Controllable Preparation of Eucommia Wood-Derived Mesoporous Activated Carbon as Electrode Materials for Supercapacitors
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of EUO Wood-Based Activated Carbons
2.2. Preparation and Electrochemical Test of Electrode Plates of Supercapacitor
2.3. Characterization and Methods
2.4. Economic Assessment
3. Result and Discussion
3.1. Structure and Morphology Characterization of ECs
3.2. Electrochemical Characterization of ECs
3.3. Economic Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karnan, M.; Subramani, K.; Srividhya, P.K.; Sathish, M. Electrochemical studies on corncob derived activated porous carbon for supercapacitors application in aqueous and non-aqueous electrolytes. Electrochim. Acta 2017, 228, 586–596. [Google Scholar] [CrossRef]
- Eftekhari, A. Mechanism of ultrafast supercapacitors. J. Mater. Chem. A 2018, 6, 175. [Google Scholar] [CrossRef]
- Sharma, S.; Sudhakara, P.; Omran, A.A.B.; Singh, J.; Ilyas, R.A. Recent Trends and Developments in Conducting Polymer Nanocomposites for Multifunctional Applications. Polymers 2021, 13, 2898. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, N.; Zhang, S.; Liu, C.; Chen, L.; Han, S.; Song, Y.; Han, M.; Wang, Z. Ultra-thick 3D graphene frameworks with hierarchical pores for high-performance flexible micro-supercapacitors. J. Power Sources 2020, 478, 229075. [Google Scholar] [CrossRef]
- Futaba, D.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994. [Google Scholar] [CrossRef]
- Huang, L.; Chen, D.C.; Ding, Y.; Feng, S.; Liu, M. Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 Nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013, 13, 3135–3139. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Tan, G.; Deng, Z.; Liu, J.; Gui, D. Preparation of Hierarchical Porous Carbon Aerogels by Microwave Assisted Sol-Gel Process for Supercapacitors. Polymers 2019, 11, 429. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, L.K.; Shahi, S.; Gnawali, C.L.; Adhikari, M.P.; Rajbhandari, R.; Pokharel, B.P.; Ma, R.; Shrestha, R.G.; Ariga, K. Phyllanthus emblica seed-derived hierarchically porous carbon materials for high-performance supercapacitor applications. Materials 2022, 15, 8335. [Google Scholar] [CrossRef]
- Dandekar, M.; Arabale, G.; Vijayamohanan, K. Preparation and characterization of composite electrodes of coconut-shell-based activated carbon and hydrous ruthenium oxide for supercapacitors. J. Power Sources 2005, 141, 198–203. [Google Scholar] [CrossRef]
- Eguchi, T.; Tashima, D.; Fukuma, M.; Kumagai, S. Activated carbon derived from Japanese distilled liquor waste: Application as the electrode active material of electric double-layer capacitors. J. Clean. Prod. 2020, 259, 120822. [Google Scholar] [CrossRef]
- Fu, M.; Chen, W.; Zhu, X.X.; Yang, B.C.; Liu, Q.Y. Crab shell derived multi-hierarchical carbon materials as a typical recycling of waste for high performance supercapacitors. Carbon 2018, 141, 748–757. [Google Scholar] [CrossRef]
- Sun, J.; Niu, J.; Liu, M.; Ji, J.; Dou, M.; Wang, F. Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors. Appl. Surf. Sci. 2018, 427, 807–813. [Google Scholar] [CrossRef]
- Qu, W.H.; Xu, Y.Y.; Lu, A.H.; Zhang, X.Q.; Li, W.C. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Bioresour. Technol. 2015, 189, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Biswal, M.; Banerjee, A.; Deo, M.; Ogale, S. From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 2013, 6, 1249–1259. [Google Scholar] [CrossRef]
- Gao, Y.; Yue, Q.Y.; Gao, B.; Li, A. Insight into activated carbon from different kinds of chemical activating agents: A review. Sci. Total Environ. 2020, 746, 141094. [Google Scholar] [CrossRef]
- Hu, W.; Xiang, R.; Lin, J.; Cheng, Y.; Lu, C. Lignocellulosic biomass-derived carbon electrodes for flexible supercapacitors: An overview. Materials 2021, 14, 4571. [Google Scholar] [CrossRef]
- Lu, Y.H.; Zhang, S.L.; Yin, J.M.; Bai, C.C.; Zhang, J.H.; Li, Y.X.; Yang, Y.; Ge, Z.; Zhang, M.; Wei, L. Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors. Carbon 2017, 124, 64–71. [Google Scholar] [CrossRef]
- Tehrani, N.F.; Aznar, J.S.; Kiros, Y. Coffee extract residue for production of ethanol and activated carbons. J. Clean. Prod. 2015, 91, 64–70. [Google Scholar] [CrossRef]
- Li, X.P.; Zhang, J.G.; Liu, B.; Su, Z.P. A critical review on the application and recent developments of post-modified biochar in supercapacitors. J. Clean. Prod. 2021, 310, 127428. [Google Scholar] [CrossRef]
- Wang, A.; Sun, K.; Xu, R.T.; Sun, Y.J.; Jiang, J. Cleanly synthesizing rotten potato-based activated carbon for supercapacitor by self-catalytic activation. J. Clean. Prod. 2021, 283, 125385. [Google Scholar] [CrossRef]
- Taer, E.; Apriwandi, A.; Taslim, R.; Agutino, A.; Yusra, D.A. Conversion Syzygium oleana leaves biomass waste to porous activated carbon nanosheet for boosting supercapacitor performances. J. Mater. Research Technol. 2020, 9, 13332–13340. [Google Scholar] [CrossRef]
- Wan, L.; Song, P.; Liu, J.X.; Chen, D.Q.; Xiao, R.; Zhang, Y.; Chen, J.; Xie, M.J.; Du, C. Facile synthesis of nitrogen self-doped hierarchical porous carbon derived from pine pollen via MgCO3 activation for high-performance supercapacitors. J. Power Sources 2019, 438, 227013. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, Q.; Gao, S.; Tang, G.; Liu, K.; He, S.; Huang, C. Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 2019, 155, 706–726. [Google Scholar] [CrossRef]
- Sun, G.T.; Qiu, L.; Zhu, M.Q.; Kang, K.; Guo, X.H. Activated carbons prepared by hydrothermal pretreatment and chemical activation of Eucommia ulmoides wood for supercapacitors application. Ind. Crops Prod. 2018, 125, 41–49. [Google Scholar] [CrossRef]
- Liao, Z.; Cheng, J.; Yu, J.H.; Tian, X.L.; Zhu, M.Q. Graphene aerogel with excellent property prepared by doping activated carbon and CNF for free-binder supercapacitor. Carbohydr. Polym. 2022, 286, 119287. [Google Scholar] [CrossRef]
- Chen, Z.M.; Wang, X.F.; Xue, B.C.; Li, W.; Ding, Z.Y.; Yang, X.M.; Qiu, J.S.; Wang, Z.C. Rice husk-based hierarchical porous carbon for high performance supercapacitors: The structure-performance relationship. Carbon 2020, 161, 432–444. [Google Scholar] [CrossRef]
- Tong, X.; Chen, Z.H.; Zhuo, H.; Hu, Y.J.; Jing, S.S.; Liu, J.C.; Zhong, L.X. Tailoring the physicochemical properties of chitosan-derived N-doped carbon by controlling hydrothermal carbonization time for high-performance supercapacitor application. Carbohydr. Polym. 2019, 207, 764–776. [Google Scholar] [CrossRef]
- Bi, H.H.; He, X.J.; Zhang, H.F.; Li, H.Q.; Xiao, N.; Qiu, J.S. N, P co-doped hierarchical porous carbon from rapeseed cake with enhanced supercapacitance. Renew. Energy 2021, 170, 188–196. [Google Scholar] [CrossRef]
- Solum, M.S.; Pugmire, R.J.; Jagtoyen, M.; Derbyshire, F. Evolution of carbon structure in chemically activated wood. Carbon 1995, 33, 1247–1254. [Google Scholar] [CrossRef]
- Zuo, S.L. A review of the control of pore texture of phosphoric acid-activated carbons. New Carbon Mater. 2018, 33, 289–302. [Google Scholar]
- Gupta, K.; Liu, T.; Kavian, R.; Chae, H.G.; Ryu, G.H.; Lee, Z.; Lee, S.W.; Kumar, S. High surface area carbon from polyacrylonitrile for high-performance electrochemical capacitive energy storage. J. Mater. Chem. A 2016, 48, 18294–18299. [Google Scholar] [CrossRef]
- Joyner, L.G.; Barrett, E.P.; Skold, R.V. The determination of pore volume and area distributions in porous substances. ii. comparison between nitrogen isotherm and mercury porosimeter methods. J. Am. Chem. Soc. 1951, 73, 3155–3158. [Google Scholar] [CrossRef]
- Guo, D.; Li, Z.; Liu, P.; Sun, M. N, P, S co-doped biomass-derived hierarchical porous carbon through simple phosphoric acid-assisted activation for high-performance electrochemical energy storage. Inter. J. Hydrog. Energy 2021, 46, 8197–8209. [Google Scholar] [CrossRef]
- Zuo, S.L.; Liu, J.; Yang, J.; Cai, X. Effects of the crystallinity of lignocellulosic material on the porosity of phosphoric acid-activated carbon. Carbon 2009, 47, 3578–3580. [Google Scholar] [CrossRef]
- Konikkara, N.; Kennedy, L.J.; Vijaya, J.J. Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications. J. Hazard. Mater. 2016, 318, 173–185. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Luo, J.; Chen, L. Highly nitrogen-doped graphitic carbon fibers from sustainable plant protein for supercapacitor. Ind. Crops Prod. 2018, 121, 226–235. [Google Scholar] [CrossRef]
- Pradip, P.; Dhanraj, S.; Mainak, M.; Xu, Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat. Chem. 2016, 8, 718–724. [Google Scholar]
- Xu, H.; Zhang, Y.; Wang, L.; Chen, Y.; Gao, S. Hierarchical porous biomass-derived carbon framework with ultrahigh surface area for outstanding capacitance supercapacitor. Renew. Energy 2021, 179, 1826–1835. [Google Scholar] [CrossRef]
- Jerigova, M.; Odziomek, M.; Lopez-Salas, N. "We Are Here!" Oxygen functional groups in carbons for electrochemical applications. ACS Omega 2022, 7, 11544–11554. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Li, J.; Zhuang, X.; Zhang, W.; Wang, S.; Chen, X.; Xiang, P.; Jiang, L.; Tan, X. Wide potential window and high specific capacitance triggered via rough NiCo2S4 nanorod arrays with open top for symmetric supercapacitors. Electrochim. Acta 2018, 269, 397–404. [Google Scholar] [CrossRef]
- Reis, G.S.; Oliveira, H.P.; Larsson, S.H.; Thyrel, M.; Lima, E.C. A short review on the electrochemical performance of hierarchical and nitrogen-doped activated biocarbon-based electrodes for supercapacitors. Nanomaterials 2021, 11, 424. [Google Scholar] [CrossRef] [PubMed]
- Thubsuang, U.; Chotirut, S.; Thongnok, A.; Promraksa, A.; Nisoa, M.; Manmuanpom, N.; Wongkasemjit, S.; Chaisuwan, T. Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: Effects of mixed solvents on pore structure and supercapacitive performance. Front. Chem. Sci. Eng. 2020, 14, 1072–1086. [Google Scholar] [CrossRef]
- Celiktas, M.S.; Alptekin, F.M. Conversion of model biomass to carbon-based material with high conductivity by using carbonization. Energy 2019, 188, 116089. [Google Scholar] [CrossRef]
- Sun, W.; Lipka, S.M.; Swartz, C.; Williams, D.; Yang, F. Hemp-derived activated carbons for supercapacitors. Carbon 2016, 103, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Pilon, L. Accurate simulations of electric double layer capacitance of ultramicroelectrodes. J. Phys. Chem. C 2011, 115, 16711–16719. [Google Scholar] [CrossRef]
- Chen, M.; Yu, D.; Zheng, X.; Dong, X. Biomass based N-doped hierarchical porous carbon nanosheets for all-solid-state supercapacitors. J. Energy Storage 2019, 21, 105–112. [Google Scholar] [CrossRef]
- Liu, B.; Chen, H.; Gao, Y.; Li, H. Preparation and capacitive performance of porous carbon materials derived from eulaliopsis binata. Electrochem. Acta 2016, 189, 93–100. [Google Scholar] [CrossRef]
- Momodu, D.; Madito, M.; Barzegar, F.; Bello, A.; Khaleed, A.; Olaniyan, O.; Dangbegnon, J.; Manyala, N. Activated carbon derived from tree bark biomass with promising material properties for supercapacitors. J. Solid State Electrochem. 2017, 21, 859–872. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zan, G.; Wu, Q. Nitrogen and sulfur self-doped porous carbon from brussel sprouts as electrode materials for high stable supercapacitors. RSC Adv. 2016, 6, 57464–57472. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmed, A.; Rafat, M. Supercapacitor performance of activated carbon derived from rotten carrot in aqueous, organic and ionic liquid based electrolytes. J. Saudi Chem. Soc. 2018, 22, 993–1002. [Google Scholar] [CrossRef]
- Jia, B.; Mian, Q.; Wu, D.; Wang, T. Heteroatoms self-doped porous carbon from cottonseed meal using K2CO3 as activator and DES electrolyte for supercapacitor with high energy density. Mater. Today Chem. 2022, 24, 100828. [Google Scholar] [CrossRef]
- Sivachidambaram, M.; Vijaya, J.J.; Niketha, K.; Kennedy, L.J.; Elanthamilan, E.; Merlin, J.P. Electrochemical studies on tamarindus indica fruit shell bio-waste derived nanoporous activated carbons for supercapacitor applications. J. Nanosci. 2019, 19, 3388–3397. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.A.; Chen, C.; Zhu, Z. Low-cost, high-performance supercapacitor based on activated carbon electrode materials derived from baobab fruit shells. J. Colloid Interface Sci. 2019, 538, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y. Comparison of Activated Carbons Prepared from Wheat Straw via ZnCl2 and KOH Activation. Waste Biomass Valorization 2016, 8, 549–559. [Google Scholar] [CrossRef]
EC-10% | EC-25% | EC-40% | EC-55% | EC-1:2 | EC-1:3 | EC-1:4 | EC-1:5 | EC-2h | EC-4h | EC-6h | EC-8h | EC-350 | EC-400 | EC-450 | EC-500 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EUO (ton) | 1.00 × 10−5 | 1.00 × 10−5 | 1.00 × 10−5 | 1.00 × 10−5 | 1.00 × 10−5 | 1.00 × 10−5 | 1.00 × 10−5 | 1.00 × 10−5 | 1.00 × 10−5 | 1.00 × 10−5 | 1.00 × 10−5 | 1.00 × 10−5 | 1.00 × 10−5 | 1.00 × 10−5 | 1.00 × 10−5 | 1.00 × 10−5 |
Deionized water (L) | 8.00 × 10−2 | 8.00 × 10−2 | 8.00 × 10−2 | 8.00 × 10−2 | 8.00 × 10−2 | 8.00 × 10−2 | 8.00 × 10−2 | 8.00 × 10−2 | 8.00 × 10−2 | 8.00 × 10−2 | 8.00 × 10−2 | 8.00 × 10−2 | 8.00 × 10−2 | 8.00 × 10−2 | 8.00 × 10−2 | 8.00 × 10−2 |
Electricity for hydrothermal reaction (kwh) | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
H3PO4 (kg) | 1.60 × 10−5 | 4.00 × 10−5 | 6.40 × 10−5 | 8.80 × 10−5 | 2.00 × 10−5 | 3.00 × 10−5 | 4.00 × 10−5 | 5.00 × 10−5 | 4.00 × 10−5 | 4.00 × 10−5 | 4.00 × 10−5 | 4.00 × 10−5 | 4.00 × 10−5 | 4.00 × 10−5 | 4.00 × 10−5 | 4.00 × 10−5 |
Electricity for drying (kwh) | 1.67 × 101 | 1.67 × 101 | 1.67 × 101 | 1.67 × 101 | 1.67 × 101 | 1.67 × 101 | 1.67 × 101 | 1.67 × 101 | 1.67 × 101 | 1.67 × 101 | 1.67 × 101 | 1.67 × 101 | 1.67 × 101 | 1.67 × 101 | 1.67 × 101 | 1.67 × 101 |
Electricity for activation (kwh) | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 1.60 × 101 | 2.40 × 101 | 3.20 × 101 | 8.00 | 8.00 | 8.00 | 8.00 |
Hydrochloric acid (L) | 2.00 × 10−1 | 2.00 × 10−1 | 2.00 × 10−1 | 2.00 × 10−1 | 2.00 × 10−1 | 2.00× 10−1 | 2.00 × 10−1 | 2.00 × 10−1 | 2.00 × 10−1 | 2.00 × 10−1 | 2.00 × 10−1 | 2.00 × 10−1 | 2.00 × 10−1 | 2.00 × 10−1 | 2.00 × 10−1 | 2.00 × 10−1 |
Electricity for heating (kwh) | 9.17 × 10−1 | 9.17 × 10−1 | 9.17 × 10−1 | 9.17 × 10−1 | 9.17 × 10−1 | 9.17 × 10−1 | 9.17 × 10−1 | 9.17 × 10−1 | 9.17 × 10−1 | 9.17 × 10−1 | 9.17 × 10−1 | 9.17 × 10−1 | 9.17 × 10−1 | 9.17 × 10−1 | 9.17 × 10−1 | 9.17 × 10−1 |
Wash Water (L) | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Carbon black (kg) | 1.31 × 10−4 | 1.31 × 10−4 | 1.31 × 10−4 | 1.31 × 10−4 | 1.31 × 10−4 | 1.31 × 10−4 | 1.31 × 10−4 | 1.31 × 10−4 | 1.31 × 10−4 | 1.31 × 10−4 | 1.31 × 10−4 | 1.31 × 10−4 | 1.31 × 10−4 | 1.31 × 10−4 | 1.31 × 10−4 | 1.31 × 10−4 |
PTFE (kg) | 6.54 × 10−5 | 6.54 × 10−5 | 6.54 × 10−5 | 6.54 × 10−5 | 6.54 × 10−5 | 6.54 × 10−5 | 6.54 × 10−5 | 6.54 × 10−5 | 6.54 × 10−5 | 6.54 × 10−5 | 6.54 × 10−5 | 6.54 × 10−5 | 6.54 × 10−5 | 6.54 × 10−5 | 6.54 × 10−5 | 6.54 × 10−5 |
Sample | BET a /(m2·g−1) | Daverage b /Å | Vtotal c /(cm3·g−1) | VMeso d /(cm3·g−1) | Yield e /% | RMeso f |
---|---|---|---|---|---|---|
EC-10% | 1160.34 | 25.61 | 0.40 | 0.20 | 53.16 | 50.7% |
EC-15% | 1206.30 | 26.08 | 0.62 | 0.38 | 50.49 | 61.1% |
EC-25% | 1418.77 | 27.76 | 0.76 | 0.71 | 48.52 | 93.9% |
EC-35% | 1099.09 | 28.79 | 0.61 | 0.53 | 47.10 | 86.4% |
EC-40% | 1182.57 | 28.41 | 0.59 | 0.50 | 47.23 | 85.1% |
EC-45% | 1023.89 | 28.90 | 0.53 | 0.44 | 45.41 | 83.0% |
EC-50% | 946.48 | 30.04 | 0.49 | 0.40 | 44.19 | 80.7% |
EC-55% | 888.95 | 31.68 | 0.44 | 0.31 | 40.48 | 71.1% |
EC-1:2 | 1185.52 | 25.55 | 0.40 | 0.21 | 55.63 | 52.5% |
EC-1:3 | 1367.31 | 26.73 | 0.46 | 0.34 | 50.49 | 74.8% |
EC-1:4 | 1418.77 | 27.76 | 0.76 | 0.71 | 48.52 | 93.9% |
EC-1:5 | 1099.09 | 27.46 | 0.61 | 0.53 | 47.39 | 86.9% |
EC-2h | 1418.77 | 27.76 | 0.75 | 0.70 | 60.72 | 93.0% |
EC-4h | 1613.28 | 26.21 | 0.82 | 0.78 | 53.14 | 95.1% |
EC-6h | 2033.87 | 26.66 | 1.11 | 1.07 | 43.88 | 96.4% |
EC-8h | 1048.17 | 26.63 | 0.63 | 0.55 | 40.92 | 87.3% |
EC-350 | 1446.05 | 26.68 | 0.54 | 0.47 | 52.70 | 87.0% |
EC-400 | 2033.87 | 26.66 | 1.11 | 1.07 | 43.88 | 96.4% |
EC-450 | 1737.54 | 28.22 | 0.96 | 0.89 | 41.14 | 92.7% |
EC-500 | 1553.15 | 28.06 | 0.89 | 0.82 | 39.53 | 92.1% |
Sample | Specific Capacitance/(F·g−1) | Capacitance | |||
---|---|---|---|---|---|
5/(mV·s−1) | 10/(mV·s−1) | 20/(mV·s−1) | 50/(mV·s−1) | Retention/% | |
EC-10% | 140 | 128 | 101 | 83 | 59% |
EC-25% | 168 | 159 | 142 | 102 | 61% |
EC-40% | 135 | 125 | 99 | 81 | 60% |
EC-55% | 116 | 101 | 87 | 66 | 57% |
EC-1:2 | 75 | 63 | 55 | 41 | 54% |
EC-1:3 | 140 | 127 | 100 | 81 | 58% |
EC-1:4 | 168 | 159 | 142 | 102 | 61% |
EC-1:5 | 82 | 76 | 60 | 53 | 64% |
EC-2h | 168 | 159 | 142 | 102 | 61% |
EC-4h | 208 | 196 | 160 | 129 | 62% |
EC-6h | 252 | 244 | 232 | 154 | 63% |
EC-8h | 193 | 171 | 154 | 127 | 66% |
EC-350 | 175 | 153 | 138 | 105 | 60% |
EC-400 | 252 | 244 | 232 | 154 | 63% |
EC-450 | 210 | 186 | 148 | 130 | 62% |
EC-500 | 198 | 177 | 134 | 115 | 58% |
Sample | Rsa (Ω) | Rctb (Ω) | ESR c (Ω) |
---|---|---|---|
EC-10% | 3.007 | 3.891 | 0.884 |
EC-25% | 2.970 | 3.330 | 0.360 |
EC-40% | 3.192 | 3.892 | 0.700 |
EC-55% | 3.148 | 3.778 | 0.630 |
EC-1:2 | 2.738 | 4.103 | 1.365 |
EC-1:3 | 3.224 | 4.379 | 1.155 |
EC-1:4 | 3.004 | 3.309 | 0.305 |
EC-1:5 | 3.265 | 4.206 | 0.941 |
EC-2h | 2.970 | 3.330 | 0.360 |
EC-4h | 2.906 | 2.971 | 0.065 |
EC-6h | 2.246 | 3.052 | 0.806 |
EC-8h | 1.890 | 2.790 | 0.900 |
EC-350 | 2.782 | 2.823 | 0.050 |
EC-400 | 2.258 | 3.050 | 0.792 |
EC-450 | 2.343 | 2.488 | 0.145 |
EC-500 | 1.894 | 2.769 | 0.875 |
EC-10% | EC-25% | EC-40% | EC-55% | EC-1:2 | EC-1:3 | EC-1:4 | EC-1:5 | EC-2h | EC-4h | EC-6h | EC-8h | EC-350 | EC-400 | EC-450 | EC-500 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EUO/CNY | 2.00 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 |
Deionized water/CNY | 1.20 × 10−2 | 1.20 × 10−2 | 1.20 × 10−2 | 1.20 × 10−2 | 1.20 × 10−2 | 1.20 × 10−2 | 1.20 × 10−2 | 1.20 × 10−2 | 1.20 × 10−2 | 1.20 × 10−2 | 1.20 × 10−2 | 1.20 × 10−2 | 1.20 × 10−2 | 1.20 × 10−2 | 1.20 × 10−2 | 1.20 × 10−2 |
Electricity for hydrothermal reaction/CNY | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
H3PO4/CNY | 2.30 × 10−5 | 5.76 × 10−5 | 9.24 × 10−5 | 1.27 × 10−4 | 2.88 × 10−5 | 4.32 × 10−5 | 5.76 × 10−5 | 7.20 × 10−5 | 5.76 × 10−5 | 5.76 × 10−5 | 5.76 × 10−5 | 5.76 × 10−5 | 5.76 × 10−5 | 5.76 × 10−5 | 5.76 × 10−5 | 5.76 × 10−5 |
Electricity for drying/CNY | 8.34 | 8.34 | 8.34 | 8.34 | 8.34 | 8.34 | 8.34 | 8.34 | 8.34 | 8.34 | 8.34 | 8.34 | 8.34 | 8.34 | 8.34 | 8.34 |
Electricity for activation/CNY | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 8.00 | 1.20 × 101 | 1.60 × 101 | 4.00 | 4.00 | 4.00 | 4.00 |
Hydrochloric acid/CNY | 3.20 × 10−2 | 3.20 × 10−2 | 3.20 × 10−2 | 3.20 × 10−2 | 3.20 × 10−2 | 3.20 × 10−2 | 3.20 × 10−2 | 3.20 × 10−2 | 3.20 × 10−2 | 3.20 × 10−2 | 3.20 × 10−2 | 3.20 × 10−2 | 3.20 × 10−2 | 3.20 × 10−2 | 3.20 × 10−2 | 3.20 × 10−2 |
Electricity for heating/CNY | 4.58 × 10−1 | 4.58 × 10−1 | 4.58 × 10−1 | 4.58 × 10−1 | 4.58 × 10−1 | 4.58 × 10−1 | 4.58 × 10−1 | 4.58 × 10−1 | 4.58 × 10−1 | 4.58 × 10−1 | 4.58 × 10−1 | 4.58 × 10−1 | 4.58 × 10−1 | 4.58 × 10−1 | 4.58 × 10−1 | 4.58 × 10−1 |
Wash Water/CNY | 6.00 × 10−1 | 6.00 × 10−1 | 6.00 × 10−1 | 6.00 × 10−1 | 6.00 × 10−1 | 6.00 × 10−1 | 6.00 × 10−1 | 6.00 × 10−1 | 6.00 × 10−1 | 6.00 × 10−1 | 6.00 × 10−1 | 6.00 × 10−1 | 6.00 × 10−1 | 6.00 × 10−1 | 6.00 × 10−1 | 6.00 × 10−1 |
Carbon black/CNY | 2.61 × 10−3 | 2.61 × 10−3 | 2.61 × 10−3 | 2.61 × 10−3 | 2.61 × 10−3 | 2.61 × 10−3 | 2.61 × 10−3 | 2.61 × 10−3 | 2.61 × 10−3 | 2.61 × 10−3 | 2.61 × 10−3 | 2.61 × 10−3 | 2.61 × 10−3 | 2.61 × 10−3 | 2.61 × 10−3 | 2.61 × 10−3 |
PTFE/CNY | 1.31 × 10−3 | 1.31 × 10−3 | 1.31 × 10−3 | 1.31 × 10−3 | 1.31 × 10−3 | 1.31 × 10−3 | 1.31 × 10−3 | 1.31 × 10−3 | 1.31 × 10−3 | 1.31 × 10−3 | 1.31 × 10−3 | 1.31 × 10−3 | 1.31 × 10−3 | 1.31 × 10−3 | 1.31 × 10−3 | 1.31 × 10−3 |
SUM/CNY | 1.54 | 1.54 | 1.54 | 1.54 | 1.54 | 1.54 | 1.54 | 1.54 | 1.54 | 1.54 | 1.54 | 1.54 | 1.54 | 1.54 | 1.54 | 1.54 |
The operating costs/(F·g−1·CNY-1) | 1.10 × 10−1 | 9.20 × 10−2 | 1.14 × 10−1 | 1.33 × 10−1 | 2.06 × 10−1 | 1.10 × 10−1 | 9.20 × 10−2 | 1.88 × 10−1 | 9.20 × 10−2 | 9.40 × 10−2 | 9.30 × 10−2 | 1.42 × 10−1 | 8.80 × 10−2 | 6.10 × 10−2 | 7.40 × 10−2 | 7.80 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, H.; Lan, C.; Wang, Z.; Zhu, L.; Zhu, M. Controllable Preparation of Eucommia Wood-Derived Mesoporous Activated Carbon as Electrode Materials for Supercapacitors. Polymers 2023, 15, 663. https://doi.org/10.3390/polym15030663
Su H, Lan C, Wang Z, Zhu L, Zhu M. Controllable Preparation of Eucommia Wood-Derived Mesoporous Activated Carbon as Electrode Materials for Supercapacitors. Polymers. 2023; 15(3):663. https://doi.org/10.3390/polym15030663
Chicago/Turabian StyleSu, Hongyu, Caining Lan, Zhouping Wang, Lin Zhu, and Mingqiang Zhu. 2023. "Controllable Preparation of Eucommia Wood-Derived Mesoporous Activated Carbon as Electrode Materials for Supercapacitors" Polymers 15, no. 3: 663. https://doi.org/10.3390/polym15030663
APA StyleSu, H., Lan, C., Wang, Z., Zhu, L., & Zhu, M. (2023). Controllable Preparation of Eucommia Wood-Derived Mesoporous Activated Carbon as Electrode Materials for Supercapacitors. Polymers, 15(3), 663. https://doi.org/10.3390/polym15030663