Physical Chemical Investigation of Gamma-Irradiated Parchment for Preservation of Cultural Heritage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parchment Preparation
2.2. Gamma Irradiation of the Parchment
2.3. Mechanical Tests
2.4. ATR-FTIR Spectroscopy Characterization
3. Results and Discussion
3.1. Physical Chemical Properties of Unirradiated Parchment
3.2. Physical Chemical Properties of Gamma-Irradiated Parchment
- (a)
- Interval no. 1: 0 kGy (A)–3 kGy–6 kGy–10 kGy–0 kGy (B);
- (b)
- Interval no. 2: 0 kGy (B)–15 kGy–20 kGy–25 kGy–0 kGy (C);
- (c)
- Interval no. 3: 0 kGy (C)–35 kGy–50 kGy–100 kGy–0 kGy (D).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortella, L.; Albino, C.; Tran, Q.K.; Froment, K. 50 years of French experience in using gamma rays as a tool for cultural heritage remedial conservation. Rad. Phys. Chem. 2020, 171, 108726. [Google Scholar] [CrossRef]
- Moise, I.V.; Virgolici, M.; Negut, C.D.; Manea, M.; Alexandru, M.; Trandafir, L.; Zorila, F.L.; Talasman, C.M.; Manea, D.; Nisipeanu, S.; et al. Establishing the irradiation dose for paper decontamination. Rad. Phys. Chem. 2012, 81, 1045–1050. [Google Scholar] [CrossRef]
- Choi, J.I.; Lim, S. Inactivation of fungal contaminants on Korean traditional cashbox by gamma irradiation. Rad. Phys. Chem. 2016, 118, 70–74. [Google Scholar] [CrossRef]
- Drábková, K.; Ďurovič, M.; Kučerová, I. Influence of gamma radiation on properties of paper and textile fibres during disinfection. Rad. Phys. Chem. 2018, 152, 75–80. [Google Scholar] [CrossRef]
- Geba, M.; Lisa, G.; Ursescu, C.M.; Olaru, A.; Spiridon, I.; Leon, A.L.; Stanculescu, I. Gamma irradiation of protein-based textiles for historical collections decontamination. J. Thermal Anal. Calorim. 2014, 118, 977–985. [Google Scholar] [CrossRef]
- Kavkler, K.; Pucić, I.; Zalar, P.; Demšar, A.; Mihaljević, B. Is it safe to irradiate historic silk textile against fungi? Rad. Phys. Chem. 2018, 150, 101–110. [Google Scholar] [CrossRef]
- Takacs, E.; Wojnárovits, L.; Borsa, J.; Földváry, C.; Hargittai, P.; Zöld, O. Effect of γ-irradiation on cotton-cellulose. Rad. Phys. Chem. 1999, 55, 663–666. [Google Scholar] [CrossRef]
- Area, M.C.; Calvo, A.M.; Felissia, F.E.; Docters, A.; Miranda, M.V. Influence of dose and dose rate on the physical properties of commercial papers commonly used in libraries and archives. Rad. Phys. Chem. 2014, 96, 217–222. [Google Scholar] [CrossRef]
- Bicchieri, M.; Monti, M.; Piantanida, G.; Sodo, A. Effects of gamma irradiation on deteriorated paper. Rad. Phys. Chem. 2016, 125, 21–26. [Google Scholar] [CrossRef]
- Choi, J.I.; Chung, Y.J.; Lee, K.S.; Lee, J.W. Effect of radiation on disinfection and mechanical properties of Korean traditional paper, Hanji. Rad. Phys. Chem. 2012, 81, 1051–1054. [Google Scholar] [CrossRef]
- Kantoğlu, Ö.; Ergun, E.; Ozmen, D.; Halkman, H.B. A biological survey on the Ottoman Archive papers and determination of the D10 value. Rad. Phys. Chem. 2018, 144, 204–210. [Google Scholar] [CrossRef]
- Kodama, Y.; Rodrigues, O., Jr.; Garcia, R.H.L.; de Souza Santos, P.; Vasquez, P.A. Study of free radicals in gamma irradiated cellulose of cultural heritage materials using Electron Paramagnetic Resonance. Rad. Phys. Chem. 2016, 124, 169–173. [Google Scholar] [CrossRef]
- Trandafir, L.; Zorila, F.L.; Alexandru, M.; Ene, M.; Constantin, M.; Alistar, A.; Cutrubinis, M.; Iordache, O.; Stanculescu, R.I. Radioresistance of biodegradation fungi and its importance in establishing the decontamination dose. In Proceedings of the 5th International Conference on Advanced Materials and Systems (ICAMS), Bucharest, Romania, 23–25 October 2014; pp. 561–566. [Google Scholar]
- Marušić, K.; Pucić, I.; Desnica, V. Ornaments in radiation treatment of cultural heritage: Color and UV–Vis spectral changes in irradiated nacres. Rad. Phys. Chem. 2016, 124, 62–67. [Google Scholar] [CrossRef]
- Manea, M.M.; Moise, I.V.; Virgolici, M.; Negut, C.D.; Barbu, O.H.; Cutrubinis, M.; Fugaru, V.; Stanculescu, I.R.; Ponta, C.C. Spectroscopic evaluation of painted layer structural changes induced by gamma radiation in experimental models. Rad. Phys. Chem. 2012, 81, 160–167. [Google Scholar] [CrossRef]
- Manea, M.M.; Negut, C.D.; Stanculescu, I.R.; Ponta, C.C. Irradiation effects on canvas oil painting: Spectroscopic observations. Rad. Phys. Chem. 2012, 81, 1595–1599. [Google Scholar] [CrossRef]
- Negut, C.D.; Bercu, V.; Duliu, O.G. Defects induced by gamma irradiation in historical pigments. J. Cultural Heritage 2012, 13, 397–403. [Google Scholar] [CrossRef]
- Yoon, M.; Kim, D.W.; Choi, J.I.; Chung, Y.J.; Kang, D.I.; Kim, G.H.; Son, K.T.; Park, H.J.; Lee, J.W. Effect of gamma irradiation on Korean traditional multicolored paintwork. Rad. Phys. Chem. 2015, 115, 112–118. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Uses of Ionizing Radiation for Tangible Cultural Heritage Conservation; IAEA Radiation Technology series no. 6; IAEA: Vienna, Austria, 2017; Available online: https://www.iaea.org/publications/10937/uses-of-ionizing-radiation-for-tangible-cultural-heritage-conservation (accessed on 15 February 2023).
- Lungu, I.B.; Moise, V.I.; Cutrubinis, M.; Stanculescu, I.R. Study on mechanical proprieties of gamma irradiated leather and parchment. In Proceedings of the 5th International Conference on Advanced Materials and Systems, Bucharest, Romania, 23–25 October 2014; pp. 527–532. Available online: https://icams.ro/icamsresurse/2014/full_papers/5_Cultural_Heritage/05.pdf (accessed on 15 February 2023).
- Nunes, I.; Mesquita, N.; Verde, S.C.; Trigo, M.J.; Ferreira, A.; Carolino, M.M.; Portugal, A.; Botelho, M.L. Gamma radiation effects on physical properties of parchment documents: Assessment of Dmax. Rad. Physics Chem. 2012, 81, 1943–1946. [Google Scholar] [CrossRef]
- Csepregi, Á.; Szikszai, Z.; Targowski, P.; Sylwestrzak, M.; Müller, K.; Huszánk, R.; Angyal, A.; Donczo, B.; Kertesz, Z.; Szarka, M.; et al. Possible modifications of parchment during ion beam analysis. Herit. Sci. 2022, 10, 1–13. [Google Scholar] [CrossRef]
- Marušić, K.; Mlinarić, N.M.; Mihaljević, B. Radiation treatment of cultural heritage objects made of leather treated with common preservatives. Rad. Phys. Chem. 2022, 197, 110126. [Google Scholar] [CrossRef]
- Vadrucci, M.; De Bellis, G.; Mazzuca, C.; Mercuri, F.; Borgognoni, F.; Schifano, E.; Uccelletti, D.; Cicero, C. Effects of the ionizing radiation disinfection treatment on historical leather. Front. Mater. 2020, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Miu, L.; Badea, E. Parchment Manufacturing. In Parchment...a Story. The Unseen Face of Documents on Parchment Issued by the Royal Chancellery during the Time of Stefan cel Mare; Excelenta prin Cultura: Bucuresti, Romania, 2015; pp. 30–35. [Google Scholar]
- Poulsen, D.V.; Badea, E. (Eds.) Guidelines—Parchment Assessment Report, International Seminar and Workshop; Conservation and Restoration of Parchments; Civico Stampa: Torino, Italy, 2008. [Google Scholar]
- Kite, M.; Thomson, R. (Eds.) Conservation of Leather and Related Materials; Routledge: Oxfordshire, UK, 2006; pp. 202–224. [Google Scholar]
- Tiňo, R.; Vizárová, K.; Krčma, F. Plasma surface cleaning of cultural heritage objects. In Nanotechnologies and Nanomaterials for Diagnostic, Conservation and Restoration of Cultural Heritage; Elsevier: Amsterdam, The Netherlands, 2019; pp. 239–275. [Google Scholar]
- Kennedy, C.J.; Vest, M.; Cooper, M.; Wess, T.J. Laser cleaning of parchment: Structural, thermal and biochemical studies into the effect of wavelength and fluence. Appl. Surf. Sci. 2004, 227, 151–163. [Google Scholar] [CrossRef]
- Vadrucci, M.; Cicero, C.; Borgognoni, F.; Ceres, G.; Perini, N.; Migliore, L.; Mercuri, F.; Orazi, N.; Paoloni, S.; Rubechini, A. Parchment disinfection treatment by ionizing radiation. In Proceedings of the 2018 Metrology for Archaeology and Cultural Heritage (MetroArchaeo), Cassino, Italy, 22–24 October 2018; pp. 367–372. [Google Scholar] [CrossRef]
- Vadrucci, M.; Cicero, C.; Parisse, P.; Casalis, L.; De Bellis, G. Surface evaluation of the effect of X-rays irradiation on parchment artefacts through AFM and SEM. Appl. Surf. Sci. 2020, 513, 145881. [Google Scholar] [CrossRef]
- Vadrucci, M. A Machine for Ionizing Radiation Treatment of Bio-Deteriogens Infesting Artistic Objects. Quantum Beam Sci. 2022, 6, 33. [Google Scholar] [CrossRef]
- Vadrucci, M.; Cicero, C.; Mazucca, C.; Mercuri, F.; Missori, M.; Orazi, N.; Severini, L.; Zammit, U. Effect of X-ray and artificial aging on parchment. Eur. Phys. J. Plus 2021, 136, 1–16. [Google Scholar] [CrossRef]
- Carsote, C.; Şendrea, C.; Micu, M.C.; Adams, A.; Badea, E. Micro-DSC, FTIR-ATR and NMR MOUSE study of the dose-dependent effects of gamma irradiation on vegetable-tanned leather: The influence of leather thermal stability. Rad. Phys. Chem. 2021, 189, 109712. [Google Scholar] [CrossRef]
- Chirila, L.; Popescu, A.; Stanculescu, I.R.; Cutrubinis, M.; Cerempei, A.; Sandu, I. Gamma irradiation effects on natural dyeing performances of wool fabrics. Rev. Chim. 2016, 67, 2628–2633. [Google Scholar]
- Olariu, L.; Dumitriu, B.G.; Gaidau, C.; Stanca, M.; Tanase, L.M.; Ene, M.D.; Stanculescu, I.R.; Tablet, C. Bioactive Low Molecular Weight Keratin Hydrolysates for Improving Skin Wound Healing. Polymers 2022, 14, 1125. [Google Scholar] [CrossRef]
- Gaidau, C.; Stanculescu, I.R.; Stanca, M.; Cutrubinis, M.; Trandafir, L.; Alexandru, M.; Alexe, C.A. Gamma irradiation a green alternative for hides and leather conservation. Rad. Phys. Chem. 2021, 182, 109369. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lungu, I.B.; Miu, L.; Cutrubinis, M.; Stanculescu, I. Physical Chemical Investigation of Gamma-Irradiated Parchment for Preservation of Cultural Heritage. Polymers 2023, 15, 1034. https://doi.org/10.3390/polym15041034
Lungu IB, Miu L, Cutrubinis M, Stanculescu I. Physical Chemical Investigation of Gamma-Irradiated Parchment for Preservation of Cultural Heritage. Polymers. 2023; 15(4):1034. https://doi.org/10.3390/polym15041034
Chicago/Turabian StyleLungu, Ion Bogdan, Lucretia Miu, Mihalis Cutrubinis, and Ioana Stanculescu. 2023. "Physical Chemical Investigation of Gamma-Irradiated Parchment for Preservation of Cultural Heritage" Polymers 15, no. 4: 1034. https://doi.org/10.3390/polym15041034
APA StyleLungu, I. B., Miu, L., Cutrubinis, M., & Stanculescu, I. (2023). Physical Chemical Investigation of Gamma-Irradiated Parchment for Preservation of Cultural Heritage. Polymers, 15(4), 1034. https://doi.org/10.3390/polym15041034