetic molecularly imprinted polymer nanospheres through a sol–gel process for selective recognition of bisphenol A in aqueous media. RSC Adv. 2016, 6, 66297–66306. [Google Scholar]
- López, R.; Khan, S.; Torres, S.E.; Wong, A.; Sotomayor, M.D.; Picasso, G. Synthesis and Characterization of Magnetic Molecularly Imprinted Polymer for the Monitoring of Amoxicillin in Real Samples Using the Chromatographic Method. Magnetochemistry 2023, 9, 92. [Google Scholar]
- Li, J.; Zhou, X.; Yan, Y.; Shen, D.; Lu, D.; Guo, Y.; Xie, L.; Deng, B. Selective recognition of gallic acid using hollow magnetic molecularly imprinted polymers with double imprinting surfaces. Polymers 2022, 14, 175. [Google Scholar]
- Hu, C.; Peng, F.; Mi, F.; Wang, Y.; Geng, P.; Pang, L.; Ma, Y.; Li, G.; Li, Y.; Guan, M. SERS-based boronate affinity biosensor with biomimetic specificity and versatility: Surface-imprinted magnetic polymers as recognition elements to detect glycoproteins. Anal. Chim. Acta 2022, 1191, 339289. [Google Scholar]
- Du, L.; Wu, Y.; Zhang, X.; Zhang, F.; Chen, X.; Cheng, Z.; Wu, F.; Tan, K. Preparation of magnetic molecularly imprinted polymers for the rapid and selective separation and enrichment of perfluorooctane sulfonate. J. Sep. Sci. 2017, 40, 2819–2826. [Google Scholar]
- Hemmati, K.; Sahraei, R.; Ghaemy, M. Synthesis and characterization of a novel magnetic molecularly imprinted polymer with incorporated graphene oxide for drug delivery. Polymer 2016, 101, 257–268. [Google Scholar] [CrossRef]
- Wei, M.; Yan, X.; Liu, S.; Liu, Y. Preparation and evaluation of superparamagnetic core–shell dummy molecularly imprinted polymer for recognition and extraction of organophosphorus pesticide. J. Mater. Sci. 2018, 53, 4897–4912. [Google Scholar] [CrossRef]
- Muhammad, T.; Cui, L.; Jide, W.; Piletska, E.V.; Guerreiro, A.R.; Piletsky, S.A. Rational design and synthesis of water-compatible molecularly imprinted polymers for selective solid phase extraction of amiodarone. Anal. Chim. Acta 2012, 709, 98–104. [Google Scholar] [PubMed]
- Niu, M.; Pham-Huy, C.; He, H. Core-shell nanoparticles coated with molecularly imprinted polymers: A review. Microchim. Acta 2016, 183, 2677–2695. [Google Scholar]
- Iskierko, Z.; Sharma, P.S.; Bartold, K.; Pietrzyk-Le, A.; Noworyta, K.; Kutner, W. Molecularly imprinted polymers for separating and sensing of macromolecular compounds and microorganisms. Biotechnol. Adv. 2016, 34, 30–46. [Google Scholar]
- Liu, Z.; Gao, Y.; Jin, L.; Jin, H.; Xu, N.; Yu, X.; Yu, S. Core–shell regeneration magnetic molecularly imprinted polymers-based SERS for sibutramine rapid detection. ACS Sustain. Chem. Eng. 2019, 7, 8168–8175. [Google Scholar] [CrossRef]
- Duan, Z.-J.; Fan, L.-P.; Fang, G.-Z.; Yi, J.-H.; Wang, S. Novel surface molecularly imprinted sol–gel polymer applied to the online solid phase extraction of methyl-3-quinoxaline-2-carboxylic acid and quinoxaline-2-carboxylic acid from pork muscle. Anal. Bioanal. Chem. 2011, 401, 2291–2299. [Google Scholar] [CrossRef]
- Aguilar, J.F.; Miranda, J.; Rodriguez, J.; Paez-Hernandez, M.; Ibarra, I. Selective removal of tetracycline residue in milk samples using a molecularly imprinted polymer. J. Polym. Res. 2020, 27, 176. [Google Scholar] [CrossRef]
- Karrat, A.; Palacios-Santander, J.M.; Amine, A.; Cubillana-Aguilera, L. A novel magnetic molecularly imprinted polymer for selective extraction and determination of quercetin in plant samples. Anal. Chim. Acta 2022, 1203, 339709. [Google Scholar] [CrossRef]
- Anirudhan, T.; Rejeena, S. Adsorption and hydrolytic activity of trypsin on a carboxylate-functionalized cation exchanger prepared from nanocellulose. J. Colloid Interface Sci. 2012, 381, 125–136. [Google Scholar] [CrossRef]
- Cáceres, C.; Bravo, C.; Rivas, B.; Moczko, E.; Sáez, P.; García, Y.; Pereira, E. Molecularly imprinted polymers for the selective extraction of bisphenol a and progesterone from aqueous media. Polymers 2018, 10, 679. [Google Scholar] [CrossRef] [PubMed]
Materials | Qe,exp (mg g−1) | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|---|
Qe,cal (mg g−1) | K1 (min−1) | R2 | Qe,cal (mg g−1) | K2 (mg g−1 min−1) | R2 | ||
MMIPs | 111.38 | 196.25 | 0.0230 | 0.9687 | 164.47 | 0.0063 | 0.9903 |
MNIPs | 36.15 | 27.52 | 0.0070 | 0.9948 | 64.10 | 0.0010 | 0.9927 |
Materials | Binding Site | Linear Equation | kd (mg/L) | Qmax (mg/g) |
---|---|---|---|---|
MMIPs | Higher affinity site | Q/Ce= −0.0307 Q + 2.815 (R2 = 0.9914) | 32.542 | 91.604 |
Q/Ce= −0.0103 Q + 1.689 (R2 = 0.9972) | 96.618 | 163.217 | ||
MNIPs | Lower affinity site | Q/Ce= −0.0071 Q + 0.546 (R2 = 0.9960) | 39.860 | 76.443 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Mo, H.; Wang, C.; Li, X.; Jiang, S.; Fan, W.; Zhang, Y. Synthesis and Properties of Cefixime Core–Shell Magnetic Nano-Molecularly Imprinted Materials. Polymers 2023, 15, 4464. https://doi.org/10.3390/polym15224464
Zhang L, Mo H, Wang C, Li X, Jiang S, Fan W, Zhang Y. Synthesis and Properties of Cefixime Core–Shell Magnetic Nano-Molecularly Imprinted Materials. Polymers. 2023; 15(22):4464. https://doi.org/10.3390/polym15224464
Chicago/Turabian StyleZhang, Li, Hongbo Mo, Chuan Wang, Xiaofeng Li, Shuai Jiang, Weigang Fan, and Yagang Zhang. 2023. "Synthesis and Properties of Cefixime Core–Shell Magnetic Nano-Molecularly Imprinted Materials" Polymers 15, no. 22: 4464. https://doi.org/10.3390/polym15224464
APA StyleZhang, L., Mo, H., Wang, C., Li, X., Jiang, S., Fan, W., & Zhang, Y. (2023). Synthesis and Properties of Cefixime Core–Shell Magnetic Nano-Molecularly Imprinted Materials. Polymers, 15(22), 4464. https://doi.org/10.3390/polym15224464