Hybrid Polymer–Surfactant Wormlike Micelles for Concurrent Use for Oil Recovery and Drag Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Samples Preparation
2.3. Rheology
2.4. Cryogenic Transmission Electron Microscopy
2.5. Dynamic Light Scattering
2.6. Small-Angle X-ray Scattering
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zana, R. Dynamics of Surfactant Self-Assemblies: Micelles, Microemulsions, Vesicles and Lyotropic Phases; Taylor and Francis Group: Boca Raton, FL, USA, 2005; ISBN 978082475822. [Google Scholar]
- Israelachvili, J.N.; Mitchell, D.J.; Ninham, B.W. Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers. J. Chem. Soc. Faraday Trans. 1976, 72, 1525–1568. [Google Scholar] [CrossRef]
- Zhang, Q.; Shu, X.Z.; Lucas, J.M.; Toste, F.D.; Somorjai, G.A.; Alivisatos, A.P. Inorganic Micelles as Efficient and Recyclable Micellar Catalysts. Nano Lett. 2014, 14, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Cai, Z.; Fu, S.; Gu, H.; Fu, X.; Zhu, J.; Ke, Y.; Jiang, H.; Cao, W.; Wu, C.; et al. Relaxivity Enhancement of Hybrid Micelles via Modulation of Water Coordination Numbers for Magnetic Resonance Lymphography. Nano Lett. 2023, 23, 8505–8514. [Google Scholar] [CrossRef] [PubMed]
- Barauskas, J.; Johnsson, M.; Tiberg, F. Self-Assembled Lipid Superstructures: Beyond Vesicles and Liposomes. Nano Lett. 2005, 5, 1615–1619. [Google Scholar] [CrossRef] [PubMed]
- Danino, D.; Talmon, Y.; Levy, H.; Beinert, G.; Zana, R. Branched Threadlike Micelles in an Aqueous Solution of a Trimeric Surfactant. Science 1995, 269, 1420–1421. [Google Scholar] [CrossRef]
- Landsmann, S.; Luka, M.; Polarz, S. Bolaform Surfactants with Polyoxometalate Head Groups and Their Assembly into Ultra-Small Monolayer Membrane Vesicles. Nat. Commun. 2012, 3, 1299. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Hu, Y.; Wang, R. Self-Assembly of Polymer Tethered Molecular Nanoparticle Shape Amphiphiles in Selective Solvents. Macromolecules 2015, 48, 3112–3120. [Google Scholar] [CrossRef]
- Zana, R.; Kaler, E.W. Giant Micelles: Properties and Applications; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-0-8493-7308-4. [Google Scholar]
- Dreiss, C.A.; Feng, Y. Wormlike Micelles: Advances in Systems, Characterisation and Applications; The Royal Society of Chemistry: London, UK, 2017; ISBN 9781782629788. [Google Scholar]
- Feng, Y.; Chu, Z.; Dreiss, C.A. Smart Wormlike Micelles: Design, Characteristics and Applications; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9783662459492. [Google Scholar]
- Chu, Z.; Dreiss, C.A.; Feng, Y. Smart Wormlike Micelles. Chem. Soc. Rev. 2013, 42, 7174–7203. [Google Scholar] [CrossRef]
- Ezrahi, S.; Tuval, E.; Aserin, A. Properties, Main Applications and Perspectives of Worm Micelles. Adv. Colloid Interface Sci. 2006, 128–130, 77–102. [Google Scholar] [CrossRef]
- Berret, J.F.; Schonbeck, N.; Gazeau, F.; El Kharrat, D.; Sandre, O.; Vacher, A.; Airiau, M. Controlled Clustering of Superparamagnetic Nanoparticles Using Block Copolymers: Design of New Contrast Agents for Magnetic Resonance Imaging. J. Am. Chem. Soc. 2006, 128, 1755–1761. [Google Scholar] [CrossRef]
- Wang, J.; Feng, Y.; Agrawal, N.R.; Raghavan, S.R. Wormlike Micelles versus Water-Soluble Polymers as Rheology-Modifiers: Similarities and Differences. Phys. Chem. Chem. Phys. 2017, 19, 24458–24466. [Google Scholar] [CrossRef] [PubMed]
- Moussa, W.; Colombani, O.; Benyahia, L.; Nicolai, T.; Chassenieux, C. Structure of a Self-Assembled Network Made of Polymeric Worm-like Micelles. Polym. Bull. 2016, 73, 2689–2705. [Google Scholar] [CrossRef]
- Yang, J. Viscoelastic Wormlike Micelles and Their Applications. Curr. Opin. Colloid Interface Sci. 2002, 7, 276–281. [Google Scholar] [CrossRef]
- Tong, S.; Gu, M.; Singh, R.; Mohanty, K.K. Proppant Transport in Foam Fracturing Fluid during Hydraulic Fracturing. J. Pet. Sci. Eng. 2019, 182, 106279. [Google Scholar] [CrossRef]
- Philippova, O.E.; Molchanov, V.S. Enhanced Rheological Properties and Performance of Viscoelastic Surfactant Fluids with Embedded Nanoparticles. Curr. Opin. Colloid Interface Sci. 2019, 43, 52–62. [Google Scholar] [CrossRef]
- Tong, S.; Mohanty, K.K. Proppant Transport Study in Fractures with Intersections. Fuel 2016, 181, 463–477. [Google Scholar] [CrossRef]
- Davoodi, S.; Al-Shargabi, M.; Wood, D.A.; Rukavishnikov, V.S. A Comprehensive Review of Beneficial Applications of Viscoelastic Surfactants in Wellbore Hydraulic Fracturing Fluids. Fuel 2023, 338, 127228. [Google Scholar] [CrossRef]
- Fan, Y.; Duan, W.; Xu, K.; Yan, C.; Zheng, C. Zr, N-Co-Doped Carbon Quantum Dot Crosslinking Agents for Use in Fracturing Fluids. ACS Appl. Nano Mater. 2023, 6, 7920–7930. [Google Scholar] [CrossRef]
- Gu, Y.; Yu, S.; Mou, J.; Wu, D.; Zheng, S. Research Progress on the Collaborative Drag Reduction Effect of Polymers and Surfactants. Materials 2020, 13, 444. [Google Scholar] [CrossRef]
- Elbing, B.R.; Solomon, M.J.; Perlin, M.; Dowling, D.R.; Ceccio, S.L. Flow-Induced Degradation of Drag-Reducing Polymer Solutions within a High-Reynolds-Number Turbulent Boundary Layer. J. Fluid Mech. 2011, 670, 337–364. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, S.; Dai, C.; Yan, R.; Li, Y.; Liu, P. Development and Drag Reduction Behaviors of a Water-in-Water Emulsion Polymer Drag Reducer. ACS Appl. Polym. Mater. 2023, 5, 3707–3716. [Google Scholar] [CrossRef]
- Barati, R.; Liang, J.T. A Review of Fracturing Fluid Systems Used for Hydraulic Fracturing of Oil and Gas Wells. J. Appl. Polym. Sci. 2014, 131, 40735. [Google Scholar] [CrossRef]
- Parker, A.; Fieber, W. Viscoelasticity of Anionic Wormlike Micelles: Effects of Ionic Strength and Small Hydrophobic Molecules. Soft Matter 2013, 9, 1203–1213. [Google Scholar] [CrossRef]
- Zaldivar, G.; Conda-Sheridan, M.; Tagliazucchi, M. Scission Energies of Surfactant Wormlike Micelles Loaded with Nonpolar Additives. J. Colloid Interface Sci. 2021, 604, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Shibaev, A.V.; Tamm, M.V.; Molchanov, V.S.; Rogachev, A.V.; Kuklin, A.I.; Dormidontova, E.E.; Philippova, O.E. How a Viscoelastic Solution of Wormlike Micelles Transforms into a Microemulsion upon Absorption of Hydrocarbon: New Insight. Langmuir 2014, 30, 3705–3714. [Google Scholar] [CrossRef]
- AL-Dogail, A.; Gajbhiye, R.; Patil, S. A Review of Drag-Reducing Agents (DRAs) in Petroleum Industry. Arab. J. Sci. Eng. 2023, 48, 8287–8305. [Google Scholar] [CrossRef]
- Kwiatkowski, A.L.; Sharma, H.; Molchanov, V.S.; Orekhov, A.S.; Vasiliev, A.L.; Dormidontova, E.E.; Philippova, O.E. Wormlike Surfactant Micelles with Embedded Polymer Chains. Macromolecules 2017, 50, 7299–7308. [Google Scholar] [CrossRef]
- Kwiatkowski, A.L.; Molchanov, V.S.; Sharma, H.; Kuklin, A.I.; Dormidontova, E.E.; Philippova, O.E. Growth of Wormlike Micelles of Surfactant Induced by Embedded Polymer: Role of Polymer Chain Length. Soft Matter 2018, 14, 4792–4804. [Google Scholar] [CrossRef]
- Macosco, C.W. Rheology: Principles, Measurements and Applications; WILEY-VCH: Hoboken, NJ, USA, 1996; ISBN 1560815795. [Google Scholar]
- Korchagina, E.V.; Philippova, O.E. Multichain Aggregates in Dilute Solutions of Associating Polyelectrolyte Keeping a Constant Size at the Increase in the Chain Length of Individual Macromolecules. Biomacromolecules 2010, 11, 3457–3466. [Google Scholar] [CrossRef]
- SasView. Available online: http://www.sasview.org/ (accessed on 18 September 2023).
- Guinier, A.; Fournet, G. Small-Angle Scattering of X-rays; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1955. [Google Scholar]
- Calabrese, M.A.; Wagner, N.J. Detecting Branching in Wormlike Micelles via Dynamic Scattering Methods. ACS Macro Lett. 2018, 7, 614–618. [Google Scholar] [CrossRef]
- Kwiatkowski, A.L.; Molchanov, V.S.; Kuklin, A.I.; Philippova, O.E. Opposite Effect of Salt on Branched Wormlike Surfactant Micelles with and without Embedded Polymer. J. Mol. Liq. 2020, 311, 113301–113309. [Google Scholar] [CrossRef]
- Calabrese, M.A.; Rogers, S.A.; Murphy, R.P.; Wagner, N.J. The Rheology and Microstructure of Branched Micelles under Shear. J. Rheol. 2015, 59, 1299–1328. [Google Scholar] [CrossRef]
- Croce, V.; Cosgrove, T.; Dreiss, C.A.; King, S.; Maitland, G.; Hughes, T. Giant Micellar Worms under Shear: A Rheological Study Using SANS. Langmuir 2005, 21, 6762–6768. [Google Scholar] [CrossRef]
- Piculell, L.; Norrman, J.; Svensson, A.V.; Lynch, I.; Bernardes, J.S.; Loh, W. Ionic Surfactants with Polymeric Counterions. Adv. Colloid Interface Sci. 2009, 147–148, 228–236. [CrossRef]
- Kogej, K. Association and Structure Formation in Oppositely Charged Polyelectrolyte–Surfactant Mixtures. Adv. Colloid Interface Sci. 2010, 158, 68–83. [Google Scholar] [CrossRef]
- Langevin, D. Complexation of Oppositely Charged Polyelectrolytes and Surfactants in Aqueous Solutions. A review. Adv. Colloid Interface Sci. 2009, 147–148, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Artykulnyi, O.P.; Shibaev, A.V.; Avdeev, M.M.; Ivankov, O.I.; Bulavin, L.A.; Petrenko, V.I.; Philippova, O.E. Structural Investigations of Poly(Ethylene Glycol)-Dodecylbenzenesulfonic Acid Complexes in Aqueous Solutions. J. Mol. Liq. 2020, 308, 113045. [Google Scholar] [CrossRef]
- Walther, A.; Müller, A.H.E. Formation of Hydrophobic Bridges between Multicompartment Micelles of Miktoarm Star Terpolymers in Water. Chem. Commun. 2009, 9, 1127–1129. [Google Scholar] [CrossRef]
- Cui, H.; Hodgdon, T.K.; Kaler, E.W.; Abezgauz, L.; Danino, D.; Lubovsky, M.; Talmon, Y.; Pochan, D.J. Elucidating the Assembled Structure of Amphiphiles in Solution via Cryogenic Transmission Electron Microscopy. Soft Matter 2007, 3, 945–955. [Google Scholar] [CrossRef]
- Croce, V.; Cosgrove, T.; Maitland, G.; Hughes, T. Rheology, Cryogenic Transmission Electron Spectroscopy, and Small-Angle Neutron Scattering of Highly Viscoelastic Wormlike Micellar Solutions. Langmuir 2003, 19, 8536–8541. [Google Scholar] [CrossRef]
- De Gennes, P. Towards a Scaling Theory of Drag Reduction. Phys. A 1986, 140, 9–25. [Google Scholar] [CrossRef]
- Schramm, G.G.S. A Practical Approach to Rheology and Rheometry; Gebrueder Haake: Karlsruhe, Germany, 1994. [Google Scholar]
- Qi, Y.; Littrell, K.; Thiyagarajan, P.; Talmon, Y.; Schmidt, J.; Lin, Z.; Zakin, J.L. Small-Angle Neutron Scattering Study of Shearing Effects on Drag-Reducing Surfactant Solutions. J. Colloid Interface Sci. 2009, 337, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Kesselman, E.; Hart, D.J.; Talmon, Y.; Mateo, A.; Zakin, J.L. Comparison of Oleyl and Elaidyl Isomer Surfactant-Counterion Systems in Drag Reduction, Rheological Properties and Nanostructure. J. Colloid Interface Sci. 2011, 354, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Grosberg, A.Y.; Khokhlov, A.R. Statistical Physics of Macromolecules; American Institute of Physics: Melville, NY, USA, 1994; ISBN 978-1-56396-071-0. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwiatkowski, A.L.; Molchanov, V.S.; Chesnokov, Y.M.; Ivankov, O.I.; Philippova, O.E. Hybrid Polymer–Surfactant Wormlike Micelles for Concurrent Use for Oil Recovery and Drag Reduction. Polymers 2023, 15, 4615. https://doi.org/10.3390/polym15234615
Kwiatkowski AL, Molchanov VS, Chesnokov YM, Ivankov OI, Philippova OE. Hybrid Polymer–Surfactant Wormlike Micelles for Concurrent Use for Oil Recovery and Drag Reduction. Polymers. 2023; 15(23):4615. https://doi.org/10.3390/polym15234615
Chicago/Turabian StyleKwiatkowski, Alexander L., Vyacheslav S. Molchanov, Yuri M. Chesnokov, Oleksandr I. Ivankov, and Olga E. Philippova. 2023. "Hybrid Polymer–Surfactant Wormlike Micelles for Concurrent Use for Oil Recovery and Drag Reduction" Polymers 15, no. 23: 4615. https://doi.org/10.3390/polym15234615
APA StyleKwiatkowski, A. L., Molchanov, V. S., Chesnokov, Y. M., Ivankov, O. I., & Philippova, O. E. (2023). Hybrid Polymer–Surfactant Wormlike Micelles for Concurrent Use for Oil Recovery and Drag Reduction. Polymers, 15(23), 4615. https://doi.org/10.3390/polym15234615