Brownian Motion in Optical Tweezers, a Comparison between MD Simulations and Experimental Data in the Ballistic Regime
Abstract
:1. Introduction
2. Materials and Methods
- its mean <W(t)> is equal to 0 for all values of t
- Mean Squared Displacement (MSD) <W2(t)> is equal to 1 for all values of t
- W(ti) and W(tj) are independent for all i ≠ j
2.1. Simulations
2.2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ellis, R.J. Macromolecular crowding: An important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 2001, 11, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S.S. Effects of surfaces and macromolecular crowding on bimolecular reaction rates. Phys. Biol. 2020, 17, 045001. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.; Hoshino, M. Effects of macromolecular crowding on intracellular diffusion from a single particle perspective. Biophys. Rev. 2010, 2, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Minton, A.P. Holobiochemistry: The effect of local environment upon the equilibria and rates of biochemical reactions. Int. J. Biochem. 1990, 10, 1063–1067. [Google Scholar] [CrossRef]
- Novak, I.L.; Kraikivski, P.; Slepchenko, B.M. Diffusion in cytoplasm: Effects of excluded volume due to internal membranes and cytoskeletal structures. Biophys. J. 2009, 97, 758–767. [Google Scholar] [CrossRef]
- Berezhkovskii, A.M.; Szabo, A. Theory of crowding effects on bimolecular reaction rates. J. Phys. Chem. B 2016, 120, 5998–6002. [Google Scholar] [CrossRef]
- Kim, J.S.; Yethiraj. A. Effect of macromolecular crowding on reaction rates: A computational and theoretical study. Biophys. J. 2009, 96, 1330–1334. [Google Scholar] [CrossRef]
- Andrews, S.S.; Addy, N.J.; Brent, R.; Arkin, A.P. Detailed simulations of cell biology with Smoldyn 2.1. PLoS Comput. Biol. 2010, 16, e1000705. [Google Scholar] [CrossRef]
- Wieczorek, G.; Zielenkiewicz, P. Influence of Macromolecular Crowding on Protein-Protein Association Rates—a Brownian Dynamics Study. Biophys. J. 2008, 95, 5030–5036. [Google Scholar] [CrossRef]
- Kheifets, S.; Simha, A.; Melin, K.; Li, T.; Raizen, M.G. Observation of Brownian Motion in Liquids at Short Times: Instantaneous Velocity and Memory Loss. Science 2014, 343, 1493–1496. [Google Scholar] [CrossRef]
- Madsen, L.S.; Waleed, M.; Casacio, C.A.; Terrasson, A.; Stilgoe, A.B.; Taylor, M.A.; Bowen, W.P. Ultrafast viscosity measurement with ballistic optical tweezers. Nat. Photon 2021, 15, 386–392. [Google Scholar] [CrossRef]
- Rubtsov, I.V.; Burin, A.L. Ballistic and diffusive vibrational energy transport in molecules. J. Chem. Phys. 2019, 150, 020901. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; Hermans, J. Interaction models for water in relation to protein hydration. In Intermolecular Forces; Pullman, B., Ed.; Springer: Dordrecht, The Netherlands, 1981; Volume 14, pp. 331–342. [Google Scholar] [CrossRef]
- Fitzgerald, C.; Hosny, N.A.; Tong, H.; Seville, P.C.; Gallimore, P.J.; Davidson, N.M.; Athanasiadis, A.; Botchway, S.W.; Ward, A.D.; Kalberer, M.; et al. Fluorescence lifetime imaging of optically levitated aerosol: A technique to quantitatively map the viscosity of suspended aerosol particles. Phys. Chem. Chem. Phys. 2016, 18, 21710–21719. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Ding, H.; Kollipara, P.S.; Lin, L.; Zheng, Y. Atomistic modeling and rational design of optothermal tweezers for targeted applications. Nano Res. 2021, 14, 295–303. [Google Scholar] [CrossRef]
- Price, D.J.; Brooks, C.L. A modified TIP3P water potential for simulation with Ewald summation. J. Chem. Phys. 2004, 121, 10096–10103. [Google Scholar] [CrossRef]
- Carney, S.P.; Ma, W.; Whitley, K.D.; Jia, H.; Lohman, T.M.; Luthey-Schulten, Z.; Chemla, Y.R. Kinetic and structural mechanism for DNA unwinding by a non-hexameric helicase. Nat. Commun. 2021, 12, 1–14. [Google Scholar] [CrossRef]
- Horn, H.W.; Swope, W.C.; Pitera, J.W.; Madura, J.D.; Dick, T.J.; Hura, G.L.; Head-Gordon, T. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 2004, 120, 9665–9678. [Google Scholar] [CrossRef]
- Jakobi, A.J.; Mashaghi, A.; Tans, S.J.; Huizinga, E.G. Calcium modulates force sensing by the von Willebrand factor A2 domain. Nat. Commun. 2011, 2, 385. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, V.; Pleiss, J. Simulation of protein diffusion: A sensitive probe of protein–solvent interactions. J. Biomol. Struct. Dyn. 2019, 37, 1534–1544. [Google Scholar] [CrossRef]
- Zhang, H.; Yin, C.; Jiang, Y.; van der Spoel, D. Force Field Benchmark of Amino Acids: I. Hydration and Diffusion in Different Water Models. J. Chem. Inf. Model. 2018, 58, 1037–1052. [Google Scholar] [CrossRef] [PubMed]
- Ashkin, A. Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. 1970, 24, 156–159. [Google Scholar] [CrossRef]
- Ashkin, A.; Dziedzic, J.M.; Bjorkholm, J.E.; Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986, 11, 288–290. [Google Scholar] [CrossRef] [PubMed]
- Bolognesi, G.; Friddin, M.S.; Salehi-Reyhani, A.; Barlow, N.E.; Brooks, N.J.; Ces, O.; Elani, Y. Sculpting and fusing biomimetic vesicle networks using optical tweezers. Nat. Commun. 2018, 9, 1882. [Google Scholar] [CrossRef]
- Kolbow, J.D.; Lindquist, N.C.; Ertsgaard, C.T.; Yoo, D.; Oh, S. Nano-Optical Tweezers: Methods and Applications for Trapping Single Molecules and Nanoparticles. ChemPhysChem 2021, 22, 1409–1420. [Google Scholar] [CrossRef]
- Killian, J.L.; Inman, J.T.; Wang, M.D. High-Performance Image-Based Measurements of Biological Forces and Interactions in a Dual Optical Trap. ACS Nano 2018, 12, 11963–11974. [Google Scholar] [CrossRef]
- Murugesapillai, D.; McCauley, M.J.; Maher, L.J.; Williams, M.C. Single-molecule studies of high-mobility group B architectural DNA bending proteins. Biophys. Rev. 2016, 9, 17–40. [Google Scholar] [CrossRef]
- Jagannathan, B.; Marqusee, S. Protein folding and unfolding under force. Biopolymers 2013, 99, 860–869. [Google Scholar] [CrossRef]
- Kreysing, M.; Ott, D.; Schmidberger, M.J.; Otto, O.; Schürmann, M.; Martín-Badosa, E.; Whyte, G.; Guck, J. Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells. Nat. Commun. 2014, 5, 5481. [Google Scholar] [CrossRef] [Green Version]
- Soni, G.V.; Jonsson, M.P.; Dekker, C. Periodic Modulations of Optical Tweezers Near Solid-State Membranes. Small 2012, 9, 679–684. [Google Scholar] [CrossRef]
- Rahman, S.; Torun, R.; Zhao, Q.; Boyraz, O. Electronic control of optical tweezers using space-time-wavelength mapping. J. Opt. Soc. Am. B 2016, 33, 313–319. [Google Scholar] [CrossRef]
- Huang, R.; Chavez, I.; Taute, K.M.; Lukić, B.; Jeney, S.; Raizen, M.G.; Florin, E.-L. Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nat. Phys. 2011, 7, 576–580. [Google Scholar] [CrossRef]
- Li, T.; Kheifets, S.; Medellin, D.; Raizen, M.G. Measurement of the Instantaneous Velocity of a Brownian Particle. Science 2010, 328, 1673–1675. [Google Scholar] [CrossRef]
- Lu, D.; Labrador-Páez, L.; Ortiz-Rivero, E.; Frades, P.; Antoniak, M.A.; Wawrzyńczyk, D.; Nyk, M.; Brites, C.D.S.; Carlos, L.D.; Solé, J.A.G.; et al. Exploring Single-Nanoparticle Dynamics at High Temperature by Optical Tweezers. Nano Lett. 2020, 20, 8024–8031. [Google Scholar] [CrossRef]
- Volpe, G.; Volpe, G. Simulation of a Brownian particle in an optical trap. Am. J. Phys. 2013, 81, 224–230. [Google Scholar] [CrossRef]
- LAMMPS Molecular Dynamics Simulator. Available online: https://www.lammps.org/ (accessed on 22 September 2022).
- Sun, H.; Ferasat, K.; Nowak, P.; Gravelle, L.; Gaffran, N.; Anderson, C.; Sirola, T.; Pintar, O.; Lievers, W.B.; Kim, I.Y.; et al. Implementing a non-local lattice particle method in the open-source large-scale atomic/molecular massively parallel simulator. Model. Simul. Mater. Sci. Eng. 2022, 30, 054001. [Google Scholar] [CrossRef]
- Murashima, T.; Urata, S.; Li, S. Coupling finite element method with large scale atomic/molecular massively parallel simulator (LAMMPS) for hierarchical multiscale simulations. Eur. Phys. J. B 2019, 92, 211. [Google Scholar] [CrossRef]
- Perkins, S.J. Protein volumes and hydration effects. The calculations of partial specific volumes, neutron scattering matchpoints and 280-nm absorption coefficients for proteins and glycoproteins from amino acid sequences. JBIC J. Biol. Inorg. Chem. 1986, 157, 169–180. [Google Scholar] [CrossRef]
- Sato, S.; Inaba, H. Optical trapping and manipulation of microscopic particles and biological cells by laser beams. Opt. Quantum Electron. 1996, 28, 1–16. [Google Scholar] [CrossRef]
- Hansen, P.M.; Bhatia, V.K.; Harrit, N.; Oddershede, L. Expanding the Optical Trapping Range of Gold Nanoparticles. Nano Lett. 2005, 5, 1937–1942. [Google Scholar] [CrossRef]
- Pierini, F.; Zembrzycki, K.; Nakielski, P.; Pawłowska, S.; A Kowalewski, T. Atomic force microscopy combined with optical tweezers (AFM/OT). Meas. Sci. Technol. 2016, 27, 025904. [Google Scholar] [CrossRef]
- Pekka, M.; Lennart, N. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. J. Phys. Chem. A 2001, 105, 9954–9960. [Google Scholar]
- Pancorbo, M.; Rubio, M.A.; Domínguez-García, P. Brownian dynamics simulations to explore experimental microsphere diffusion with optical tweezers. Procedia Comput. Sci. 2017, 108, 166–174. [Google Scholar] [CrossRef]
- Mahoney, M.W.; Jorgensen, W.L. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 2000, 112, 8910. [Google Scholar] [CrossRef] [Green Version]
Water Model | SPC | SPCE | TIP3P | TIP4P |
---|---|---|---|---|
O-H distance | 1 Å | 1 Å | 0.9572 Å | 0.9572 Å |
H-H angle | 109.47 O | 109.47 O | 104.52 O | 104.52 O |
O charge | −0.82 e | −0.8476 e | −0.83 e | −1.04844 e |
H charge | 0.41 e | 0.4238 e | 0.415 e | 0.52422 e |
of O | 0.1553 kcal mol−1 | 0.1553 kcal mol−1 | 0.102 kcal mol−1 | 0.16275 kcal mol−1 |
of O | 3.166 Å | 3.166 Å | 3.188 Å | 3.16435 Å |
of C | 0.644 kcal mol−1 | 0.644 kcal mol−1 | 0.644 kcal mol−1 | 0.644 kcal mol−1 |
of C | 3.554 Å | 3.554 Å | 3.554 Å | 3.554 Å |
of H | 0 kcal mol−1 | 0 kcal mol−1 | 0 kcal mol−1 | 0 kcal mol−1 |
of H | 0 Å | 0 Å | 0 Å | 0 Å |
Model | Computation Time [Time Steps/s] | Memory Usage [GB] | Time Step Value with No Force [fs] | Time Step Value with Force Applied [fs] |
---|---|---|---|---|
SPC | 0.179 | 9.8 | 3.25 | 3.25 |
SPCE | 0.154 | 9.8 | 3.25 | 3.25 |
TIP3P | 0.144 | 10 | 3 | 0.75 |
TIP4P | 0.053 | 19.5 | 3 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zembrzycki, K.; Pawłowska, S.; Pierini, F.; Kowalewski, T.A. Brownian Motion in Optical Tweezers, a Comparison between MD Simulations and Experimental Data in the Ballistic Regime. Polymers 2023, 15, 787. https://doi.org/10.3390/polym15030787
Zembrzycki K, Pawłowska S, Pierini F, Kowalewski TA. Brownian Motion in Optical Tweezers, a Comparison between MD Simulations and Experimental Data in the Ballistic Regime. Polymers. 2023; 15(3):787. https://doi.org/10.3390/polym15030787
Chicago/Turabian StyleZembrzycki, Krzysztof, Sylwia Pawłowska, Filippo Pierini, and Tomasz Aleksander Kowalewski. 2023. "Brownian Motion in Optical Tweezers, a Comparison between MD Simulations and Experimental Data in the Ballistic Regime" Polymers 15, no. 3: 787. https://doi.org/10.3390/polym15030787
APA StyleZembrzycki, K., Pawłowska, S., Pierini, F., & Kowalewski, T. A. (2023). Brownian Motion in Optical Tweezers, a Comparison between MD Simulations and Experimental Data in the Ballistic Regime. Polymers, 15(3), 787. https://doi.org/10.3390/polym15030787