A Novel Sphingomonas sp. Isolated from Argan Soil for the Polyhydroxybutyrate Production from Argan Seeds Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. DNA Extraction, PCR, and Sanger Sequencing
2.2. Species Delimitation Analysis
2.3. Residual Biomass and PHB Quantification
2.3.1. Residual Biomass Quantification
2.3.2. PHB Extraction and Quantification
2.3.3. Argan Seeds Pulp Pretreatment
2.4. Effect of Growth Medium Optimization on the Bacterial Growth, Dry Cell Weight, and PHB Production
2.5. PHB Extraction Using Increasing Argan Seeds Pulp Concentrations and Culture Volume
2.6. Preliminary Characterization of the Extracted PHB
2.6.1. UV-Visible Spectrophotometry
2.6.2. Chemical Characteristics by FTIR Analysis
3. Results and Discussion
3.1. 16S rDNA Sequencing and Bacterial Identification of 1B Strain
3.2. Bio-Based Polymer Extraction and Quantification from 1B Strain by Using Different Carbon Sources
3.3. Bio-Based Polymer Extraction and Quantification from 1B Strain by Using Argan Seeds Waste in the Culture Medium
3.4. Optimization of the Bacterial 1B Growth, and Bio-Based Polymer Production
3.5. Improvement of Putative PHB Extraction Using Increasing Argan Residue Concentrations and Culture Volume
3.6. Preliminary Characterization of the Extracted Bio-Based Polymer
3.6.1. UV-Vis Spectrophotometry
3.6.2. FTIR Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Predoi, D.; Iconaru, S.L.; Predoi, M.V.; Motelica-Heino, M. Removal and oxidation of as(III) from water using iron oxide coated CTAB as adsorbent. Polymers 2020, 12, 1687. [Google Scholar] [CrossRef] [PubMed]
- Iconaru, S.L.; Motelica-Heino, M.; Guegan, R.; Predoi, M.V.; Prodan, A.M.; Predoi, D. Removal of zinc ions using hydroxyapatite and study of ultrasound behavior of aqueous media. Materials 2018, 11, 1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Predoi, S.A.; Ciobanu, C.S.; Motelica-Heino, M.; Chifiriuc, M.C.; Badea, M.L.; Iconaru, S.L. Preparation of porous hydroxyapatite using cetyl trimethyl ammonium bromide as surfactant for the removal of lead ions from aquatic solutions. Polymers 2021, 13, 1617. [Google Scholar] [CrossRef] [PubMed]
- Haddadi, M.H.; Asadolahi, R.; Negahdari, B. The bioextraction of bioplastics with focus on polyhydroxybutyrate: A review. Int. J. Environ. Sci. Technol. 2019, 16, 3935–3948. [Google Scholar] [CrossRef]
- Sindhu, R.; Binod, P.; Pandey, A. Microbial Poly-3-Hydroxybutyrate and Related Copolymers. In Industrial Biorefineries and White Biotechnology; Elsevier B.V.: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Otari, S.V.; Ghosh, J.S. Production and characterization of the polymer polyhydroxy butyrate-copolyhydroxy valerate by Bacillus megaterium NCIM 2475. Curr. Res. J. Biol. Sci. 2009, 1, 23–26. [Google Scholar]
- Rohini, D.; Phadinis, S.; Rawal, S.K. Synthesis and characterization of poly-β-hydroxybutyrate from Bacillus thuringiensis R1. Indian J. Biotechnol. 2006, 5, 276–283. [Google Scholar]
- Valappil, S.P.; Misra, S.K.; Boccaccini, A.R.; Keshavarz, T.; Bucke, C.; Roy, I. Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterized Bacillus cereus SPV. J. Biotechnol. 2007, 132, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Zanzig, U.W.D.J.; Scholz, C. Effects of poly (ethylene glycol) on the production of poly (β hydroxybutyrate) by Azotobacter vinelandii. J. Polym. Environ. 2003, 11, 145–154. [Google Scholar] [CrossRef]
- Quagliano, J.C.; Amarilla, F.; Fernandes, E.G.; Mata, D.; Miyazaki, S.S. Effect of simple and complex carbon sources, low temperature culture and complex carbon feeding policies on poly-3-hydroxybutyric acid (PHB) content. World J. Microbiol. Biotechnol. 2001, 17, 9–14. [Google Scholar] [CrossRef]
- Getachew, A.; Woldesenbet, F. Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Res. Notes 2016, 9, 509. [Google Scholar] [CrossRef] [Green Version]
- Maity, S.; Das, S.; Mohapatra, S.; Tripathi, A.D.; Akthar, J.; Pati, S.; Pattnaik, S.; Samantaray, D.P. Growth associated polyhydroxybutyrate production by the novel Zobellellae tiwanensis strain DD5 from banana peels under submerged fermentation. Int. J. Biol. Macromol. 2020, 153, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Sukruansuwan, V.; Napathorn, S.C. Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnol. Biofuels 2018, 11, 202. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Sharma-Shivappa, R.R.; Olson, J.W.; Khan, S.A. Production of polyhydroxybutyrate (PHB) by Alcaligenes latus using sugarbeet juice. Ind. Crops Prod. 2013, 43, 802–811. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Kumar, P.; Singh, M.; Lee, J.K.; Kalia, V.C. Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour. Technol. 2015, 176, 136–141. [Google Scholar] [CrossRef]
- Thammasittirong, A.; Saechow, S.; Thammasittirong, S.N.R. Efficient polyhydroxybutyrate production from bacillus thuringiensis using sugarcane juice substrate. Turk. J. Biol. 2017, 41, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Carofiglio, V.M.; Romano, R.; Servili, M.; Goffredo, A.; Alifano, P.; Veneziani, G.; Demitri, C.; Centrone, D.; Stufano, P. Complete Valorization of Olive Mill Wastewater through an Integrated Process for Poly-3-hydroxybutyrate Production. J. Life Sci. 2015, 9, 481–493. [Google Scholar]
- Yousuf, R. Novel Polyhydroxybutyrate (PHB) Production Using Waste Date Feedstock. Ph.D. Thesis, University of Manchester, Manchester, UK, November 2017. [Google Scholar]
- Verlinden, R.A.J.; Hill, D.J.; Kenward, M.A.; Williams, C.D.; Piotrowska-Seget, Z.; Radecka, I.K. Production of polyhydroxyalkanoates from waste frying oil by cupriavidus necator. AMB Express 2011, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Stoica, I.; Petrovici, A.R.; Silion, M.; Varganici, C.D.; Dinica, R.; Bahrim, G. Corn cob hydrolyzates used for microbial biosynthesis of polyhydroxybutyrate. Cellul. Chem. Technol. 2018, 52, 65–74. [Google Scholar]
- Das, S.; Majumder, A.; Shukla, V.; Suhazsini, P.; Radha, P. Biosynthesis of Poly(3-hydroxybutyrate) from Cheese Whey by Bacillus megaterium NCIM 5472. J. Polym. Environ. 2018, 26, 4176–4187. [Google Scholar] [CrossRef]
- Harhar, H.; Gharby, S.; El Idrissi, Y.; Pioch, D.; Matthäus, B.; Charrouf, Z.; Tabyaoui, M. Effect of maturity stage on the chemical composition of argan fruit pulp. OCL-Oilseeds Fats Crops Lipids 2019, 26, 15. [Google Scholar] [CrossRef]
- Aragosa, A.; Specchia, V.; Frigione, M. Isolation of two bacterial species from argan soil in morocco associated with polyhydroxybutyrate (PHB) accumulation: Current potential and future prospects for the bio-based polymer production. Polymers 2021, 13, 1870. [Google Scholar] [CrossRef] [PubMed]
- Heuer, H.; Krsek, M.; Baker, P.; Smalla, K.; Wellington, E.M. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Env. Microbiol. 1997, 63, 3233–3241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kapli, P.; Pavlidis, P.; Stamatakis, M. A General Species Delimitation Method with Applications to Phylogenetic Placements. A. Bioinform. 2013, 29, 2869–2876. [Google Scholar] [CrossRef]
- Hand, S.; Gill, J.; Chu, K.H. Phage-based extraction of polyhydroxybutyrate (PHB) produced from synthetic crude glycerol. Sci. Total Environ. 2016, 557–558, 317–321. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2001; p. A2.2. [Google Scholar]
- Madhumathi, R.; Muthukumar, K.; Velan, M. Optimization of Polyhydroxybutyrate Production by Bacillus safensis EBT1. Clean-Soil Air Water 2016, 44, 1066–1074. [Google Scholar] [CrossRef]
- Bhuwal, A.K.; Singh, G.; Aggarwal, N.K.; Goyal, V.; Yadav, A. Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes. Int. J. Biomater. 2013, 2013, 752821. [Google Scholar] [CrossRef] [Green Version]
- Law, J.H.; Slepecky, R.I. Assay of Poly-b-Hydroxybutyric Acid. J. Bacteriol. 1961, 82, 33–36. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, H.G.; Lafferty, R.; Krauss, I. The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch. Für Mikrobiol. 1970, 71, 283–294. [Google Scholar] [CrossRef]
- Harhar, H.; Gharby, S.; Kartah, B.; Pioch, D.; Guillaume, D.; Charrouf, Z. Effect of harvest date of Argania spinosa fruits on Argan oil quality. Ind. Crops Prod. 2014, 56, 156–159. [Google Scholar] [CrossRef]
- Koller, M.; Niebelschütz, H.; Braunegg, G. Strategies for recovery and purification of poly[(R)-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass. Eng. Life Sci. 2013, 13, 549–562. [Google Scholar] [CrossRef]
- Biradar, G.G.; Shivasharana, C.T.; Kaliwal, B.B. Isolation and characterization of polyhydroxybutyrate (PHB) producing Bacillus species from agricultural soil. Pelagia Res. Libr. Eur. J. Exp. Biol. 2015, 5, 58–65. [Google Scholar]
- Mayeli, N.; Motamedi, H.; Heidarizadeh, F. Production of polyhydroxybutyrate by Bacillus axaraqunsis BIPC01 using petrochemical wastewater as carbon source. Braz. Arch. Biol. Technol. 2015, 58, 643–650. [Google Scholar] [CrossRef]
- Saleem, F.; Aslam, R.; Saleem, Y.; Naz, S.; Syed, Q.; Munir, N.; Khurshid, N.; Shakoori, A.R. Analysis and evaluation of growth parameters for optimum production of polyhydroxybutyrate (PHB) by Bacillus thuringiensis strain CMBL-BT-6. Pak. J. Zool. 2014, 46, 1337–1344. [Google Scholar]
- Sayyed, R.Z.; Gangurde, N.S. Poly-β-hydroxybutyrate production by Pseudomonas sp. RZS 1 under aerobic and semi-aerobic condition. Indian J. Exp. Biol. 2010, 48, 942–947. [Google Scholar] [PubMed]
- Giedraityte, G.; Kalediene, L. Purification and characterization of polyhydroxybutyrate produced from thermophilic Geobacillus sp. AY 946034 strain. Chemija 2015, 26, 38–45. [Google Scholar]
- Yabuuchi, E.; Kosako, Y. Sphingomonas. In Bergey’s Manual of Systematics of Archaea and Bacteria; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Chandani Devi, N.; Mazumder, P.B.; Bhattacharjee, A. Statistical Optimization of Polyhydroxybutyrate Production by Bacillus Pumilus H9 Using Cow Dung as a Cheap Carbon Source by Response Surface Methodology. J. Polym. Env. 2018, 26, 3159–3167. [Google Scholar] [CrossRef]
- Alshehrei, F. Production of polyhydroxybutyrate (PHB) by bacteria isolated from soil of Saudi Arabia. J. Pure Appl. Microbiol. 2019, 13, 897–904. [Google Scholar] [CrossRef] [Green Version]
- Sakthiselvan, P.; Madhumathi, R. Optimization on Microbial Production of Polyhydroxybutyrate (PHB): A Review. Int. J. Res. Anal. Rev. 2019, 6, 243–251. [Google Scholar]
- Yoon, J.H.; Lee, M.H.; Kang, S.J.; Lee, S.Y.; Oh, T.K. Sphingomonas dokdonensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 2006, 56, 2165–2169. [Google Scholar] [CrossRef]
- Lathwal, P.; Nehra, K.; Singh, M.; Rana, J.S. Characterization of Novel and Efficient Poly-3-hydroxybutyrate (PHB) Producing Bacteria Isolated from Rhizospheric Soils. J. Polym. Environ. 2018, 26, 3437–3450. [Google Scholar] [CrossRef]
- Sabarinathan, D.; Chandrika, S.P.; Venkatraman, P.; Easwaran, M.; Sureka, C.S.; Preethi, K. Production of polyhydroxybutyrate (PHB) from Pseudomonas plecoglossicida and its application towards cancer detection. Inform. Med. Unlocked 2018, 11, 61–67. [Google Scholar] [CrossRef]
- Ramezani, M.; Amoozegar, M.A.; Ventosa, A. Screening and comparative assay of poly-hydroxyalkanoates produced by bacteria isolated from the Gavkhooni Wetland in Iran and evaluation of poly-β-hydroxybutyrate production by halotolerant bacterium Oceanimonas sp. GK1. Ann. Microbiol. 2015, 65, 517–526. [Google Scholar] [CrossRef]
- Ansari, S.; Fatma, T. Cyanobacterial polyhydroxybutyrate (PHB): Screening, optimization and characterization. PLoS ONE 2016, 11, e0158168. [Google Scholar] [CrossRef] [PubMed]
1B Strain Isolated from Argan Crop Soil | Sphingomonas Dokdonensis | Sphingomonas Asaccharolityca | Sphingomonas Mali | Sphingomonas Pruni | Sphingomonas Aquatilis | Sphingomonas Koreensis | Spsphingomonas Mmelonis | |
---|---|---|---|---|---|---|---|---|
Beta galactosidase | + | + | + | + | + | + | + | + |
Gelatin hydrolysis | + | + | − | − | − | − | − | − |
Arabinose | + | − | + | + | + | + | − | + |
Fructose | + | − | − | + | + | ND | ND | + |
Galactose | − | − | − | + | + | ND | ND | + |
Maltose | + | − | + | + | + | + | + | + |
Mannose | + | + | + | + | + | − | − | + |
Sucrose | + | − | − | + | + | + | + | + |
Gram | − | − | − | − | − | − | − | − |
H2S production | − | − | ND | ND | ND | ND | ND | ND |
Colony color/morphology | regular white translucent, smooth surface, viscid clustered with 0.5–1 mm in diameter | circular, convex, smooth, glistening, yellow in colour and 0.8–1.0 mm in diameter | Ovoid, yellow pigmented colonies, diameter > 1 mm | Ovoid, yellow pigmented colonies with 1.00–1.5 mm | Yellow colonies with greyish white pigmentations, 0.8–1.0 mm in diameter | Yellow round colonies with darker pigmentations, 0.8–1.0 mm in diameter | Yellow round colonies with darker pigmentations, 1.0–1.2 mm in diameter | Deep yellow round colonies with dark yellow pigmentations, 1.0–1.2 mm in diameter |
Chloramphenicol | S | S | S | S | S | ND | S | ND |
Gentamicin | IM | S | S | S | S | ND | R | ND |
Kanamycin | S | S | S | S | R | ND | R | ND |
Penicillin | R | R | S | R | R | ND | R | ND |
Ampicillin | R | R | S | S | R | ND | R | ND |
Carbon Source * | Residual Biomass * g/L | DCW * g/L | Bio-Based Polymer * g/L | Bio-Based Polymer % |
---|---|---|---|---|
glucose | 18.08 | 18.65 ± 0.23 | 0.57 ± 0.06 | 1.88 |
fructose | 19.81 | 20.35 ± 0.44 | 0.54 ± 0.11 | 2.65 |
maltose | 15.48 | 15.70 ± 0.21 | 0.22 ± 0.17 | 1.40 |
saccharose | 20.43 | 21.01 ± 0.05 | 0.58 ± 0.22 | 2.76 |
sorbitol | 12.88 | 13.00 ± 0.10 | 0.12 ± 0.04 | 0.92 |
lactose | 13.11 | 13.21 ± 0.13 | 0.10 ± 0.08 | 0.76 |
mannose | 13.63 | 13.78 ± 0.37 | 0.15 ± 0.17 | 1.09 |
Growth Conditions | Selected Optimal Conditions | DCW g/L | Bio-Based Polymer g/L | Bio-Based Polymer % |
---|---|---|---|---|
Temperature | 30 °C | ND | ND | ND |
Incubation time | 36 h | 20.34 ± 0.10 | 0.67 ± 0.11 | 3.25 |
pH | 6.5–7.5 | 20.07 ± 0.13 | 0.76 ± 0.07 | 3.76 |
NaCl | 2% | 21.80 ± 0.21 | 1.17 ± 0.12 | 5.35 |
N sources (0.25%) | Peptone-yeast extract (1:1) | 22.00 ± 0.10 | 1.35 ± 0.24 | 6.13 |
Substrate Concentration g/L | DCW g/L | Bio-Based Polymer g/L | Bio-Based Polymer % |
---|---|---|---|
0.5 | 21.31 ± 0.23 | 0.92 ± 0.09 | 4.32 |
1 | 22.00 ± 0.10 | 1.35 ± 0.24 | 6.13 |
2 | 22.89 ± 0.15 | 1.38 ± 0.31 | 6.02 |
3 | 23.77 ± 0.24 | 1.54 ± 0.19 | 6.45 |
4 | 24.62 ± 0.11 | 1.22 ± 0.26 | 4.96 |
5 | 24.89 ± 0.17 | 1.04 ± 0.30 | 4.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aragosa, A.; Saccomanno, B.; Specchia, V.; Frigione, M. A Novel Sphingomonas sp. Isolated from Argan Soil for the Polyhydroxybutyrate Production from Argan Seeds Waste. Polymers 2023, 15, 512. https://doi.org/10.3390/polym15030512
Aragosa A, Saccomanno B, Specchia V, Frigione M. A Novel Sphingomonas sp. Isolated from Argan Soil for the Polyhydroxybutyrate Production from Argan Seeds Waste. Polymers. 2023; 15(3):512. https://doi.org/10.3390/polym15030512
Chicago/Turabian StyleAragosa, Amina, Benedetta Saccomanno, Valeria Specchia, and Mariaenrica Frigione. 2023. "A Novel Sphingomonas sp. Isolated from Argan Soil for the Polyhydroxybutyrate Production from Argan Seeds Waste" Polymers 15, no. 3: 512. https://doi.org/10.3390/polym15030512
APA StyleAragosa, A., Saccomanno, B., Specchia, V., & Frigione, M. (2023). A Novel Sphingomonas sp. Isolated from Argan Soil for the Polyhydroxybutyrate Production from Argan Seeds Waste. Polymers, 15(3), 512. https://doi.org/10.3390/polym15030512