Integrated Hemicellulose Extraction and Papermaking Fiber Production from Agro-Waste Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment
2.2.1. Laboratory Reactor and Pulp Processing Equipment
2.2.2. HPLC Analysis
2.2.3. Spectroscopy
2.2.4. Other Equipment
2.3. Experimental Approach
2.4. Extraction Methodology
2.4.1. HWT Treatment
2.4.2. Soda Pulping
2.4.3. Hot Alkaline Extractions of Corn Stalks
2.4.4. Separation and Purification of HC from WHT, HAE, and SP Liquors
2.5. Characterization Methods
2.5.1. CS, Treated CS, and Pulp Chemical Characterization
2.5.2. HC Characterization
2.5.3. HC Recovery Yield, Solid Extraction Yield
2.5.4. Polymerization Degree (DP) of Obtained HC and Pulp
2.5.5. Pulp Refining and Laboratory Paper Strength
2.5.6. The Severity Factor
2.6. Optimization Procedure
3. Results
3.1. Chemical Composition of CS and HWT CS Solid Residue
3.2. Solid Residue and Pulp Composition—Trial Results
3.3. Liquor’s Chemical Composition (% wt.)—Trial Results
3.4. Optimization of HAE Parameters: Influence on HC Xylan Content, Xylan Removal Yields, and Pulp Properties
3.5. Complementary Extraction Treatments—Hot Caustic Extraction: Influence of HC Content on Refinability and Strength Properties of Paper Sheets
3.6. The Influence of Severity Factor on HC Chemical Composition and Recovery Yields
3.7. Characterization of HC Samples by FTIR and 1H-NMR Spectroscopy
Spectral Range/Chemical Shift | Assignment in Samples | Literature Data |
---|---|---|
non substituted xylose residues (X) | −4.39 ppm H1 −3.19 ppm H2 −3.28 ppm H5 axial −3.45 ppm H3 −3.69 ppm H4 −4.01 ppm H5 eq | 4.4 [89] 3.21 3.3 3.48 3.71 4.03 |
4-O-methyl glucuronic acid residue substituted xylose residues (XG) | −5.29 ppm H1 −4.06 ppm H2 −3.83 ppm H3 −4.18 ppm H4 | 5.31 [89] 4.08 3.83 4.2 |
4-O-methyl-glucuronic acid residue (G) | −3.36 ppm –OCH3 −3.12 ppm H4 −3.43 ppm H2 −5.19 ppm H1 −3.66 ppm H3 −4.2 ppm H5 | 3.34 [93] 2.95 [94] 3.43 [95] 5.21 [89] 3.64 [95] 4.34/4.37 [95] |
3.8. Comparison with Similar Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Winans, K.; Kendall, A.; Deng, H. The history and current applications of the circular economy concept. Renew. Sustain. Energy Rev. 2017, 68, 825–833. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular Economy: The Concept and its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Zaman, A.U. A comprehensive review of the development of zero waste management: Lessons learned and guidelines. J. Clean. Prod. 2015, 91, 12–25. [Google Scholar] [CrossRef]
- Zaman, A.U.; Lehmann, S. Challenges and Opportunities in Transforming a City into a “Zero Waste City”. Challenges 2011, 2, 73–93. [Google Scholar] [CrossRef]
- Awasthi, A.K.; Cheela, V.R.S.; D’adamo, I.; Iacovidou, E.; Islam, M.R.; Johnson, M.; Miller, T.R.; Parajuly, K.; Parchomenko, A.; Radhakrishan, L.; et al. Zero waste approach towards a sustainable waste management. Resour. Environ. Sustain. 2021, 3, 100014. [Google Scholar] [CrossRef]
- Pietzsch, N.; Ribeiro, J.L.D.; de Medeiros, J.F. Benefits, challenges and critical factors of success for Zero Waste: A systematic literature review. Waste Manag. 2017, 67, 324–353. [Google Scholar] [CrossRef]
- Paramesh, V.; Ravisankar, N.; Behera, U.; Arunachalam, V.; Kumar, P.; Rajkumar, R.S.; Misra, S.D.; Kumar, R.M.; Prusty, A.K.; Jacob, D.; et al. Integrated farming system approaches to achieve food and nutritional security for enhancing profitability, employment, and climate resilience in India. Food Energy Secur. 2022, 11, e321. [Google Scholar] [CrossRef]
- Babu, S.; Das, A.; Singh, R.; Mohapatra, K.P.; Kumar, S.; Rathore, S.S.; Yadav, S.K.; Yadav, P.; Ansari, M.A.; Panwar, A.S.; et al. Designing an energy efficient, economically feasible, and environmentally robust integrated farming system model for sustainable food production in the Indian Himalayas. Sustain. Food Technol. 2022, 1, 126–142. [Google Scholar] [CrossRef]
- Meerman, F.; Van De Ven, G.W.J.; Van Keulen, H.; Breman, H. Integrated crop management: An approach to sustainable agricultural development. Int. J. Pest Manag. 1996, 42, 13–24. [Google Scholar] [CrossRef]
- Leake, A. The development of integrated crop management in agricultural crops: Comparisons with conventional methods. Pest Manag. Sci. 2000, 56, 950–953. [Google Scholar] [CrossRef]
- Cardoso Alves, S.; Díaz-Ruiz, E.; Lisboa, B.; Sharma, M.; Mussatto, S.I.; Thakur, V.K.; Kalaskar, D.M.; Gupta, V.K.; Chandel, A.K. Microbial meat: A sustainable vegan protein source produced from agri-waste to feed the world. Food Res. Int. 2023, 166, 112596. [Google Scholar] [CrossRef]
- Donner, M.; de Vries, H. How to innovate business models for a circular bio-economy? Bus. Strategy Environ. 2021, 30, 1932–1947. [Google Scholar] [CrossRef]
- Donner, M.; Verniquet, A.; Broeze, J.; Kayser, K.; De Vries, H. Critical success and risk factors for circular business models valorising agricultural waste and by-products. Resour. Conserv. Recycl. 2020, 165, 105236. [Google Scholar] [CrossRef]
- Available online: https://www.databridgemarketresearch.com/reports/global-wheat-straw-market (accessed on 2 October 2023).
- Available online: https://www.statista.com/statistics/263977/world-grain-production-by-type/ (accessed on 3 October 2023).
- Available online: https://www.world-grain.com/articles/17875-eu-uk-grain-production-expected-to-increase-in-2023 (accessed on 2 October 2023).
- Available online: https://www.mordorintelligence.com/industry-reports/europe-maize-market (accessed on 3 October 2023).
- Ahmed, M.J.; Danish, M.; Anastopoulos, I.; Iwuozor, K.O. Recent progress on corn (Zea mays L.)-based materials as raw, chemically modified, carbonaceous, and composite adsorbents for aquatic pollutants: A review. J. Anal. Appl. Pyrolysis 2023, 172, 106004. [Google Scholar] [CrossRef]
- Schmer, M.R.; Brown, R.M.; Jin, V.L.; Mitchell, R.B.; Redfearn, D.D. Corn Residue Use by Livestock in the United States. Agric. Environ. Lett. 2017, 2, 160043. [Google Scholar] [CrossRef]
- Hu, J.; Lei, T.; Wang, Z.; Yan, X.; Shi, X.; Li, Z.; He, X.; Zhang, Q. Economic, environmental and social assessment of briquette fuel from agricultural residues in China—A study on flat die briquetting using corn stalk. Energy 2014, 64, 557–566. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, Z.; Feng, L.; Bai, W.; Feng, C.; Song, Y.; Gong, P.; Meng, Y.; Zhang, L. Effects of Corn Stalks and Urea on N2O Production from Corn Field Soil. Agronomy 2021, 11, 2009. [Google Scholar] [CrossRef]
- Lou, C.; Jiang, S.; Yan, A.; Zhou, Y.; Liu, Y.; Zhang, Y.; Kong, X. Self-extracted corn-stalk cellulose/epoxy resin composites. Sci. Rep. 2022, 12, 20968. [Google Scholar] [CrossRef]
- Boufi, S.; Chaker, A. Easy production of cellulose nanofibrils from corn stalk by a conventional high speed blender. Ind. Crop. Prod. 2016, 93, 39–47. [Google Scholar] [CrossRef]
- Li, B.; Liu, G.; Tang, X.; Zhang, H.; Gao, X. Facile preparation of all cellulose composite with excellent mechanical and antibacterial properties via partial dissolution of corn-stalk biomass. Int. J. Biol. Macromol. 2023, 228, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, A.; Shell, K.M.; Bertosin, M.; Rodene, D.D.; Amar, V.; Bertucco, A.; Gupta, R.B.; Shende, R.; Kumar, S. Production of levulinic acid and biocarbon electrode material from corn stover through an integrated biorefinery process. Fuel Process. Technol. 2020, 213, 106644. [Google Scholar] [CrossRef]
- Aghaei, S.; Alavijeh, M.K.; Shafiei, M.; Karimi, K. A comprehensive review on bioethanol production from corn stover: Worldwide potential, environmental importance, and perspectives. Biomass Bioenergy 2022, 161, 106447. [Google Scholar] [CrossRef]
- Yuan, H.; Lan, Y.; Zhu, J.; Wachemo, A.C.; Li, X.; Yu, L. Effect on anaerobic digestion performance of corn stover by freezing–thawing with ammonia pretreatment. Chin. J. Chem. Eng. 2019, 27, 200–207. [Google Scholar] [CrossRef]
- Hájková, K.; Jurczyková, T.; Filipi, M.; Bouček, J. Chemical pulp from corn stalks. Biotechnol. Rep. 2023, 37, e00786. [Google Scholar] [CrossRef] [PubMed]
- Enawgaw, H.; Tesfaye, T.; Yilma, K.T.; Limeneh, D.Y. Multiple Utilization Ways of Corn By-Products for Biomaterial Production with Bio-Refinery Concept; a Review. Mater. Circ. Econ. 2023, 5, 7. [Google Scholar] [CrossRef]
- Taurino, R.; Bondioli, F.; Messori, M. Use of different kinds of waste in the construction of new polymer composites: Review. Mater. Today Sustain. 2023, 21, 100298. [Google Scholar] [CrossRef]
- Thomas, J.; Patil, R. The Road to Sustainable Tire Materials: Current State-of-the-Art and Future Prospectives. Environ. Sci. Technol. 2023, 57, 2209–2216. [Google Scholar] [CrossRef]
- Mohammed, L.; Ansari, M.N.M.; Pua, G.; Jawaid, M.; Islam, M.S. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. Int. J. Polym. Sci. 2015, 2015, 243947. [Google Scholar] [CrossRef]
- Dinu, R.; Bejenari, I.; Volf, I.; Mija, A. Vegetable Oil-Based Resins Reinforced with Spruce Bark Powder and with Its Hydrochar Lignocellulosic Biomass. Appl. Sci. 2021, 11, 10649. [Google Scholar] [CrossRef]
- Hou, Y.; Wu, W. Derived from corn straw cellulose: Modified used tire rubber powder composites. Cellulose 2022, 29, 3935–3945. [Google Scholar] [CrossRef]
- Łączny, D.; Macko, M.; Moraczewski, K.; Szczepański, Z.; Trafarski, A. Influence of the Size of the Fiber Filler of Corn Stalks in the Polylactide Matrix Composite on the Mechanical and Thermomechanical Properties. Materials 2021, 14, 7281. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhu, X.; Peng, F.; Lu, F. Biodegradable, Colorless, and Odorless PLA/PBAT Bioplastics Incorporated with Corn Stover. ACS Sustain. Chem. Eng. 2023, 11, 8870–8883. [Google Scholar] [CrossRef]
- Poudel, R.; Karak, N. Sustainable green composite of yam and agricultural waste corn stalk fiber with good mechanical, thermal, optical, aging performance and excellent biodegradability. Compos. Sci. Technol. 2023, 244, 110276. [Google Scholar] [CrossRef]
- Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Zhao, M.; Mofijur, M.; Awasthi, M.K.; Kalam, M.A.; Ragauskas, A.; Qi, X. Towards the sustainable conversion of corn stover into bioenergy and bioproducts through biochemical route: Technical, economic and strategic perspectives. J. Clean. Prod. 2023, 400, 136699. [Google Scholar] [CrossRef]
- Santana, Á.L.; Meireles, M.A.A. Valorization of Cereal Byproducts with Supercritical Technology: The Case of Corn. Processes 2023, 11, 289. [Google Scholar] [CrossRef]
- Liang, J.; Li, Z.; Dai, S.; Tian, G.; Wang, Z. Production of hemicelluloses sugars, cellulose pulp, and lignosulfonate surfactant using corn stalk by prehydrolysis and alkaline sulfite cooking. Ind. Crops Prod. 2023, 192, 115880. [Google Scholar] [CrossRef]
- Özyürek, Ö.; Çöpür, Y. Integrated biorefinery for production of biodegradable film, bioethanol, and soda pulp from corn stalks. BioResources 2023, 18, 2639–2656. [Google Scholar] [CrossRef]
- Tao, Q.; Li, B.; Chen, Y.; Zhao, J.; Li, Q.; Chen, Y.; Peng, Q.; Yuan, S.; Li, H.; Huang, R.; et al. An integrated method to produce fermented liquid feed and biologically modified biochar as cadmium adsorbents using corn stalks. Waste Manag. 2021, 127, 112–120. [Google Scholar] [CrossRef]
- Rahman, M.M.; Roy, A.; Nayeem, J.; Popy, R.S.; Ferdous, T.; Jahan, M.S. Tissue paper from corn stalk pulp in biorefinery concept. Biomass Convers. Biorefinery 2023, 1–8. [Google Scholar] [CrossRef]
- Huang, H.-J.; Ramaswamy, S.; Al-Dajani, W.W.; Tschirner, U. Process modeling and analysis of pulp mill-based integrated biorefinery with hemicellulose pre-extraction for ethanol production: A comparative study. Bioresour. Technol. 2010, 101, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-C.; Zhang, S.-J.; Xu, T.; Sun, M.-Q.; Zhu, J.-Q.; Zhong, C.; Li, B.-Z.; Yuan, Y.-J. Fractionation of corn stover by two-step pretreatment for production of ethanol, furfural, and lignin. Energy 2020, 195, 117076. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Cai, D.; Zhao, G. Co-generation of ethanol and l-lactic acid from corn stalk under a hybrid process. Biotechnol. Biofuels 2018, 11, 331. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhao, Z.; Jiang, B.; Wei, M.; Zhang, Z.; Zeng, L.; Clark, J.H.; Fan, J. An integrated process for the valorization of corn stover promoted by NaCl in a GVL/H2O system. Green Chem. 2022, 24, 1515–1526. [Google Scholar] [CrossRef]
- Zhong, X.; Yuan, R.; Zhang, B.; Wang, B.; Chu, Y.; Wang, Z. Full fractionation of cellulose, hemicellulose, and lignin in pith-leaf containing corn stover by one-step treatment using aqueous formic acid. Ind. Crops Prod. 2021, 172, 113962. [Google Scholar] [CrossRef]
- Lyu, Q.; Chen, X.; Li, W.; Zhang, Y.; Xiao, A.; Chen, J.; Han, L.; Zhou, C.; Xiao, W. A multi-product strategy for the fractionation of corn stover based on peracetic acid and maleic acid processing. J. Environ. Chem. Eng. 2022, 10, 108764. [Google Scholar] [CrossRef]
- Yang, S.; Chen, K.; Zhu, Z.; Guan, Q.; Zhou, H.; He, L. A green pretreatment approach of corn stalk wastes for obtaining micro/nano-cellulose fibers, monosaccharides and lignin fractions. Renew Energy 2022, 194, 746–759. [Google Scholar] [CrossRef]
- Puițel, A.C.; Suditu, G.D.; Danu, M.; Ailiesei, G.-L.; Nechita, M.T. An Experimental Study on the Hot Alkali Extraction of Xylan-Based Hemicelluloses from Wheat Straw and Corn Stalks and Optimization Methods. Polymers 2022, 14, 1662. [Google Scholar] [CrossRef]
- Hassan, A.A.; Hasanin, M.S.; Ismail, S.A. Enzymatic valorization of cellulosic and hemicellulosic-based biomasses via the production of antioxidant water-soluble hydrolyzate of maize stalks and the green bio-deinking of mixed office waste paper. Biomass Convers. Biorefinery 2023, 1–16. [Google Scholar] [CrossRef]
- An, S.; Li, W.; Xue, F.; Li, X.; Xia, Y.; Liu, Q.; Chen, L.; Jameel, H.; Chang, H.-M. Effect of removing hemicellulose and lignin synchronously under mild conditions on enzymatic hydrolysis of corn stover. Fuel Process. Technol. 2020, 204, 106407. [Google Scholar] [CrossRef]
- Qing, Q.; Zhou, L.; Guo, Q.; Gao, X.; Zhang, Y.; He, Y.; Zhang, Y. Mild alkaline presoaking and organosolv pretreatment of corn stover and their impacts on corn stover composition, structure, and digestibility. Bioresour. Technol. 2017, 233, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Danielewicz, D.; Kmiotek, M.; Barbara Surma-Ślusarska, B. Comparison of Some Properties of Selected Non-Wood Plants and Wood Species and Unbleached Kraft Pulps from These Materials. J. Nat. Fibers 2019, 18, 1296–1306. [Google Scholar] [CrossRef]
- ISO 5269-2:2004; Pulps—Preparation of Laboratory Sheets for Physical Testing—Part 2: Rapid-Köthen Method. ISO: Geneva, Switzerland, 2004.
- ISO 1924-2:2008; Paper and Board—Determination of Tensile Properties—Part 2: Constant Rate of Elongation Method (20 mm/min). ISO: Geneva, Switzerland, 2008.
- ISO 2758:2014; Paper—Determination of Bursting Strength. ISO: Geneva, Switzerland, 2014.
- TAPPI. T 211 om-02. Ash in Wood, Pulp, Paper and Paperboard: Combustion at 525 °C; TAPPI: Atlanta, GA, USA, 2002; Volume 5. [Google Scholar]
- TAPPI. Water Solubility of Wood and Pulp; TAPPI: Atlanta, GA, USA, 1988. [Google Scholar]
- TAPPI. T 204 cm-97, Solvent Extractives of Wood and Pulp; TAPPI: Atlanta, GA, USA, 2007. [Google Scholar]
- TAPPI. Acetone Extractives of Wood and Pulp; Technical Association of the Pulp and Paper Industry TAPPI Press: Atlanta, GA, USA, 2000. [Google Scholar]
- Sluiter, A.; Hames, B.; Hyman, D.; Payne, C.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Wolfe, J. Determination of total solids in biomass and total dissolved solids in liquid process samples. Natl. Renew. Energy Lab. 2008, 9, 1–6. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in biomass. Gold. Natl. Renew. Energy Lab. 2008, 1617, 1–16. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Gold. Natl. Renew. Energy Lab. 2006, 11, 65–71. [Google Scholar]
- Farhat, W.; Venditti, R.; Quick, A.; Taha, M.; Mignard, N.; Becquart, F.; Ayoub, A. Hemicellulose extraction and characterization for applications in paper coatings and adhesives. Ind. Crops Prod. 2017, 107, 370–377. [Google Scholar] [CrossRef]
- Koshijima, T.; Timell, T.E.; Zinbo, M. The number-average molecular weight of native hardwood xylans. J. Polym. Sci. Part C Polym. Symp. 1965, 11, 265–279. [Google Scholar] [CrossRef]
- Salam, A.; Pawlak, J.J.; Venditti, R.A.; El-Tahlawy, K. Incorporation of carboxyl groups into xylan for improved absorbency. Cellulose 2011, 18, 1033–1041. [Google Scholar] [CrossRef]
- ISO 5351:2010; Cellulose in Dilute Solutions—Determination of Limiting Viscosity Number—Part 1: Method in Cupri-Ethylene-Diamine (CED) Solution. ISO: Geneva, Switzerland, 2010.
- Ziegler-Devin, I.; Chrusciel, L.; Brosse, N. Steam Explosion Pretreatment of Lignocellulosic Biomass: A Mini-Review of Theorical and Experimental Approaches. Front. Chem. 2021, 9, 705358. [Google Scholar] [CrossRef]
- Overend, R.P.; Chornet, E. Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1987, 321, 523–536. [Google Scholar] [CrossRef]
- Puițel, A.C.; Suditu, G.D.; Drăgoi, E.N.; Danu, M.; Ailiesei, G.-L.; Balan, C.D.; Chicet, D.-L.; Nechita, M.T. Optimization of Alkaline Extraction of Xylan-Based Hemicelluloses from Wheat Straws: Effects of Microwave, Ultrasound, and Freeze–Thaw Cycles. Polymers 2023, 15, 1038. [Google Scholar] [CrossRef]
- Kim, T.H.; Lee, Y. Fractionation of corn stover by hot-water and aqueous ammonia treatment. Bioresour. Technol. 2006, 97, 224–232. [Google Scholar] [CrossRef]
- Cayetano, R.D.A.; Kim, T.H. Effects of Low Moisture Anhydrous Ammonia (LMAA) Pretreatment at Controlled Ammoniation Temperatures on Enzymatic Hydrolysis of Corn Stover. Appl. Biochem. Biotechnol. 2016, 181, 1257–1269. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Dien, B.S.; Rausch, K.D.; Tumbleson, M.E.; Singh, V. Improving ethanol yields with deacetylated and two-stage pretreated corn stover and sugarcane bagasse by blending commercial xylose-fermenting and wild type Saccharomyces yeast. Bioresour. Technol. 2019, 282, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Lee, Y.Y.; Elander, R.T. Optimization of Dilute-Acid Pretreatment of Corn Stover Using a High-Solids Percolation Reactor. Appl. Biochem. Biotechnol. 2005, 124, 1045–1054. [Google Scholar] [CrossRef]
- Moniz, P.; Pereira, H.; Quilhó, T.; Carvalheiro, F. Characterisation and hydrothermal processing of corn straw towards the selective fractionation of hemicelluloses. Ind. Crops Prod. 2013, 50, 145–153. [Google Scholar] [CrossRef]
- Bajpai, P. Chapter 1—Refining and Pulp Characterization. In Biermann’s Handbook of Pulp and Paper, 3rd ed.; Bajpai, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–34. [Google Scholar]
- Pere, J.; Pääkkönen, E.; Ji, Y.; Retulainen, E.A. Influence of the Hemicellulose Content on the Fiber Properties, Strength, and Formability of Handsheets. BioResources 2018, 14, 13. [Google Scholar] [CrossRef]
- Ban, W.; Chen, X.; Andrews, G.; Van Heiningen, A. Influence of hemicelluloses pre-extraction and re-adsorption on pulp physical strength. II. Beatability and strength study. Cellul. Chem. Technol. 2011, 45, 633. [Google Scholar]
- Motamedian, H.R.; Halilovic, A.E.; Kulachenko, A. Mechanisms of strength and stiffness improvement of paper after PFI refining with a focus on the effect of fines. Cellulose 2019, 26, 4099–4124. [Google Scholar] [CrossRef]
- Vainio, A.; Paulapuro, H. Interfiber bonding and fiber segment activation in paper. BioResources 2007, 2, 442–458. [Google Scholar] [CrossRef]
- Pedersen, M.; Meyer, A.S. Lignocellulose pretreatment severity—Relating pH to biomatrix opening. New Biotechnol. 2010, 27, 739–750. [Google Scholar] [CrossRef]
- Abouelela, A.R.; Nakasu, P.Y.S.; Hallett, J.P. Influence of Pretreatment Severity Factor and Hammett Acidity on Softwood Fractionation by an Acidic Protic Ionic Liquid. ACS Sustain. Chem. Eng. 2023, 11, 2404–2415. [Google Scholar] [CrossRef]
- Butylina, S.; Koljonen, K.; Hiltunen, S.; Laatikainen, K. Study on spinnability of arabinoxylan extracted from barley husks. Cellulose 2022, 29, 1–17. [Google Scholar] [CrossRef]
- Peng, F.; Jia, N.; Bian, J.; Peng, P.; Sun, R.; Liu, S. Isolation and fractionation of hemicelluloses from Salix psammophila. Cellul. Chem. Technol. 2012, 46, 177. [Google Scholar]
- Kong, F.; Guo, Y.; Liu, Z.; Wang, S.; Lucia, L.A. Synthesis of Cationic Xylan Derivatives and Application as Strengthening Agents in Papermaking. BioResources 2018, 13, 2960–2976. [Google Scholar] [CrossRef]
- Li, H.; Xue, Y.; Wu, J.; Wu, H.; Qin, G.; Li, C.; Ding, J.; Liu, J.; Gan, L.; Long, M. Enzymatic hydrolysis of hemicelluloses from Miscanthus to monosaccharides or xylo-oligosaccharides by recombinant hemicellulases. Ind. Crops Prod. 2016, 79, 170–179. [Google Scholar] [CrossRef]
- Teleman, A.; Tenkanen, M.; Jacobs, A.; Dahlman, O. Characterization of O-acetyl-(4-O-methylglucurono)xylan isolated from birch and beech. Carbohydr. Res. 2002, 337, 373–377. [Google Scholar] [CrossRef]
- Gonçalves, V.M.F.; Evtuguin, D.V.; Domingues, M.R.M. Structural characterization of the acetylated heteroxylan from the natural hybrid Paulownia elongata/Paulownia fortunei. Carbohydr. Res. 2008, 343, 256–266. [Google Scholar] [CrossRef]
- Gufe, C.; Thantsha, M.S.; Malgas, S. Recovery of xylan from Acacia mearnsii using ultrasound-assisted alkaline extraction. Biofuels Bioprod. Biorefining 2023, 17, 976–987. [Google Scholar] [CrossRef]
- Bian, J.; Peng, F.; Peng, X.-P.; Xu, F.; Sun, R.-C.; Kennedy, J.F. Isolation of hemicelluloses from sugarcane bagasse at different temperatures: Structure and properties. Carbohydr. Polym. 2012, 88, 638–645. [Google Scholar] [CrossRef]
- Zhao, X.; Tong, T.; Li, H.; Lu, H.; Ren, J.; Zhang, A.; Deng, X.; Chen, X.; Wu, A.-M. Characterization of hemicelluloses from Neolamarckia cadamba (Rubiaceae) during xylogenesis. Carbohydr. Polym. 2017, 156, 333–339. [Google Scholar] [CrossRef]
- Sharma, K.; Khaire, K.C.; Thakur, A.; Moholkar, V.S.; Goyal, A. Acacia Xylan as a Substitute for Commercially Available Xylan and Its Application in the Production of Xylooligosaccharides. ACS Omega 2020, 5, 13729–13738. [Google Scholar] [CrossRef] [PubMed]
- Laine, C. Structures of Hemicelluloses and Pectins in Wood and Pulp; Helsinki University of Technology: Helsinki, Finland, 2005. [Google Scholar]
- Jahan, M.S.; Rahman, M.M. Effect of pre-hydrolysis on the soda-anthraquinone pulping of corn stalks and Saccharum spontaneum (kash). Carbohydr. Polym. 2012, 88, 583–588. [Google Scholar] [CrossRef]
- Latibari, A.J.; Hossein, M.A.; Hosseinpour, R. Application of alkaline sulfite pulping on corn stalks. BioResources 2010, 6, 48–58. [Google Scholar] [CrossRef]
- Fan, Y.; Ji, H. Corncob Fractionations Toward Two Purposes: Furfural Production and Papermaking. BioEnergy Res. 2023, 1–10. [Google Scholar] [CrossRef]
- Xia, F.; Liu, H.; Lu, J.; Lv, Y.; Zhai, S.; An, Q.; Cheng, Y.; Wang, H. An integrated biorefinery process to produce butanol and pulp from corn straw. Ind. Crops Prod. 2019, 140, 111648. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Lu, M.; Guo, X.; Zhang, H.; Han, L. Integrated chemical and multi-scale structural analyses for the processes of acid pretreatment and enzymatic hydrolysis of corn stover. Carbohydr. Polym. 2016, 141, 1–9. [Google Scholar] [CrossRef]
Independent Variables | Units | Range | Symbol | ||
---|---|---|---|---|---|
From | To | ||||
Temperature | (°C) | X1 | 100 | 130 | T |
NaOH concentration | % wt. | X2 | 0.6 | 1.2 | CNaOH |
Duration (time) of HAE | minutes | X3 | 30 | 90 | t |
Material | Glucan | Xylan | Arabinan | PStot | AIL | ASL | AE | Ash | Ref. |
---|---|---|---|---|---|---|---|---|---|
CS | 39.71 | 19.82 | 4.28 | 63.81 | 20.62 | 1.60 | 4.36 | 7.05 | This work |
HWT CS | 47.68 | 16.44 | 5.43 | 69.55 | 23.59 | 1.37 | n.d. | 1.50 | |
CS | 36.80 | 19.90 | 3.20 | 59.90 | 20.10 | 11.80 | 1.00 | [75] | |
CS | 34.40 | 15.88 | n.d. | - | 14.10 | 2.48 | 11.84 | 3.04 | [76] |
CS | 36.80 | 21.70 | 2.60 | 61.10 | 17.20 | n.d. | n.d. | [77] | |
CS | 42.10 | 22.90 | 2.90 | 67.90 | 17.50 | - | 9.80 | 4.20 | [78] |
Treatment Param. | Glucan | Xylan | Arabinan | SY (%) | AIL | ASL |
---|---|---|---|---|---|---|
HAEhigh, 5%NaOH | 63.58 | 12.75 | 5.67 | 33.60 | 6.80 | 0.75 |
HAEhigh, 3%NaOH | 64.50 | 13.90 | 6.55 | 35.50 | 8.80 | 0.95 |
SP, raw CS | 68.70 | 18.9 | 2.74 | 48,30 | 9.95 | 1.05 |
HAElow–SP | 67.50 | 16.47 | 3.30 | 47.13 | 10.71 | 1.12 |
HWT–SP | 66.04 | 19.40 | 2.72 | 46.65 | 11.99 | 1.22 |
Treatment Param. | DP | TI, (N·m/g) | BI, (kPa·m2/g) |
---|---|---|---|
HAEhigh, 5%NaOH | 750 | 72.40 | 2.56 |
HAEhigh, 3%NaOH | 880 | 62.90 | 3.62 |
SP, raw CS | 1047 | 83.20 | 4.71 |
HAElow–SP | 925 | 75.50 | 4.35 |
HWT–SP | 830 | 70.40 | 3.11 |
Treatment Parameters | Glucan | Xylan | Arabinan | DP |
---|---|---|---|---|
HAEhigh, 5%NaOH, EL | 3.11 | 65.14 | 5.24 | 290 |
HAEhigh, 3%NaOH, EL | 2.85 | 62.47 | 8.95 | 285 |
SP, raw CS, BL | 4.34 | 54.40 | 14.10 | 273 |
HAElow, EL | 4.80 | 49.06 | 17.93 | 320 |
HAElow–SP, BL | 5.70 | 61.82 | 14.51 | 262 |
HWT, EL | 11.27 | 7.70 | 1.28 | n.d. |
HWT–SP, BL | 3.35 | 57.20 | 12.24 | 230 |
X4252 10G | 0.05 | 91.34 | 2.09 | 255 |
Exp No. | T, (°C) | CNaOH, (%) | T, (min) | XHC, (%) | XRCS, (%) | TI, (N·m/g) | BI, (kPa·m2/g) |
---|---|---|---|---|---|---|---|
1 | 100 | 0.6 | 30 | 44.74 | 19.22 | 70.90 | 2.62 |
2 | 100 | 0.6 | 60 | 54.53 | 22.91 | 75.50 | 3.46 |
3 | 100 | 0.6 | 90 | 54.53 | 25.62 | 74.30 | 3.49 |
4 | 115 | 0.6 | 60 | 41.29 | 21.60 | 68.92 | 4.24 |
5 | 130 | 0.6 | 30 | 41.16 | 27.43 | 63.80 | 4.56 |
6 | 130 | 0.6 | 90 | 45.26 | 29.25 | 74.29 | 4.85 |
7 | 100 | 0.9 | 60 | 52.41 | 25.32 | 75.61 | 4.48 |
8 | 115 | 0.9 | 60 | 51.62 | 26.91 | 67.90 | 4.25 |
9 | 115 | 0.9 | 30 | 50.96 | 26.68 | 67.30 | 3.82 |
10 | 115 | 0.9 | 60 | 42.88 | 27.31 | 67.20 | 4.35 |
11 | 115 | 0.9 | 60 | 62.74 | 27.53 | 68.11 | 4.29 |
12 | 115 | 0.9 | 60 | 57.57 | 27.21 | 69.10 | 4.32 |
13 | 115 | 0.9 | 60 | 54.40 | 29.02 | 68.20 | 4.10 |
14 | 115 | 0.9 | 60 | 52.28 | 26.34 | 70.20 | 4.45 |
15 | 115 | 0.9 | 60 | 52.15 | 25.93 | 66.91 | 4.25 |
16 | 115 | 0.9 | 90 | 53.21 | 27.62 | 64.52 | 4.19 |
17 | 130 | 0.9 | 60 | 48.04 | 34.80 | 71.89 | 4.27 |
18 | 100 | 1.2 | 30 | 53.34 | 18.40 | 76.60 | 4.53 |
19 | 100 | 1.2 | 90 | 53.47 | 22.80 | 71.70 | 4.02 |
20 | 115 | 1.2 | 60 | 57.71 | 28.10 | 75.54 | 4.10 |
21 | 130 | 1.2 | 30 | 63.53 | 35.40 | 62.20 | 3.27 |
22 | 130 | 1.2 | 90 | 55.06 | 35.20 | 71.40 | 2.73 |
Yi | β0 | X1 | X2 | X3 | X1X2 | X2X3 | X1X3 | X12 | X22 | R2 | R2adj |
---|---|---|---|---|---|---|---|---|---|---|---|
Y1 | 78.2 | −0.511 | −54.3 | 0.760 | 0.770 | −0.00396 | −0.309 | - | - | 0.918 | 0.87 |
Y2 | 2.12 | 0.0306 | −24.9 | 0.400 | 0.510 | −0.0262 | −0.0583 | - | −13.8 | 0.915 | 0.872 |
Y3 | 221 | −4.31 | 245 | 3.59 | −2.62 | −0.0284 | −4.85 | 0.0268 | 50.7 | 0.95 | 0.899 |
Y4 | −53.3 | 0.368 | 84.3 | 0.747 | −0.729 | −0.0064 | −0.947 | 0.000847 | −0.13 | 0.93 | 0.84 |
System Responses | XHC (%) | XRCS (%) | TI (N·m/g) | BI (kPa·m2/g) |
---|---|---|---|---|
Predicted values | 51.67 | 21.77 | 78.50 | 4.54 |
Experimental values | 54.64 | 20.54 | 80.10 | 4.33 |
Pulp Type | SY (%) | Glucan (%) | Xylan (%) | Arabinan (%) | AIL | ASL |
---|---|---|---|---|---|---|
HAEopt | 42.74 | 67.10 | 20.10 | 2.60 | 6.50 | 1.10 |
HCE | 64.10 | 80.41 | 11.05 | 1.40 | 4.30 | 0.70 |
Sample Source | SF | HCRY (%) | Glucan | Xylan | Arabinan | Pstot (%) |
---|---|---|---|---|---|---|
HAE, 0.9% NaOH, EL | 2.12 | 77.50 | 3.23 | 54.28 | 4.12 | 61.63 |
2.54 | 76.92 | 3.83 | 53.96 | 3.64 | 59.75 | |
2.65 | 69.43 | 3.47 | 52.29 | 3.45 | 59.21 | |
HAE, 0.9% NaOH, BL | 3.39 | 73.09 | 4.01 | 63.26 | 5.49 | 72.76 |
3.45 | 72.82 | 3.69 | 68.97 | 5.60 | 78.25 | |
3.55 | 65.92 | 5.94 | 61.80 | 6.09 | 83.82 | |
HAEopt, EL | 2.02 | 79.23 | 4.12 | 54.64 | 5.03 | 63.79 |
HAEopt, BL | 3.31 | 67.48 | 3.02 | 67.84 | 4.85 | 75.71 |
HCE, 5%NaOH, EL | 2.12 | 72.34 | 7.22 | 65.07 | 2.37 | 74.66 |
Raw Material | Extraction/Pretreatment | HC Derivatives | TI (N·M/G) | BI (kPa·m2/g) | Ref. |
---|---|---|---|---|---|
CS | HAE | 54.64% xylan | 80.10 | 4.33 | This work |
CS | One-step formic acid | 61.00% xylose | 50.10 | 3.00 | [49] |
CS and kash | Soda-anthraquinone pulping | - | 56.00 | 4.70 | [97] |
CS | Alkaline sulfite pulping | - | 62.40 | 3.80 | [98] |
CS | Alkaline sulfite cooking | 118.40 g xylose/kg CS | 97.40 | 5.20 | [41] |
Corn cobs | Hydrothermal pretreatment | 52.35% furfural | 43.00 | - | [99] |
CS | Acid pre-impregnated steam explosion | acetone: 0.09 g/g, butanol: 0.18 g/g, ethanol: 0.04 g/g | 24.00 | 0.99 | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puițel, A.C.; Balan, C.D.; Ailiesei, G.-L.; Drăgoi, E.N.; Nechita, M.T. Integrated Hemicellulose Extraction and Papermaking Fiber Production from Agro-Waste Biomass. Polymers 2023, 15, 4597. https://doi.org/10.3390/polym15234597
Puițel AC, Balan CD, Ailiesei G-L, Drăgoi EN, Nechita MT. Integrated Hemicellulose Extraction and Papermaking Fiber Production from Agro-Waste Biomass. Polymers. 2023; 15(23):4597. https://doi.org/10.3390/polym15234597
Chicago/Turabian StylePuițel, Adrian Cătălin, Cătălin Dumitrel Balan, Gabriela-Liliana Ailiesei, Elena Niculina Drăgoi, and Mircea Teodor Nechita. 2023. "Integrated Hemicellulose Extraction and Papermaking Fiber Production from Agro-Waste Biomass" Polymers 15, no. 23: 4597. https://doi.org/10.3390/polym15234597
APA StylePuițel, A. C., Balan, C. D., Ailiesei, G. -L., Drăgoi, E. N., & Nechita, M. T. (2023). Integrated Hemicellulose Extraction and Papermaking Fiber Production from Agro-Waste Biomass. Polymers, 15(23), 4597. https://doi.org/10.3390/polym15234597