Research on the Penetration Characteristics of PELE Projectile with Reactive Inner Core
Abstract
:1. Introduction
2. Numerical Simulation Analysis
2.1. PELE Projectile Design
2.2. Reactive Material Inner Core PELE Projectile Numerical Simulation
3. Experiment and Analysis
3.1. Validation of Numerical Simulation Results
3.2. Impact Experiment Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paulus, G.; Chanteret, P.Y.; Wollmann, E. PELE: A new penetrator-concept for the generation of lateral effects. In Proceedings of the 21st International Symposium on Ballistics, Adelaide, Australia, 12–19 April 2004. [Google Scholar]
- Schneidewind, F. Observations concerning the penetration mechanics of tubular hypervelocity penetrators. Int. J. Impact Eng. 1991, 11, 289–303. [Google Scholar]
- Paulus, G.; Schirm, V. Impact behaviour of PELE projectiles perforating thin target plates. Int. J. Impact Eng. 2006, 33, 566–579. [Google Scholar] [CrossRef]
- Verreault, J. Analytical and numerical description of the PELE fragmentation upon impact with thin target plates. Int. J. Impact Eng. 2015, 76, 196–206. [Google Scholar] [CrossRef]
- Verreault, J. Modelling of the PELE fragmentation dynamics. J. Phys. Conf. Ser. 2014, 500, 152015. [Google Scholar] [CrossRef]
- Zhu, J. Functional Mechanism of Penetrator with Enhanced Lateral Effect. Ph.D. Thesis, University of Science and Technology, Nanjing, China, 2008. [Google Scholar]
- Zhu, J.; Zhao, G.; Du, Z.; Li, D. Experimental study of the influence factors on small caliber PELE impacting thin target. J. Exp. Mech. 2007, 22, 505–510. [Google Scholar]
- Zhu, J.; Zhang, J. Review on functional mechanism of penetrator with enhanced lateral effect. Ordnance Mater. Sci. Eng. 2014, 37, 116–119. [Google Scholar]
- Zijian, F. Approximate calculation on the axial residual velocity of the PELE penetrate thin metal target plate. J. Natl. Univ. Def. Technol. 2015, 37, 84–90. [Google Scholar]
- Fan, Z.; Ran, X.; Tang, W.; Huang, Q. A study on fragmentation distribution of PELE. J. Vib. Shock 2017, 36, 72–77+90. [Google Scholar]
- Ding, L.; Zhou, J.; Tang, W.; Ran, X. Damage characteristics analysis of the truncated cone-shaped PELE projectile. Symmetry 2019, 11, 1025. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Zhou, J.; Tang, W.; Ran, X.; Cheng, Y. Damage characteristics of PELE projectile with gradient density inner core material. Materials 2018, 11, 2389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Ren, W.; Wang, X.; Wang, J.; Du, Z.; Gao, G. Analytical investigation on deformation of PELE projectile and opening damage to concrete target. Thin-Walled Struct. 2021, 161, 107408. [Google Scholar] [CrossRef]
- Ding, L.; Tang, W.; Ran, X.; Fan, Z.; Chen, W. Theoretical model of the axial residual velocity of PELE projectiles penetrating thin metal targets. Symmetry 2019, 11, 776. [Google Scholar] [CrossRef] [Green Version]
- Mohan Kumar, T.S.; Joladarashi, S.; Kulkarni, S.M.; Doddamani, S. Optimization of process parameters for ballistic impact response of hybrid sandwich composites. Int. J. Interact. Des. Manuf. 2022. [Google Scholar] [CrossRef]
- Ames, R. Energy release characteristics of impact-initiated energetic materials. MRS Online Proc. Libr. Arch. 2005, 896, 308. [Google Scholar] [CrossRef]
- Xu, S. Study on the Mechanical Performance of Polytetrafluorethyleoe/Al Energetic Reactive Materials. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2010. [Google Scholar]
- Wang, S.Y.; Jiang, J.W.; Zhang, M.; Men, J.B. Experimental study on penetration of PELE with active core against multi-layered plates. In Proceedings of the 12th Modern Mathematics and Mechanics Conference, Guiyang, China, 10–14 August 2010. [Google Scholar]
- Meng, Y.; Jin, X.; Panpan, L.U.; Wang, H. Lethality Effects of Enhanced PELE of Reactive Materials. Sci. Technol. Rev. 2014, 32, 31–35. [Google Scholar] [CrossRef]
- Zhou, J.; Ding, L.; Tang, W.; Ran, X. Experimental study of mechanical properties and impact-induced reaction characteristics of PTFE/Al/CuO reactive materials. Materials 2019, 13, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Zhou, J.; Tang, W.; Ran, X.; Hu, Y. Impact energy release characteristics of PTFE/Al/CuO reactive materials measured by a new energy release testing device. Polymers 2019, 11, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran, X.; Ding, L.; Zhou, J.; Tang, W. Research on the energy release characteristics of six kinds of reactive materials. Materials 2019, 12, 3940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Zou, X.; Liu, P.; Ran, X.; Tang, W. Study on impact damage characteristics of PTFE/Al/W reactive materials. IOP Conf. Ser. Earth Environ. Sci. 2021, 781, 052020. [Google Scholar] [CrossRef]
- Zou, X.; Zhou, J.; Tang, W.; Wu, Y.; Chen, P.; Wang, H.; Ran, X. Modeling of Impact Energy Release of PTFE/Al Reactive Material. Appl. Sci. 2021, 11, 8910. [Google Scholar] [CrossRef]
Material | ρ/(g/cm3) | A/(MPa) | B/(MPa) | c | n | m |
---|---|---|---|---|---|---|
Tungsten alloy | 17.6 | 1506 | 177 | 0.016 | 0.12 | 1 |
Reactive material | 2.25 | 11 | 250 | 0.4 | 1.8 | 1.05 |
Material | ρ/(g/cm3) | E/(GPa) | V | σY/(Mpa) |
---|---|---|---|---|
Aluminum | 2.7 | 72 | 0.33 | 286 |
Q235 | 7.8 | 210 | 0.3 | 235 |
GROW2 | ES2 | AR2 | EN | Fmngr |
---|---|---|---|---|
58.10991 | 1.0 | 0 | 1.54498 | 0 |
Material | Density (g/cm3) | Particle Size (μm) | Mass Fraction (%) | Manufacturer | Production Area |
---|---|---|---|---|---|
PTFE | 2.1 | 35 | 73.5 | DuPont | Wilmington, DE, USA |
Al | 2.7 | 5 | 26.5 | Tianjiu metal materials Co., Ltd. | Changsha, China |
h (mm) | d1s (cm) | d1t (cm) | Error (%) | d2s (cm) | d2t (cm) | Error (%) | |
---|---|---|---|---|---|---|---|
780 | 25 | 2.43 | 2.56 | 5.1 | 4.11 | 4.38 | 6.2 |
780 | 15 | 3.01 | 2.98 | 1.0 | 5.36 | 5.58 | 3.9 |
760 | 25 | 2.30 | 2.42 | 5.0 | 3.94 | 4.17 | 5.5 |
No | /(m/s) | d1/(cm) | d2/(cm) | d3/(cm) |
---|---|---|---|---|
1 | 702 | 2.04 | 3.25 | 23.58 |
2 | 693 | 1.98 | 3.32 | 23.88 |
3 | 761 | 2.45 | 4.23 | 29.51 |
4 | 760 | 2.39 | 4.10 | 29.11 |
5 | 779 | 2.56 | 4.38 | 32.10 |
No. | /(m/s) | d1/(cm) | d2/(cm) | d3/(cm) |
---|---|---|---|---|
6 | 780 | 2.82 | 4.78 | 26.52 |
7 | 779 | 2.75 | 4.67 | 25.37 |
8 | 782 | 2.95 | 5.72 | 37.84 |
9 | 780 | 3.01 | 5.43 | 36.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Ran, X.; Tang, W.; Zhang, K.; Wang, H.; Chen, P.; Ding, L. Research on the Penetration Characteristics of PELE Projectile with Reactive Inner Core. Polymers 2023, 15, 617. https://doi.org/10.3390/polym15030617
Zhou J, Ran X, Tang W, Zhang K, Wang H, Chen P, Ding L. Research on the Penetration Characteristics of PELE Projectile with Reactive Inner Core. Polymers. 2023; 15(3):617. https://doi.org/10.3390/polym15030617
Chicago/Turabian StyleZhou, Jingyuan, Xianwen Ran, Wenhui Tang, Kun Zhang, Haifu Wang, Pengwan Chen, and Liangliang Ding. 2023. "Research on the Penetration Characteristics of PELE Projectile with Reactive Inner Core" Polymers 15, no. 3: 617. https://doi.org/10.3390/polym15030617
APA StyleZhou, J., Ran, X., Tang, W., Zhang, K., Wang, H., Chen, P., & Ding, L. (2023). Research on the Penetration Characteristics of PELE Projectile with Reactive Inner Core. Polymers, 15(3), 617. https://doi.org/10.3390/polym15030617