Simulation of a Composite with a Polyhydroxybutyrate (PHB) Matrix Reinforced with Cylindrical Inclusions: Prediction of Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. RVE Generation and Reinforcement Randomization
2.3. Meshing
2.4. Boundary Conditions
2.5. RVE Analysis and Solution
3. Results
3.1. Validation, NHM vs. AHM
3.2. Simulation vs. Experimental Results
3.3. Mechanical Behavior of the Simulated Composite
3.4. Linear Model and Contour Plot to Predict Elastic Modulus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Preethikaharshini, J.; Naresh, K.; Rajeshkumar, G.; Arumugaprabu, V.; Khan, M.A.; Khan, K.A. Review of advanced techniques for manufacturing biocomposites: Non-destructive evaluation and artificial intelligence-assisted modeling. J. Mater. Sci. 2022, 57, 16091–16146. [Google Scholar] [CrossRef]
- Khoshnava, S.M.; Rostami, R.; Ismail, M.; Rahmat, A.R.; Ogunbode, B.E. Woven hybrid Biocomposite: Mechanical properties of woven kenaf bast fibre/oil palm empty fruit bunches hybrid reinforced poly hydroxybutyrate biocomposite as non-structural building materials. Constr. Build. Mater. 2017, 154, 155–166. [Google Scholar] [CrossRef]
- Pantaloni, D.; Shah, D.; Baley, C.; Bourmaud, A. Monitoring of mechanical performances of flax non-woven biocomposites during a home compost degradation. Polym. Degrad. Stab. 2020, 177, 109166. [Google Scholar] [CrossRef]
- Gómez, E.F.; Michel, F.C. Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polym. Degrad. Stab. 2013, 98, 2583–2591. [Google Scholar] [CrossRef]
- Hammiche, D.; Boukerrou, A.; Grohens, Y.; Guermazi, N.; Arrakhiz, F.E. Mechanical properties and biodegradation of biocomposites based on poly (hydroxybutyrate-co-valerate) and alfa fibers. J. Polym. Res. 2020, 27, 308. [Google Scholar] [CrossRef]
- Samir, A.; Ashour, F.H.; Hakim, A.A.A.; Bassyouni, M. Recent advances in biodegradable polymers for sustainable applications. NPJ Mater. Degrad. 2022, 6, 68. [Google Scholar] [CrossRef]
- Zaaba, N.F.; Ismail, H. Thermoplastic/natural filler composites: A short review. J. Phys. Sci. 2019, 30, 81–99. [Google Scholar] [CrossRef]
- Vilaplana, F.; Strömberg, E.; Karlsson, S. Environmental and resource aspects of sustainable biocomposites. Polym. Degrad. Stab. 2010, 95, 2147–2161. [Google Scholar] [CrossRef]
- Awasthi, S.K.; Kumar, M.; Kumar, V.; Sarsaiya, S.; Anerao, P.; Ghosh, P.; Singh, L.; Liu, H.; Zhang, Z.; Awasthi, M.K. A comprehensive review on recent advancements in biodegradation and sustainable management of biopolymers. Environ. Pollut. 2022, 307, 119600. [Google Scholar] [CrossRef]
- Sánchez-Safont, E.L.; Aldureid, A.; Lagarón, J.M.; Gámez-Pérez, J.; Cabedo, L. Biocomposites of different lignocellulosic wastes for sustainable food packaging applications. Compos. Part B Eng. 2018, 145, 215–225. [Google Scholar] [CrossRef]
- Pantano, A.; Militello, C.; Bongiorno, F.; Zuccarello, B. Analysis of the Parameters Affecting the Stiffness of Short Sisal Fiber Biocomposites Manufactured by Compression-Molding. Polymers 2022, 14, 154. [Google Scholar] [CrossRef] [PubMed]
- Karimah, A.; Ridho, M.R.; Munawar, S.S.; Adi, D.S.; Ismadi; Damayanti, R.; Subiyanto, B.; Fatriasari, W.; Fudholi, A. A review on natural fibers for development of eco-friendly bio-composite: Characteristics, and utilizations. J. Mater. Res. Technol. 2021, 13, 2442–2458. [Google Scholar] [CrossRef]
- El Bourakadi, K.; Ouragh Hassani Semlali, F.Z.; El Achaby, M.; el kacem Qaiss, A.; Bouhfid, R. 6-Packaging and bionanocomposites. In Bionanocomposites for Food Packaging Applications; Woodhead Publishing: Sawston, UK, 2022; pp. 91–113. [Google Scholar] [CrossRef]
- Berthet, M.A.; Mayer-Laigle, C.; Rouau, X.; Gontard, N.; Angellier-Coussy, H. Sorting natural fibres: A way to better understand the role of fibre size polydispersity on the mechanical properties of biocomposites. Compos. Part A Appl. Sci. Manuf. 2017, 95, 12–21. [Google Scholar] [CrossRef]
- Meléndez-Rodríguez, B.; Torres-Giner, S.; Reis, M.A.M.; Silva, F.; Matos, M.; Cabedo, L.; Lagarón, J.M. Blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with fruit pulp biowaste derived poly(3-hydroxybutyrate-co-3- hydroxyvalerate-co-3-hydroxyhexanoate) for organic recycling food packaging. Polymers 2021, 13, 1155. [Google Scholar] [CrossRef]
- Kovalcik, A.; Obruca, S.; Marova, I. Valorization of spent coffee grounds: A review. Food Bioprod. Process. 2018, 110, 104–119. [Google Scholar] [CrossRef]
- Numata, K.; Abe, H.; Iwata, T. Biodegradability of poly(hydroxyalkanoate) materials. Materials 2009, 2, 1104–1126. [Google Scholar] [CrossRef]
- Rubino, M.; Singh, S.P.; Kale, G.; Auras, R.; Kijchavengkul, T.; Selke, S.E. Compostability of Bioplastic Packaging Materials: An Overview. Macromol. Biosci. 2007, 7, 255–277. [Google Scholar] [CrossRef]
- Wei, L.; McDonald, A.G. A review on grafting of biofibers for biocomposites. Materials 2016, 9, 303. [Google Scholar] [CrossRef]
- Cinelli, P.; Seggiani, M.; Coltelli, M.B.; Danti, S.; Righetti, M.C.; Gigante, V.; Sandroni, M.; Signori, F.; Lazzeri, A. Overview of Agro-Food Waste and By-Products Valorization for Polymer Synthesis and Modification for Bio-Composite Production. Proceedings 2020, 69, 22. [Google Scholar] [CrossRef]
- Sa Prieto-Sandoval, V.; Jaca, C.; Ormazabal, M. Circular economy: Relationship with the evolution of the concept of sustainability and strategies for its implementation. Mem. Investig. En Ing. 2017, 15, 85–95. [Google Scholar]
- Comisión Europea. Residuos Plásticos: Una Estrategia Europea para Proteger el Planeta, Defender a los Ciudadanos y Capacitar a las Industrias; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Ekins, P.; Gupta, J.; Boileau, P. GEO-6 Healthy Planet, Healthy People; Cambridge University Press: Cambridge, UK, 2019; ISBN 9781108707664. [Google Scholar]
- Erbach, G. Legislative Train The European Green Deal. European Parliament. 2021. Available online: https://www.europarl.europa.eu/legislative-train/theme-a-european-green-deal/file-european-green-deal/ (accessed on 20 September 2023).
- Phaneuf, M.D.; Brown, P.J.; Bide, M.J. Nanofibrous Biocomposite Prosthetic Vascular Graft. U.S. Patent 7,413,575, 19 August 2008. [Google Scholar]
- Greenhalgh, K.; Li, M.; Koob, T.J. Biocomposite Medical Constructs Including Artificial Tissues, Vessels AND Patches. U.S. Patent 9,125,759, 8 September 2015. [Google Scholar]
- Billington, S.L.; Criddle, C.S.; Frank, C.W.; Morse, M.C.; Christian, S.J.; Pieja, A.J. Bacterial Poly(Hydroxy Alkanoate) Polymer and Natural Fiber Composites. U.S. Patent 7,887,893, 15 February 2011. [Google Scholar]
- Wilke, J.; Kaiser, C.; Schuster, P. Film Packaging for Oral Biologics. U.S. Patent 14/356,618, 25 June 2015. [Google Scholar]
- Nissenbaum, D.; Neuman, T.; Pelled, D.; Garty, S.; Konieezny, N. Biodegradable sheet 2019. U.S. Patent 10,239,292 B2, 26 March 2019. [Google Scholar]
- Reddy, C.S.K.; Ghai, R.; Rashmi; Kalia, V.C. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 2003, 87, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Poli, A.; Di Donato, P.; Abbamondi, G.R.; Nicolaus, B. Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Archaea 2011, 2011, 693253. [Google Scholar] [CrossRef]
- Savenkova, L.; Gercberga, Z.; Nikolaeva, V.; Dzene, A.; Bibers, I.; Kalnin, M. Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochem. 2000, 35, 573–579. [Google Scholar] [CrossRef]
- Yeo, J.C.C.; Muiruri, J.K.; Thitsartarn, W.; Li, Z.; He, C. Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications. Mater. Sci. Eng. C 2018, 92, 1092–1116. [Google Scholar] [CrossRef] [PubMed]
- Menčík, P.; Přikryl, R.; Krobot, Š.; Melčová, V.; Kontárová, S.; Plavec, R.; Bočkaj, J.; Horváth, V.; Alexy, P. Evaluation of the Properties of PHB Composite Filled with Kaolin Particles for 3D Printing Applications Using the Design of Experiment. Int. J. Mol. Sci. 2022, 23, 14409. [Google Scholar] [CrossRef]
- da Silva Moura, A.; Demori, R.; Leão, R.M.; Crescente Frankenberg, C.L.; Campomanes Santana, R.M. The influence of the coconut fiber treated as reinforcement in PHB (polyhydroxybutyrate) composites. Mater. Today Commun. 2019, 18, 191–198. [Google Scholar] [CrossRef]
- Alade, A.; Ibrahim, A. Application of Finite Element Method for Mechanical Characterization of Wood and Reconstituted Lignocellulosic-Based Composites—A Review. Recent Prog. Mater. 2023, 5, 1–37. [Google Scholar] [CrossRef]
- Reza Rezaie, H.; Beigi Rizi, H.; Rezaei Khamseh, M.M.; Öchsner, A. Application of the Finite Element Method in Dentistry. Adv. Struct. Mater. 2020, 123, 211–224. [Google Scholar] [CrossRef]
- Lozanovski, B.; Downing, D.; Tino, R.; du Plessis, A.; Tran, P.; Jakeman, J.; Shidid, D.; Emmelmann, C.; Qian, M.; Choong, P.; et al. Non-destructive simulation of node defects in additively manufactured lattice structures. Addit. Manuf. 2020, 36, 101593. [Google Scholar] [CrossRef]
- Kaouche, N.; Mebrek, M.; Mokaddem, A.; Doumi, B.; Belkheir, M.; Boutaous, A. Theoretical study of the effect of the plant and synthetic fibers on the fiber-matrix interface damage of biocomposite materials based on PHAs (polyhydroxyalkanoates) biodegradable matrix. Polym. Bull. 2021, 79, 7281–7301. [Google Scholar] [CrossRef]
- Behzad, T.; Sain, M. Finite element modeling of polymer curing in natural fiber reinforced composites. Compos. Sci. Technol. 2007, 67, 1666–1673. [Google Scholar] [CrossRef]
- Tapia, M.; Espinosa-Almeyda, Y.; Rodríguez-Ramos, R.; Otero, J.A. Computation of effective elastic properties using a three-dimensional semi-analytical approach for transversely isotropic nanocomposites. Appl. Sci. 2021, 11, 1867. [Google Scholar] [CrossRef]
- Gaiselmann, G.; Tötzke, C.; Manke, I.; Lehnert, W.; Schmidt, V. 3D microstructure modeling of compressed fiber-based materials. J. Power Sources 2014, 257, 52–64. [Google Scholar] [CrossRef]
- Yan, J.; Demicri, E.; Gleadall, A. Are classical fibre composite models appropriate for material extrusion additive manufacturing? A thorough evaluation of analytical models. Addit. Manuf. 2023, 62, 103371. [Google Scholar] [CrossRef]
- Tan, H.; Huang, Y.; Liu, C.; Geubelle, P.H. The Mori-Tanaka method for composite materials with nonlinear interface debonding. Int. J. Plast. 2005, 21, 1890–1918. [Google Scholar] [CrossRef]
- El Houjeyri, I.; Thi, V.D.; Oudjene, M.; Ottenhaus, L.M.; Khelifa, M.; Rogaume, Y. Coupled nonlinear-damage finite element analysis and design of novel engineered wood products made of oak hardwood. Eur. J. Wood Wood Prod. 2021, 79, 29–47. [Google Scholar] [CrossRef]
- Ma, H.; Hu, G. Eshelby tensors for an ellipsoidal inclusion in a microstretch material. Int. J. Solids Struct. 2007, 44, 3049–3061. [Google Scholar] [CrossRef]
- Jarali, C.S.; Madhusudan, M.; Vidyashankar, S.; Raja, S. A new micromechanics approach to the application of Eshelby’s equivalent inclusion method in three phase composites with shape memory polymer matrix. Compos. Part B Eng. 2018, 152, 17–30. [Google Scholar] [CrossRef]
- Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- Benveniste, Y. A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 1987, 6, 147–157. [Google Scholar] [CrossRef]
- Elmasry, A.; Azoti, W.; El-Safty, S.A.; Elmarakbi, A. A comparative review of multiscale models for effective properties of nano- and micro-composites. Prog. Mater. Sci. 2023, 132, 101022. [Google Scholar] [CrossRef]
- Lee, D.; Lee, J. Comparison and Validation of Numerical Homogenization Based on Asymptotic Method and Representative Volume Element Method in Thermal Composites. Multiscale Sci. Eng. 2021, 3, 165–175. [Google Scholar] [CrossRef]
- Berger, H.; Kari, S.; Gabbert, U.; Rodriguez-Ramos, R.; Bravo-Castillero, J.; Guinovart-Diaz, R. Calculation of effective coefficients for piezoelectric fiber composites based on a general numerical homogenization technique. Compos. Struct. 2005, 71, 397–400. [Google Scholar] [CrossRef]
- Allaire, G.; Brizzi, R. A multiscale finite element method for numerical homogenization. Multiscale Model. Simul. 2005, 4, 790–812. [Google Scholar] [CrossRef]
- Wang, G.D.; Melly, S.K. Three-dimensional finite element modeling of drilling CFRP composites using Abaqus/CAE: A review. Int. J. Adv. Manuf. Technol. 2018, 94, 599–614. [Google Scholar] [CrossRef]
- Rivera-Santana, J.A.; Figueroa-López, U.; Guevara-Morales, A. Multiscale numerical methodology for assessing fracture toughness enhancement due to nanoclay inclusion in fiber-reinforced polymer composites. Int. J. Solids Struct. 2022, 246–247, 111632. [Google Scholar] [CrossRef]
- Liu, X.; Tian, S.; Tao, F.; Yu, W. A review of artificial neural networks in the constitutive modeling of composite materials. Compos. Part B Eng. 2021, 224, 109152. [Google Scholar] [CrossRef]
- Kanit, T.; Forest, S.; Galliet, I.; Mounoury, V.; Jeulin, D. Determination of the size of the representative volume element for random composites: Statistical and numerical approach. Int. J. Solids Struct. 2003, 40, 3647–3679. [Google Scholar] [CrossRef]
- Hill, R. Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 1963, 11, 357–372. [Google Scholar] [CrossRef]
- Osuchukwu, O.A.; Salihi, A.; Abdullahi, I.; Abdulkareem, B.; Nwannenna, C.S. Synthesis techniques, characterization and mechanical properties of natural derived hydroxyapatite scaffolds for bone implants: A review. SN Appl. Sci. 2021, 3, 822. [Google Scholar] [CrossRef]
- Karimah, A.; Ridho, M.R.; Munawar, S.S.; Ismadi; Amin, Y.; Damayanti, R.; Lubis, M.A.R.; Wulandari, A.P.; Nurindah; Iswanto, A.H.; et al. A Comprehensive Review on Natural Fibers: Technological and Socio-Economical Aspects. Polymers 2021, 13, 4280. [Google Scholar] [CrossRef] [PubMed]
- Bargmann, S.; Klusemann, B.; Markmann, J.; Schnabel, J.E.; Schneider, K.; Soyarslan, C.; Wilmers, J. Generation of 3D representative volume elements for heterogeneous materials: A review. Prog. Mater. Sci. 2018, 96, 322–384. [Google Scholar] [CrossRef]
- Santos, E.B.C.; Barros, J.J.P.; De Moura, D.A.; Moreno, C.G.; Fim, F.D.C.; Silva, L.B. Da Rheological and thermal behavior of PHB/piassava fiber residue-based green composites modified with warm water. J. Mater. Res. Technol. 2019, 8, 531–540. [Google Scholar] [CrossRef]
- Zaidi, Z.; Crosky, A. Unidirectional rubber-toughened green composites based on PHBV. Sustainability 2019, 11, 2411. [Google Scholar] [CrossRef]
- Chilali, A.; Assarar, M.; Zouari, W.; Kebir, H.; Ayad, R. Mechanical characterization and damage events of flax fabric-reinforced biopolymer composites. Polym. Polym. Compos. 2020, 28, 631–644. [Google Scholar] [CrossRef]
- Barbero, E.J. Finite Element Analysis of Viscoplastic Composite Materials and Structures. Mech. Compos. Mater. Struct. 1996, 3, 1–28. [Google Scholar]
- Kollár, L.P.; Springer, G.S. Mechanics of Composite Structures; Cambridge Univrsity Press: New York, NY, USA, 2009. [Google Scholar]
- Otero, J.A.; Rodríguez-Ramos, R.; Bravo-Castillero, J.; Guinovart-Díaz, R.; Sabina, F.J.; Monsivais, G. Semi-analytical method for computing effective properties in elastic composite under imperfect contact. Int. J. Solids Struct. 2013, 50, 609–622. [Google Scholar] [CrossRef]
- Barbero, E.J.; Shahbazi, M. Determination of material properties for ANSYS progressive damage analysis of laminated composites. Compos. Struct. 2017, 176, 768–779. [Google Scholar] [CrossRef]
- Christoff, B.G.; Brito-Santana, H.; Talreja, R.; Tita, V. Multiscale embedded models to determine effective mechanical properties of composite materials: Asymptotic Homogenization Method combined to Finite Element Method. Compos. Part C Open Access 2022, 9, 100303. [Google Scholar] [CrossRef]
- Chen, D.; Liu, L.; Chu, L.; Liu, Q. Analytical Solution of Thermo–Mechanical Properties of Functionally Graded Materials by Asymptotic Homogenization Method. Materials 2022, 15, 3073. [Google Scholar] [CrossRef]
- Cruz-González, O.L.; Ramírez-Torres, A.; Rodríguez-Ramos, R.; Otero, J.A.; Penta, R.; Lebon, F. Effective behavior of long and short fiber-reinforced viscoelastic composites. Appl. Eng. Sci. 2021, 6, 100037. [Google Scholar] [CrossRef]
- Xu, W.; Wu, Y.; Jia, M. Elastic dependence of particle-reinforced composites on anisotropic particle geometries and reinforced/weak interphase microstructures at nano- and micro-scales. Compos. Struct. 2018, 203, 124–131. [Google Scholar] [CrossRef]
- Zhang, X.X.; Xiao, B.L.; Ma, Z.Y. The minimum representative volume element size for coefficient of thermal expansion of particle reinforced metal matrix composites. Adv. Mater. Res. 2013, 773, 435–440. [Google Scholar] [CrossRef]
- del Coz Díaz, J.J.; García Nieto, P.J.; Álvarez Rabanal, F.P.; Betegón Biempica, C. Finite element analysis of thin-walled composite two-span wood-based loadbearing stressed skin roof panels and experimental validation. Thin Walled Struct. 2008, 46, 276–289. [Google Scholar] [CrossRef]
- Pathan, M.V.; Tagarielli, V.L.; Patsias, S.; Baiz-villafranca, P.M. A new algorithm to generate representative volume elements of composites with cylindrical or spherical fi llers. Compos. Part B 2017, 110, 267–278. [Google Scholar] [CrossRef]
- Yusong, P.; Qianqian, S.; Chengling, P.; Jing, W. Prediction of mechanical properties of multilayer gradient hydroxyapatite reinforced poly(vinyl alcohol) gel biomaterial. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013, 101B, 729–735. [Google Scholar] [CrossRef]
- Zeman, J.; Šejnoha, M. From random microstructures to representative volume elements. Model. Simul. Mater. Sci. Eng. 2007, 15, S325. [Google Scholar] [CrossRef]
- Nicolinco, C.; Mahboob, Z.; Chemisky, Y.; Meraghni, F.; Oguamanam, D.; Bougherara, H. Prediction of the compressive damage response of flax-reinforced laminates using a mesoscale framework. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106153. [Google Scholar] [CrossRef]
- Liu, K.C.; Ghoshal, A. Validity of random microstructures simulation in fiber-reinforced composite materials. Compos. Part B 2014, 57, 56–70. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Ismail, S.O.; Zhang, Z.; Barber, A.; Welsh, E.; Maigret, J.E.; Beaugrand, J. Development of sustainable biodegradable lignocellulosic hemp fiber/polycaprolactone biocomposites for light weight applications. Compos. Part A Appl. Sci. Manuf. 2018, 113, 350–358. [Google Scholar] [CrossRef]
- Hua, Y.; Gu, L. Prediction of the thermomechanical behavior of particle-reinforced metal matrix composites. Compos. Part B Eng. 2013, 45, 1464–1470. [Google Scholar] [CrossRef]
- Righetti, M.C.; Cinelli, P.; Mallegni, N.; Stäbler, A.; Lazzeri, A. Thermal and mechanical properties of biocomposites made of poly(3-hydroxybutyrate-co-3- hydroxyvalerate) and potato pulp powder. Polymers 2019, 11, 308. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, K.; Nandy, T.; Kumar, P.; Khutia, N.; Chowdhury, A.R. Prediction of Directional Young’s Modulus of Particulate Reinforced MMC using Finite Element Methods. IOP Conf. Ser. Mater. Sci. Eng. 2018, 377, 012057. [Google Scholar] [CrossRef]
- Robinson, I.M.; Robinson, J.M. The effect of fibre aspect ratio on the stiffness of discontinuous fibre-reinforced composites. Composites 1994, 25, 499–503. [Google Scholar] [CrossRef]
- Park, J.M.; Jang, J.H.; Wang, Z.J.; Kwon, D.J.; Devries, K.L. Self-sensing of carbon fiber/carbon nanofiber-epoxy composites with two different nanofiber aspect ratios investigated by electrical resistance and wettability measurements. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1702–1711. [Google Scholar] [CrossRef]
- David, G.; Gontard, N.; Angellier-Coussy, H. Mitigating the impact of cellulose particles on the performance of biopolyester-based composites by gas-phase esterification. Polymers 2019, 11, 200. [Google Scholar] [CrossRef]
- Janowski, G.; Frącz, W.; Bąk, Ł. The Mechanical Properties Prediction of Poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] (PHBV) Biocomposites on a Chosen Example. Materials 2022, 15, 7531. [Google Scholar] [CrossRef]
- Lim, T.C. Influence of doubly periodic array aspect ratio on the transverse anisotropy of continuous unidirectional fiber reinforced composites. J. Reinf. Plast. Compos. 2001, 20, 482–494. [Google Scholar] [CrossRef]
Factor | Low Level | Unit Code | Medium Level | Unit Code | High Level | Unit Code |
---|---|---|---|---|---|---|
Radius | 0.0625 | −1 | 0.125 | 0 | 0.1875 | 1 |
1 | −1 | 3 | 0 | 5 | 1 | |
8% | −1 | 12% | 0 | 16% | 1 |
Local Problem | Illustration | Symmetric Mirror Face | Anti Symmetry Face | Load Face | Constant Displacement Faces |
---|---|---|---|---|---|
Problem 1: Tensile stress. Axis = | none | ||||
Problem 2: Tensile stress. Axis = | none | ||||
Problem 3: Tensile stress. Axis = | none | ||||
Problem 4: Shear stress plane = | , restrict movement in direction | , | |||
, restrict movement in direction | |||||
Problem 5: Shear stress plane = z | , restrict movement in direction z | ||||
, restrict movement in direction | |||||
Problem 5: Shear stress plane = z | x = 0, restrict movement in direction z | , | |||
z = 0, restrict movement in direction x |
Problem | Element Matrix S | Engienering Constat | |
---|---|---|---|
Constant | Definition | ||
1 | |||
2 | |||
E22 | |||
3 | |||
4 | |||
5 | |||
6 |
Matrix (PLA) | Reinforcements (Carbon Fibers) | |
---|---|---|
Young’s Modulus () | 2570 | 207,000 |
Young’s Modulus () | 14,000 | |
) | 0.3 | 0.25 |
0.85 | 0.15 | |
Average length | 77.1 µm |
Engineering Constant | Experimental Data(MPa) | NHM (MPa) | %Error | NHM (MPa) | %Error |
---|---|---|---|---|---|
Young’s Mogulus () | 5030 | 5012.9 | 0.33 | 5961.5 | 7.8 |
Young’s Modulus ) | 3720 | 3480.6 | 6.45 | 3416.7 | 7.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Gast, N.; Rivera-Santana, J.A.; Otero, J.A.; Vieyra, H. Simulation of a Composite with a Polyhydroxybutyrate (PHB) Matrix Reinforced with Cylindrical Inclusions: Prediction of Mechanical Properties. Polymers 2023, 15, 4727. https://doi.org/10.3390/polym15244727
Gómez-Gast N, Rivera-Santana JA, Otero JA, Vieyra H. Simulation of a Composite with a Polyhydroxybutyrate (PHB) Matrix Reinforced with Cylindrical Inclusions: Prediction of Mechanical Properties. Polymers. 2023; 15(24):4727. https://doi.org/10.3390/polym15244727
Chicago/Turabian StyleGómez-Gast, Natalia, Juan Andrés Rivera-Santana, José A. Otero, and Horacio Vieyra. 2023. "Simulation of a Composite with a Polyhydroxybutyrate (PHB) Matrix Reinforced with Cylindrical Inclusions: Prediction of Mechanical Properties" Polymers 15, no. 24: 4727. https://doi.org/10.3390/polym15244727
APA StyleGómez-Gast, N., Rivera-Santana, J. A., Otero, J. A., & Vieyra, H. (2023). Simulation of a Composite with a Polyhydroxybutyrate (PHB) Matrix Reinforced with Cylindrical Inclusions: Prediction of Mechanical Properties. Polymers, 15(24), 4727. https://doi.org/10.3390/polym15244727