Electrically Tunable Two-Color Cholesteric Laser
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- (i)
- CLC1/DCM: 99% (97.6 wt. % QYTN-009 + 2.4 wt. % R5011) + 1 wt.% DCM
- (ii)
- CLC2/C540A: 99% (96.9 wt. % QYTN-009 + 3.1 wt. % R5011) + 1 wt.% C540A
2.2. Optical Excitation
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059. [Google Scholar] [CrossRef]
- Ortega, J.; Folcia, C.L.; Etxebarria, J. Upgrading the performance of cholesteric liquid crystal lasers: Improvement margins and limitations. Materials 2017, 11, 5. [Google Scholar] [CrossRef]
- Ilchishin, I.P.; Tikhonov, E.A. Dye-doped cholesteric lasers: Distributed feedback and photonic bandgap lasing models. PQE 2015, 41, 1–22. [Google Scholar] [CrossRef]
- Uchimura, M.; Watanabe, Y.; Araoka, F.; Watanabe, J.; Takezoe, H.; Konishi, G. Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers. Adv. Mater. 2010, 22, 4473–4478. [Google Scholar] [CrossRef]
- Wang, N.; Evans, J.S.; Mei, J.; Zhang, J.; Khoo, I.-C.; He, S. Lasing properties of a cholesteric liquid crystal containing aggregation-induced-emission material. Opt. Express 2015, 23, 33938–33946. [Google Scholar] [CrossRef]
- Dolganov, P.V.; Dolganov, V.K. Photon density of states in a cholesteric photonic crystal. JETP Lett. 2018, 108, 170–174. [Google Scholar] [CrossRef]
- Dolganov, P. Density of photonic states in cholesteric liquid crystals. Phys. Rev. E 2015, 91, 042509. [Google Scholar] [CrossRef]
- Yablonovitch, E. Photonic band-gap structures. J. Opt. Soc. Am. B 1993, 10, 283–295. [Google Scholar] [CrossRef]
- Gao, S.; Zhai, Y.; Zhang, X.; Song, X.; Wang, J.; Drevensek-Olenik, I.; Rupp, R.A.; Xu, J. Coupling of Defect Modes in Cholesteric Liquid Crystals Separated by Isotropic Polymeric Layers. Polymers 2018, 10, 805. [Google Scholar] [CrossRef]
- Mavrogordatos, T.K.; Morris, S.; Castles, F.; Hands, P.; Ford, A.; Coles, H.; Wilkinson, T. Density of photon states in dye-doped chiral nematic liquid crystal cells in the presence of losses and gain. Phys. Rev. E 2012, 86, 011705. [Google Scholar] [CrossRef]
- Gevorgyan, A.; Oganesyan, K.; Karapetyan, R.; Rafayelyan, M. The photonic density of states and the light energy density in cholesteric liquid crystal cells. Laser Phys. Lett. 2013, 10, 125802. [Google Scholar] [CrossRef]
- Lee, S.S.; Kim, J.B.; Kim, Y.H.; Kim, S.-H. Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals. Sci. Adv. 2018, 4, eaat8276. [Google Scholar] [CrossRef]
- Humar, M.; Muševič, I. 3D microlasers from self-assembled cholesteric liquid-crystal microdroplets. Opt. Express 2010, 18, 26995–27003. [Google Scholar] [CrossRef] [PubMed]
- Eelkema, R.; Pollard, M.M.; Katsonis, N.; Vicario, J.; Broer, D.J.; Feringa, B.L. Rotational reorganization of doped cholesteric liquid crystalline films. J. Am. Chem. Soc. 2006, 128, 14397–14407. [Google Scholar] [CrossRef] [PubMed]
- Petriashvili, G.; Matranga, M.; De Santo, M.P.; Chilaya, G.; Barberi, R. Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser. Opt. Express 2009, 17, 4553–4558. [Google Scholar] [CrossRef]
- Chilaya, G.; Chanishvili, A.; Petriashvili, G.; Barberi, R.; Bartolino, R.; De Santo, M.P.; Matranga, M.; Collings, P. Light control of cholesteric liquid crystals using azoxy-based host materials. Mol. Cryst. Liq. Cryst. 2006, 453, 123–140. [Google Scholar] [CrossRef]
- Zhang, P.; de Haan, L.T.; Debije, M.G.; Schenning, A.P. Liquid crystal-based structural color actuators. Light Sci. Appl. 2022, 11, 248. [Google Scholar] [CrossRef] [PubMed]
- Varanytsia, A.; Nagai, H.; Urayama, K.; Palffy-Muhoray, P. Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain. Sci. Rep. 2015, 5, 17739. [Google Scholar] [CrossRef]
- Ryabchun, A.; Bobrovsky, A. Cholesteric liquid crystal materials for tunable diffractive optics. Adv. Opt. Mater. 2018, 6, 1800335. [Google Scholar] [CrossRef]
- Saadaoui, L.; Petriashvili, G.; De Santo, M.P.; Hamdi, R.; Othman, T.; Barberi, R. Electrically controllable multicolor cholesteric laser. Opt. Express 2015, 23, 22922–22927. [Google Scholar] [CrossRef]
- Petriashvili, G.; De Santo, M.P.; Hernandez, R.J.; Barberi, R.; Cipparrone, G. Mixed emulsion of liquid crystal microresonators: Towards white laser systems. Soft Matter 2017, 13, 6227–6233. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.; Fan, J.; Bisoyi, H.K.; Weitz, D.A.; Li, Q. Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switch. Adv. Opt. Mater. 2014, 2, 845–848. [Google Scholar] [CrossRef]
- Yang, D.; Chemingui, M.; Wang, Y.; Zhang, X.; Drevensek-Olenik, I.; Hassan, F.; Wu, Q.; Li, Y.; Saadaoui, L.; Xu, J. Dual-wavelength lasing with orthogonal circular polarizations generated in a single layer of a polymer–cholesteric liquid crystal superstructure. Polymers 2023, 15, 1226. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, D.; Gao, S.; Zhang, X.; Drevensek-Olenik, I.; Wu, Q.; Chemingui, M.; Chen, Z.; Xu, J. Tunable Topological Lasing of Circularly Polarized Light in a Soft-Matter-Based Superlattice. Laser Photonics Rev. 2023, 17, 2200643. [Google Scholar] [CrossRef]
- Kopp, V.; Genack, A. Lasing at the edge of a photonic stop band in cholesteric liquid crystals. In Proceedings of the IEEE LEOS; pp. 8–10. Available online: https://physics.qc.cuny.edu/uploads/5/articles/LEOS.pdf (accessed on 1 March 2023).
- Shirvani-Mahdavi, H.; Ebrahimi-Azandariani, S. Effect of combined laser dyes on the efficiency of cholesteric liquid crystal lasers. JTAP 2019, 13, 7–15. [Google Scholar] [CrossRef]
- Schmidtke, J.; Stille, W.; Finkelmann, H.; Kim, S.T. Laser emission in a dye doped cholesteric polymer network. Adv. Mater. 2002, 14, 746–749. [Google Scholar] [CrossRef]
- Schmidtke, J.; Stille, W. Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: Theory and experiment. Eur. Phys. J. B 2003, 31, 179–194. [Google Scholar] [CrossRef]
- Morris, S.M.; Ford, A.D.; Broughton, B.J.; Pivnenko, M.N.; Coles, H.J. Liquid crystal lasers: Coherent and incoherent microsources. In Proceedings of the Emerging Liquid Crystal Technologies; SPIE: Bellingham, DC, USA, 2005; pp. 118–127. [Google Scholar]
- Ozaki, R. Simple model for estimating band edge wavelengths of selective reflection from cholesteric liquid crystals for oblique incidence. Phys. Rev. E 2019, 100, 012708. [Google Scholar] [CrossRef]
- Mitov, M. Cholesteric liquid crystals with a broad light reflection band. Adv. Mater. 2012, 24, 6260–6276. [Google Scholar] [CrossRef]
- Gevorgyan, A.; Oganesyan, K.; Vardanyan, G.; Matinyan, G. Photonic density of states of cholesteric liquid crystal cells. Laser Phys. 2014, 24, 115801. [Google Scholar] [CrossRef]
- Gevorgyan, A.; Harutyunyan, M.; Matinyan, G.; Mkhitaryan, S. Photonic density of states of a stack of cholesteric liquid crystal and isotropic medium layers. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2014; p. 012034. [Google Scholar]
- Adamow, A.; Szukalski, A.; Sznitko, L.; Persano, L.; Pisignano, D.; Camposeo, A.; Mysliwiec, J. Electrically controlled white laser emission through liquid crystal/polymer multiphases. Light Sci. Appl. 2020, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Saadaoui, L.; Hamdi, R.J. Electrically tunable cholesteric liquid crystal lines defects. Opt. Mater. 2021, 114, 110960. [Google Scholar] [CrossRef]
- Meyer, R.B. Effects of electric and magnetic fields on the structure of cholesteric liquid crystals. Appl. Phys. Lett. 1968, 12, 281–282. [Google Scholar] [CrossRef]
- Lotfi, S.; Hamdi, R.; Othman, T. Optical properties of frustrated cholesteric liquid crystals in planar cell. Phase Transit. 2018, 91, 1156–1161. [Google Scholar] [CrossRef]
- Chilaya, G. Cholesteric liquid crystals: Optics, electro-optics, and photo-optics. In Chirality in Liquid Crystals; Springer: New York, NY, USA, 2001; pp. 159–185. [Google Scholar]
- Dolganov, P.; Baklanova, K.; Dolganov, V. Peculiarities of focal conic structure formed near the cholesteric-isotropic phase transition. Phys. Rev. E 2022, 106, 014703. [Google Scholar] [CrossRef]
- Cheng, W.-F.; Lai, J.-C.; Jie, S.T.F.; Liu, C.-K.; Cheng, K.-T. Scattering-/absorption-mode light shutters based on dye-doped fingerprint chiral textures. Dye. Pigm. 2019, 163, 78–85. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saadaoui, L.; Yang, D.; Wang, Y.; Hassan, F.; Drevensek-Olenik, I.; Zhang, X.; Gan, Z.; Li, Y.; Xu, J. Electrically Tunable Two-Color Cholesteric Laser. Polymers 2023, 15, 4656. https://doi.org/10.3390/polym15244656
Saadaoui L, Yang D, Wang Y, Hassan F, Drevensek-Olenik I, Zhang X, Gan Z, Li Y, Xu J. Electrically Tunable Two-Color Cholesteric Laser. Polymers. 2023; 15(24):4656. https://doi.org/10.3390/polym15244656
Chicago/Turabian StyleSaadaoui, Lotfi, Donghao Yang, Yu Wang, Faheem Hassan, Irena Drevensek-Olenik, Xinzheng Zhang, Zenghua Gan, Yigang Li, and Jingjun Xu. 2023. "Electrically Tunable Two-Color Cholesteric Laser" Polymers 15, no. 24: 4656. https://doi.org/10.3390/polym15244656
APA StyleSaadaoui, L., Yang, D., Wang, Y., Hassan, F., Drevensek-Olenik, I., Zhang, X., Gan, Z., Li, Y., & Xu, J. (2023). Electrically Tunable Two-Color Cholesteric Laser. Polymers, 15(24), 4656. https://doi.org/10.3390/polym15244656