Drug Release from Nanoparticles (Polymeric Nanocapsules and Liposomes) Mimed through a Multifractal Tunnelling-Type Effect
Abstract
:1. Introduction
2. Experimental Results
2.1. Materials
2.2. Obtaining Topical Formulations
2.3. Transdermal Diffusion Assays
3. Drug Release Mimed as a Multifractal Tunnel Effect
4. Model Validation
5. Discussion of Differentiability to Nondifferentiability in Drug Release Kinetics
- Immediate-release drug products allow drugs to dissolve without delay or prolonging drug dissolution or absorption;
- Extended-release drug products that are included in the modified-release dosage form. Delayed release is the release of the drug at a time other than immediately after administration. Extended-release products are designed to make the drug available for a longer period of time after administration;
- Controlled release includes extended- and pulsatile-release products. This mechanism involves the release of well-defined amounts of the drug at a specified time at various precise intervals.
- Motions with “ties” (with constraints) on continuous and differentiable curves in a Euclidean space are substituted by motions free of any constraints on continuous but non-differentiable curves in a fractal space;
- Motion curves act both as geodesics of a fractal space and as streamlines of a fractal fluid;
- The structural units of any polymeric system are substituted with their own geodesics, with any external constraint being interpreted as a selection of geodesics on the basis of local–global/whole–part compatibility, etc.;
- Taking into account that the descriptions of drug release dynamics are given by continuous and differentiable curves (fractal/multifractal curves) and that these curves have the self-similarity property (one part reflects the whole and vice versa), then “holographic” descriptions of the drug release dynamics become functional.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rambaran, T.F. Nanopolyphenols: A review of their encapsulation and anti-diabetic effects. SN Appl. Sci. 2020, 2, 1335. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J.; Hennink, W.E. Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release. Pharm. Res. 2010, 27, 2569–2589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, H.; Sahu, G.; Sahu, S. Recent approaches of drug delivery for skin cancer. World J. Pharm. Pharma. Sci. 2014, 3, 300–315. [Google Scholar]
- Cadinoiu, A.; Peptu, C. Polymeric Nanomedicines; Popa, M., Uglea, C.V., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2013; pp. 293–316. [Google Scholar]
- Severino, P.; Fangueiro, J.F.; Ferreira, S.V.; Basso, R.; Chaud, M.V.; Santana, M.H.A.; Rosmaninho, A.; Souto, E.B. Nanoemulsions and nanoparticles for non-melanoma skin cancer: Effects of lipid materials. Clin. Transl. Oncol. 2013, 15, 417–424. [Google Scholar] [CrossRef]
- Zhang, Z.; Tsai, P.C.; Ramezanli, T.; Michniak-Kohn, B.B. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, S.; Kudgus, R.A.; Bhattacharya, R.; Mukherjee, P. Inorganic nanoparticles in cancer therapy. Pharm. Res. 2011, 28, 237–259. [Google Scholar] [CrossRef] [Green Version]
- Dhivya, S.; Rajalakshmi, A.N. A Review on the preparation methods of Curcumin Nanoparticles. Pharma Tutor 2018, 6, 6–10. [Google Scholar] [CrossRef]
- Rață, D.M.; Cadinoiu, A.N.; Atanase, L.I.; Bacaita, S.E.; Mihalache, C.; Daraba, O.-M.; Popa, M. “In vitro” behaviour of aptamer-functionalized polymeric nanocapsules loaded with 5-fluorouracil for targeted therapy. Mater. Sci. Eng. C 2019, 103, 109828. [Google Scholar] [CrossRef]
- Ernest, U.; Chen, H.Y.; Xu, M.J.; Taghipour, Y.D.; Asad MH, H.B.; Rahimi, R.; Murtaza, G. Anti-Cancerous Potential of Polyphenol-Loaded Polymeric Nanotherapeutics. Molecules 2018, 23, 2787. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.K.; Bhatnagar, P.; Singh, M.; Mishra, S.; Kumar, P.; Shukla, Y.; Gupta, K.C. Synthesis of PLGA nanoparticles of tea polyphenols and their strong in vivo protective effect against chemically induced DNA damage. Int. J. Nanomed. 2013, 8, 1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raţă, D.M.; Chailan, J.-F.; Peptu, C.A.; Costuleanu, M.; Popa, M. Chitosan: Poly(N-vinylpyrrolidone-alt-itaconic anhydride) nanocapsules—A promising alternative for the lung cancer treatment. J. Nanoparticle Res. 2015, 17, 316. [Google Scholar] [CrossRef]
- Vauthier, C.; Bouchemal, K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res. 2009, 26, 1025–1058. [Google Scholar] [CrossRef] [PubMed]
- James, H.P.; John, R.; Alex, A.; Anoop, K.R. Smart polymers for the controlled delivery of drugs: A concise overview. Acta Pharm. Sin. B 2014, 4, 120–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raţă, D.M.; Popa, M.; Chailan, J.F.; Zamfir, C.L.; Peptu, C.A. Biomaterial properties evaluation of poly(vinyl acetate-alt-maleic anhydride)/chitosan nanocapsules. J. Nanopart. Res. 2014, 16, 2569. [Google Scholar] [CrossRef]
- Cadinoiu, A.N.; Rata, D.M.; Atanase, L.I.; Daraba, O.M.; Gherghel, D.; Vochita, G.; Popa, M. Aptamer-Functionalized Liposomes as a Potential Treatment for Basal Cell Carcinoma. Polymers 2019, 11, 1515. [Google Scholar] [CrossRef] [Green Version]
- Ciobanu, B.C.; Cadinoiu, A.N.; Popa, M.; Desbrières, J.; Peptu, C.A. Modulated release from liposomes entrapped in chitosan/gelatin hydrogels. Mater. Sci. Eng. C 2014, 43, 383–391. [Google Scholar] [CrossRef]
- Ciobanu, B.C.; Cadinoiu, A.N.; Popa, M.; Desbrieres, J.; Peptu, C.A. Chitosan/poly (vinyl alcohol) hydrogels for entrapment of drug loaded liposomes. Cellul. Chem. Technol. 2014, 48, 485–494. [Google Scholar]
- Cadinoiu, A.N.; Darabă, O.; Merlușcă, P.; Anastasiu, D.; Vasiliu, M.; Chirap, A.M.; Bîrgăoanu, A.; Burlui, V. Liposomal formulations with potential dental applications. Int. J. Med. Dent. 2014, 18, 271–277. [Google Scholar]
- Peptu, C.; Jătariu, A.; Indrei, A.; Popa, M. New tendencies in controlled drug release-liposomes entrapped in polymer matrices. Rev. Med. Chir. Soc. Med. Nat. Iasi 2009, 113, 164–172. [Google Scholar]
- Jatariu, A.N.; Popa, M.; Peptu, C.A. Different particulate systems-bypass the biological barriers? J. Drug Target. 2010, 18, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Xiang, J. Aptamer-Functionalized Nanoparticles in Targeted Delivery and Cancer Therapy. Int. J. Mol. Sci. 2020, 21, 9123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lu, L.; Shi, K.; Cun, X.; Yang, Y.; Liu, Y.; Gao, H.; He, Q. Dual-functionalized liposomal delivery system for solid tumors based on RGD and a pH-responsive antimicrobial peptide. Sci. Rep. 2016, 6, 19800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, H.; Tang, L.; Yang, X.; Hwang, K.; Wang, W.; Yin, Q.; Wong, N.Y.; Dobrucki, L.W.; Yasui, N.; Katzenellenbogen, J.A.; et al. Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo. J. Mat. Chem. B 2013, 1, 5288–5297. [Google Scholar] [CrossRef]
- Li, L.; Hou, J.; Liu, X.; Guo, Y.; Wu, Y.; Zhang, L.; Yang, Z. Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials 2014, 35, 3840–3850. [Google Scholar] [CrossRef]
- Abu-Dahab, R.; Schafer, U.F.; Lehr, C.M. Lectin-functionalized liposomes for pulmonary drug delivery. Effect of nebulization on stability and bioadhesion. Eur. J. Pharm. Sci. 2001, 14, 37–46. [Google Scholar] [CrossRef]
- Qiu, W.; Zhou, F.; Zhang, Q.; Sun, X.; Shi, X.; Liang, Y.; Wang, X.; Yue, L. Overexpression of nucleolin and different expression sites both related to the prognosis of gastric cancer. APMIS 2013, 121, 919–925. [Google Scholar] [CrossRef]
- Cao, Z.; Tong, R.; Mishra, A.; Xu, W.; Wong, G.C.; Cheng, J.; Lu, Y. Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew. Chem. Int. Ed. 2009, 48, 6494–6498. [Google Scholar] [CrossRef]
- Edwards, K.A.; Wang, Y.; Baeumner, A.J. Aptamer sandwich assays: Human a-thrombin detection using liposome enhancement. Anal. Bioanal. Chem. 2010, 398, 2645–2654. [Google Scholar] [CrossRef]
- Kang, H.; O’Donoghue, M.B.; Liu, H.; Tan, W. A liposome-based nanostructure for aptamer directed delivery. Chem. Commun. 2010, 46, 249–251. [Google Scholar] [CrossRef]
- Kalantarian, P.; Najafabadi, A.R.; Haririan, I.; Vatanara, A.; Yamini, Y.; Darabi, M.; Gilani, K. Preparation of 5-fluorouracil nanoparticles by supercritical antisolvents for pulmonary delivery. Int. J. Nanomed. 2010, 5, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Deepthi, S.; AbdulGafoor, A.A.; Sivashanmugam, A.; Naira, S.V.; Jayakumar, R. Nanostrontium ranelate incorporated injectable hydrogel enhanced matrix production supporting chondrogenesis in vitro. J. Mater. Chem. B 2016, 4, 4092–4103. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, Y.; Ji, Q.; Qiu, L. Targeted delivery of anticancer drugs by aptamer AS1411 mediated Pluronic F127/cyclodextrin-linked polymer composite micelles. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; He, X.Y.; Liu, B.Y.; Xu, C.; Ai, S.L.; Zhuo, R.X.; Cheng, S.X. Aptamer-functionalized albumin-based nanoparticles for targeted drug delivery. Colloids Surf. B Biointerfaces 2018, 171, 24–30. [Google Scholar] [CrossRef]
- Berger, C.M.; Gaume, X.; Bouvet, P. The roles of nucleolin subcellular localization in cancer. Biochimie 2015, 113, 78–85. [Google Scholar] [CrossRef]
- Rata, D.M.; Cadinoiu, A.N.; Atanase, L.I.; Popa, M.; Mihai, C.T.; Solcan, C.; Ochiuz, L.; Vochita, G. Topical formulations containing aptamer-functionalized nanocapsules loaded with 5-fluorouracil—An innovative concept for the skin cancer therapy. Mater. Sci. Eng. C 2021, 119, 111591. [Google Scholar] [CrossRef]
- Guan, B.; Zhang, X. Aptamers as Versatile Ligands for Biomedical and Pharmaceutical Applications. Int. J. Nanomed. 2020, 15, 1059–1071. [Google Scholar] [CrossRef] [Green Version]
- Mercheş, I.; Agop, M. Differentiability and Fractality in Dynamics of Physical Systems; World Scientific Publisher: Singapore, 2016. [Google Scholar]
- Notalle, L. Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity and Quantum Mechanics; Imperial College Press: London, UK, 2011. [Google Scholar]
- Peptu, C.A.; Băcăiță, E.S.; Luțcanu, M.; Agop, M. Hydrogels based on alginates and carboxymethyl cellulose with modulated drug release—An experimental and theoretical study. Polymers 2021, 13, 4161. [Google Scholar] [CrossRef]
- Băcăiță, E.S.; Peptu, C.A.; Savin, C.L.; Luțcanu, M.; Agop, M. Manifest/non-manifest drug release patterns from polysaccharide based hydrogels—Case study on cyclodextrin—K carrageenan crosslinked hydrogels. Polymers 2021, 13, 4147. [Google Scholar] [CrossRef]
- Balaita, L.; Chailanb, J.F.; Nguyen, X.H.; Bacaita, S.; Popa, M. Hybrid Chitosan-Gelatine magnetic polymer particles for drug release. J. Optoelectron. Adv. Mater. 2014, 16, 1463–1471. [Google Scholar]
- Durdureanu-Angheluta, A.; Bacaita, S.; Radu, V.; Agop, L.; Ignat, C.M.; Uritu, S.M.; Pinteala, M. Mathematical Modelling Of The Release Profile of Anthraquinone-Derived Drugs Encapsulated On Magnetite Nanoparticles. Rev. Roum. Chim. 2013, 58, 217–221. [Google Scholar]
- Bacaita, E.S.; Bejinariu, C.; Zoltan, B.; Peptu, C.; Andrei, G.; Popa, M.; Magop, D.; Agop, M. Nonlinearities in drug release process from polymeric microparticles: Long–time-scale behaviour. J. Appl. Math. 2012, 2012, 653720. [Google Scholar] [CrossRef] [Green Version]
- Magop, D.; Băcăiţă, S.; Peptu, C.; Popa, M.; Agop, M. Non-differentiability at mesoscopic scale in drug release processes from polymer microparticles. Mater. Plast. 2012, 49, 101–105. [Google Scholar]
- Mandelbrot, B. The Fractal Geometry of Nature; W. H. Freeman Publishers: New York, NY, USA, 1982. [Google Scholar]
- Agop, M.; Paun, V.P. On the New Perspectives of Fractal Theory Fundaments and Applications; Romanian Academy Publishing House: Bucharest, Romania, 2017. [Google Scholar]
- Cristescu, C.P. Nonlinear Dynamics and Chaos Theoretical Fundaments and Applications; Romanian Academy Publishing House: Bucharest, Romania, 2008. [Google Scholar]
- Mazilu, N.; Agop, M. Skyrmions: A Great Finishing Touch to Classical Newtonian Philosophy, World Philosophy Series; Nova Science Publishers: New York, NY, USA, 2011. [Google Scholar]
Sample Code | ||||
---|---|---|---|---|
NCA1 | 1.52 | 1.36 | 3.22 | 4.44 |
C1NCA1 | 0.52 | 0.42 | 4.34 | 1.84 |
L4 | 1.52 | 1.26 | 1.80 | 2.90 |
C1L4 | 0.96 | 0.74 | 3.12 | 2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Băcăiță, E.S.; Rață, D.M.; Cadinoiu, A.N.; Ghizdovăț, V.; Agop, M.; Luca, A.-C. Drug Release from Nanoparticles (Polymeric Nanocapsules and Liposomes) Mimed through a Multifractal Tunnelling-Type Effect. Polymers 2023, 15, 1018. https://doi.org/10.3390/polym15041018
Băcăiță ES, Rață DM, Cadinoiu AN, Ghizdovăț V, Agop M, Luca A-C. Drug Release from Nanoparticles (Polymeric Nanocapsules and Liposomes) Mimed through a Multifractal Tunnelling-Type Effect. Polymers. 2023; 15(4):1018. https://doi.org/10.3390/polym15041018
Chicago/Turabian StyleBăcăiță, Elena Simona, Delia Mihaela Rață, Anca Niculina Cadinoiu, Vlad Ghizdovăț, Maricel Agop, and Alina-Costina Luca. 2023. "Drug Release from Nanoparticles (Polymeric Nanocapsules and Liposomes) Mimed through a Multifractal Tunnelling-Type Effect" Polymers 15, no. 4: 1018. https://doi.org/10.3390/polym15041018
APA StyleBăcăiță, E. S., Rață, D. M., Cadinoiu, A. N., Ghizdovăț, V., Agop, M., & Luca, A. -C. (2023). Drug Release from Nanoparticles (Polymeric Nanocapsules and Liposomes) Mimed through a Multifractal Tunnelling-Type Effect. Polymers, 15(4), 1018. https://doi.org/10.3390/polym15041018