Nitrocellulose Based Film-Forming Gels with Cinnamon Essential Oil for Covering Surface Wounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Gels Forming Films
2.3. Evaluation of Film Drying Rate
2.4. Assessment of Film Surface and Homogeneity Properties
2.5. Assessment of Surface Adhesiveness and Wound Adhesion
2.6. Evaluation of Film Flexibility
2.7. Evaluation of Water Vapor Permeation and Swelling
- WVTR—water vapor transmission rate; it is the amount of water vapor penetrated in grams per square centimeter in 1 h interval (g cm−2 d−1)
- W—change in weight (g),
- t—time (d),
- A—sample area (cm2).
2.8. Microbiological Evaluation of Gel Quality
2.9. Determination of Stability and pH Value of Film-Forming Gels
2.10. Qualitative and Quantitative Evaluation of Essential Oil Composition of Cinnamon Leaves
2.11. Statistical Analysis
3. Results and Discussion
3.1. Effect of ingredients on Film-Forming Gel Formation and Appearance of Films
3.2. Results of Drying Time Test of Films
3.3. Results of Evaluation of the Surface and Homogeneity Properties of the Films
3.4. The Results of the Tests on the Adhesiveness and Adhesion of the Films to the Surface
3.5. Results of Film Flexibility Tests
3.6. Water Vapor Penetration Test Results
3.7. Swelling Test Results of the Films
3.8. Microbiological Test Results
3.9. Stability Test Results
3.10. Evaluation of the pH Value of Film-Forming Gels
3.11. Results of Qualitative and Quantitative Analysis of Cinnamon Leaf Essential Oil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mu, X.; Yu, H.; Zhang, C.; Chen, X.; Cheng, Z.; Bai, R.; Wu, X.; Yu, Q.; Wu, C.; Diao, Y. Nano-porous nitrocellulose liquid bandage modulates cell and cytokine response and accelerates cutaneous wound healing in a mouse model. Carbohydr. Polym. 2016, 136, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Bowers, S.; Franco, E. Chronic Wounds: Evaluation and Management. Am. Fam. Physician 2020, 101, 8. [Google Scholar]
- Powers, J.G.; Higham, C.; Broussard, K.; Phillips, T.J. Wound healing and treating wounds. J. Am. Acad. Dermatol. 2016, 74, 607–625. [Google Scholar] [CrossRef] [PubMed]
- Gardner, S.E.; Frantz, R.A.; Doebbeling, B.N. The validity of the clinical signs and symptoms used to identify localized chronic wound infection. Wound Repair Regen. 2001, 9, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Parhi, R.; Goli, V.V.N. Design and optimization of film-forming gel of etoricoxib using research surface methodology. Drug Deliv. Transl. Res. 2020, 10, 498–514. [Google Scholar] [CrossRef]
- Kathe, K.; Kathpalia, H. Film forming systems for topical and transdermal drug delivery. Asian J. Pharm. Sci. 2017, 12, 487–497. [Google Scholar] [CrossRef]
- Van Bocxlaer, K.; McArthur, K.-N.; Harris, A.; Alavijeh, M.; Braillard, S.; Mowbray, C.E. Film-Forming Systems for the Delivery of DNDI-0690 to Treat Cutaneous Leishmaniasis. Pharmaceutics 2021, 13, 516. [Google Scholar] [CrossRef]
- Pünnel, L.C.; Lunter, D.J. Film-Forming Systems for Dermal Drug Delivery. Pharmaceutics 2021, 13, 932. [Google Scholar] [CrossRef]
- Tran, T.T.D.; Tran, P.H.L. Controlled Release Film Forming Systems in Drug Delivery: The Potential for Efficient Drug Delivery. Pharmaceutics 2019, 11, 290. [Google Scholar] [CrossRef] [Green Version]
- Bornare, S.S.; Aher, S.S.; Saudagar, R.B. A review: Film forming gel novel drug delivery system. Int. J. Curr. Pharm. Sci. 2018, 10, 25. [Google Scholar] [CrossRef] [Green Version]
- Kale, S.B.; Bachhav, R.S. A Review on Film Forming Gel. Int. J. Trend Sci. Res. Dev. 2021, 10, 966–974. [Google Scholar]
- Man, A.; Santacroce, L.; Iacob, R.; Mare, A.; Man, L. Antimicrobial Activity of Six Essential Oils Against a Group of Human Pathogens: A Comparative Study. Pathogens 2019, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Farias, A.P.P.; dos Monteiro, O.S.; da Silva, J.K.R.; Figueiredo, P.L.B.; Rodrigues, A.A.C.; Monteiro, I.N. Chemical composition and biological activities of two chemotype-oils from Cinnamomum verum J. Presl growing in North Brazil. J. Food Sci. Technol. 2020, 57, 3176–3183. [Google Scholar] [CrossRef]
- Shahina, Z.; El-Ganiny, A.M.; Minion, J.; Whiteway, M.; Sultana, T.; Dahms, T.E.S. Cinnamomum zeylanicum bark essential oil induces cell wall remodelling and spindle defects in Candida Albicans. Fungal Biol. Biotechnol. 2018, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Kallel, I.; Hadrich, B.; Gargouri, B.; Chaabane, A.; Lassoued, S.; Gdoura, R.; Bayoudh, A.; Ben Messaoud, E. Optimization of Cinnamon (Cinnamomum zeylanicum Blume) Essential Oil Extraction: Evaluation of Antioxidant and Antiproliferative Effects. Evid.-Based Complement. Altern. Med. 2019, 2019, 6498347. [Google Scholar] [CrossRef] [Green Version]
- Vij, N.N.; Saudagar, R.B. Formulation, development and evaluation of film-forming gel for prolonged dermal delivery of terbinafine hydrochloride. Int. J. Pharma Sci. Res. 2014, 5, 18. [Google Scholar]
- Momoh, F.U.; Boateng, J.S.; Richardson, S.C.W.; Chowdhry, B.Z.; Mitchell, J.C. Development and functional characterization of alginate dressing as potential protein delivery system for wound healing. Int. J. Biol. Macromol. 2015, 81, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Du, X.; Zhang, R.; Deng, L.; Dong, A.; Zhang, J. Bioadhesive film formed from a novel organic–inorganic hybrid gel for transdermal drug delivery system. Eur. J. Pharm. Biopharm. 2011, 79, 574–583. [Google Scholar] [CrossRef]
- Basha, R.K.; Konno, K.; Kani, H.; Kimura, T. Water Vapor Transmission Rate of Biomass Based Film Materials. Eng. Agric. Environ. Food 2011, 4, 37–42. [Google Scholar] [CrossRef]
- Pagano, C.; Puglia, D.; Luzi, F.; Michele, A.D.; Scuota, S.; Primavilla, S. Development and Characterization of Xanthan Gum and Alginate Based Bioadhesive Film for Pycnogenol Topical Use in Wound Treatment. Pharmaceutics 2021, 13, 324. [Google Scholar] [CrossRef]
- Nemati, M.; Hamidi, A.; Maleki Dizaj, S.; Javaherzadeh, V.; Lotfipour, F. An Overview on Novel Microbial Determination Methods in Pharmaceutical and Food Quality Control. Adv. Pharm. Bull. 2016, 6, 301–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, M.; Rout, P.K.; Misra, L.N.; Gupta, P.; Singh, N.; Darokar, M.P. Chemical composition and bioactivity of Boswellia serrata Roxb. essential oil in relation to geographical variation. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2017, 151, 623–629. [Google Scholar] [CrossRef]
- Wang, X.; Gong, L.; Jiang, H. Study on the Difference between Volatile Constituents of the Different Parts from Elsholtzia ciliata by SHS-GC-MS. Am. J. Anal. Chem. 2017, 08, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Geng, H.; Yuan, Z.; Fan, Q.; Dai, X.; Zhao, Y.; Wang, Z. Characterisation of cellulose films regenerated from acetone/water coagulants. Carbohydr. Polym. 2014, 102, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Pawar, V.M.; Nadkarni, V.S. Preparation of thin films of cellulose acetate-nitrocellulose blend for solid state nuclear track detection using spin coating technique. J. Radioanal. Nucl. Chem. 2020, 323, 1329–1338. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, K.S.; Seo, Y.G.; Lee, B.-J.; Park, Y.J.; Youn, Y.S. Novel sodium fusidate-loaded film-forming hydrogel with easy application and excellent wound healing. Int. J. Pharm. 2015, 495, 67–74. [Google Scholar] [CrossRef]
- Velaga, S.P.; Nikjoo, D.; Vuddanda, P.R. Experimental Studies and Modeling of the Drying Kinetics of Multicomponent Polymer Films. AAPS PharmSciTech 2018, 19, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Tapia-Blácido, D.R.; do Amaral Sobral, P.J.; Menegalli, F.C. Effect of drying conditions and plasticizer type on some physical and mechanical properties of amaranth flour films. LWT-Food Sci. Technol. 2013, 50, 392–400. [Google Scholar] [CrossRef] [Green Version]
- Fiume, M.M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C. Safety Assessment of Nitrocellulose and Collodion as Used in Cosmetics. Int. J. Toxicol. 2016, 35, 50S–59S. [Google Scholar] [CrossRef]
- Marangoni Júnior, L.; Jamróz, E.; Gonçalves S de, Á.; da Silva, R.G.; Alves, R.M.V.; Vieira, R.P. Preparation and characterization of sodium alginate films with propolis extract and nano-SiO2. Food Hydrocoll. Health 2022, 2, 100094. [Google Scholar] [CrossRef]
- Fan, W.; Zhou, J.; Ding, Y.; Xiao, Z. Fabrication and mechanism study of the nitrocellulose aqueous dispersions by solvent displacement method. J. Appl. Polym. Sci. 2023, 140, e53290. [Google Scholar] [CrossRef]
- Bagnoli, F.; Rappuoli, R.; Grandi, G. Staphylococcus aureus: Microbiology, Pathology, Immunology, Therapy and Prophylaxis. In Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2017; Volume 409. [Google Scholar] [CrossRef]
- Ranade, S.; Bajaj, A.; Londhe, V.; Kao, D.; Babul, N. Fabrication of Polymeric Film Forming Topical Gels. Int. J. Pharm. Sci. Rev. Res. 2014, 26, 306–313. [Google Scholar]
- Bharti, K.; Mittal, P.; Mishra, B. Formulation and characterization of fast dissolving oral films containing buspirone hydrochloride nanoparticles using design of experiment. J. Drug Deliv. Sci. Technol. 2019, 49, 420–432. [Google Scholar] [CrossRef]
- Lambers, H.; Piessens, S.; Bloem, A.; Pronk, H.; Finkel, P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci. 2006, 28, 359–370. [Google Scholar] [CrossRef]
- Percival, S.L.; McCarty, S.; Hunt, J.A.; Woods, E.J. The effects of pH on wound healing, biofilms, and antimicrobial efficacy: pH and wound repair. Wound Repair Regen. 2014, 22, 174–186. [Google Scholar] [CrossRef]
- Khalil, A.A.; ur Rahman, U.; Khan, M.R.; Sahar, A.; Mehmood, T.; Khan, M. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC Adv. 2017, 7, 32669–32681. [Google Scholar] [CrossRef] [Green Version]
Ingredients | Formulations | ||||||||
---|---|---|---|---|---|---|---|---|---|
5 K | 6 K | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Nitrocellulose | 13.4% | 15% | 11% | 15.4% | 15.4% | 16% | 13.4% | 15% | 15% |
Ethanol (96%) | 26.1% | 24.7% | 25.7% | 24.6% | 24.6% | 24.7% | 26.1% | 24.7% | 24.7% |
Ethyl acetate | 52.2% | 51.9% | 51.3% | 54.8% | 51.7% | 51% | 52.2% | 51.9% | 51.9% |
Castor oil | 6.3% | 6.4% | 10% | 4% | 6.3% | 6.3% | 6.3% | 6.4% | - |
Jojoba oil | - | - | - | - | - | - | - | - | 6.4% |
CLEO | - | - | - | - | - | - | 2% | 2% | - |
Tests | Formulations | |||
---|---|---|---|---|
5 K | 6 K | 5 | 6 | |
1 test * | 1 min 04 s | 0 min 56 s | 2 min 36 s | 1 min 27 s |
2 test * | 1 min 08 s | 0 min 44 s | 2 min 14 s | 1 min 25 s |
3 test * | 1 min 25 s | 0 min 52 s | 1 min 58 s | 1 min 15 s |
4 test ** | 2 min 51 s | 2 min 20 s | 2 min 47 s | 2 min 55 s |
5 test ** | 2 min 43 s | 2 min 12 s | 3 min 02 s | 2 min 20 s |
6 test ** | 2 min 36 s | 2 min 10 s | 3 min 10 s | 2 min 30 s |
Bacteria Strains | Formulations | |||||
---|---|---|---|---|---|---|
5M | 6M | 5FP | 6FP | 5KFP | 6KFP | |
S. aureus | - | - | - | - | - | - |
P. aeruginosa | - | - | - | - | - | - |
Days | Film Formulation 5 | Film Formulation 6 |
---|---|---|
Production day (0) | ||
7 | ||
14 | ||
21 | ||
28 |
Control | With CLEO | |
---|---|---|
Before test (production day) | ||
After test (28 days) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pudžiuvelytė, L.; Drulytė, E.; Bernatonienė, J. Nitrocellulose Based Film-Forming Gels with Cinnamon Essential Oil for Covering Surface Wounds. Polymers 2023, 15, 1057. https://doi.org/10.3390/polym15041057
Pudžiuvelytė L, Drulytė E, Bernatonienė J. Nitrocellulose Based Film-Forming Gels with Cinnamon Essential Oil for Covering Surface Wounds. Polymers. 2023; 15(4):1057. https://doi.org/10.3390/polym15041057
Chicago/Turabian StylePudžiuvelytė, Lauryna, Evelina Drulytė, and Jurga Bernatonienė. 2023. "Nitrocellulose Based Film-Forming Gels with Cinnamon Essential Oil for Covering Surface Wounds" Polymers 15, no. 4: 1057. https://doi.org/10.3390/polym15041057
APA StylePudžiuvelytė, L., Drulytė, E., & Bernatonienė, J. (2023). Nitrocellulose Based Film-Forming Gels with Cinnamon Essential Oil for Covering Surface Wounds. Polymers, 15(4), 1057. https://doi.org/10.3390/polym15041057