Influence of Surface Discharge on Resin Degradation in Decay-like Fracture of Composite Insulators
Abstract
:1. Introduction
2. Materials and Methods of Surface Discharge Test
2.1. Material and Experimental Setup
2.2. Results of Surface Discharge Test and Discussion
2.3. Composition Variation of GFRE Rod after Surface Discharge Test
3. Surface Discharge Tests under Different Conditions
3.1. Influence of Hydrolysis Resistance of Resin on Surface Discharge Test
3.2. Influence of Immersion in Nitric Acid on Surface Discharge Test
3.3. Influence of Glass Fiber on Surface Discharge Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Q.; Liang, X.; Chen, K.; Wu, C.; Liu, S. Surface Charge Properties of Epoxy Composites under DC Voltage Affected by Surface and Bulk Conductivity. Energies 2021, 14, 370. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Zhou, Y.; Huang, X. Moisture Absorption Characteristics of Nanoparticle-Doped Silicone Rubber and Its Influence Mechanism on Electrical Properties. Polymers 2021, 13, 1474. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liang, X.; Shen, Y.; Liu, S.; Zuo, Z.; Gao, Y. Lightning flashover characteristics of a full-scale AC 500 kV transmission tower with composite cross arms. Engineering 2022, in press. [Google Scholar] [CrossRef]
- Yang, D.; Cao, B.; Li, Z.; Yang, L.; Wu, Y. On-line monitoring, data analysis for electrolytic corrosion of ±800 kV high voltage direct current insulators. Int. J. Electr. Power Energy Syst. 2021, 131, 107097. [Google Scholar] [CrossRef]
- Liu, S.; Liu, S.; Wang, Q.; Zuo, Z.; Wei, L.; Chen, Z.; Liang, X. Improving surface performance of silicone rubber for composite insulators by multifunctional Nano-coating. Chem. Eng. J. 2023, 451, 138679. [Google Scholar] [CrossRef]
- Hao, Y.; Bi, J.; Wang, Q.; Yang, L. Interface temperature evolution exposed to arc discharges occurred on the uniform moist pollution layer of composite insulators based on interface fibre Bragg gratings. High Volt. 2022, 7, 763–770. [Google Scholar] [CrossRef]
- Liu, S.; Liang, X.; Liu, Y.; Wang, Q.; Liu, S.; Zuo, Z.; Bao, W.; Gao, Y.; Li, S. Influence of Liquid Type, Filler and Coupling Agent on the Interface Resistivity Between Silicone Rubber and Fiber Reinforced Plastic. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1207–1215. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, L.; Liu, Y.; Liao, R.; Wang, T.; Huang, H. Study on the detection method of holes in composite insulator rods. High Volt. 2021, 6, 873–880. [Google Scholar] [CrossRef]
- Xue, Y.; Li, X.; Zhang, D.; Wang, H.; Chen, Y.; Chen, Y. Comparison of ATH and SiO2 fillers filled silicone rubber composites for HTV insulators. Compos. Sci. Technol. 2018, 155, 137–143. [Google Scholar] [CrossRef]
- Wu, C.; Gao, Y.; Liang, X.; Gubanski, S.; Wang, Q.; Bao, W.; Li, S. Manifestation of Interactions of Nano-Silica in Silicone Rubber Investigated by Low-Frequency Dielectric Spectroscopy and Mechanical Tests. Polymers 2019, 11, 717. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Li, S.; Gao, Y.; Su, Z.; Zhou, J. Improving the outdoor insulation performance of Chinese EHV and UHV AC and DC overhead transmission lines. IEEE Electr. Insul. Mag. 2020, 36, 7–25. [Google Scholar] [CrossRef]
- Li, H.; Gu, P.; Watson, J.; Meng, J. Acid corrosion resistance and mechanism of E-glass fibers: Boron factor. J. Mater. Sci. 2013, 48, 3075–3087. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, X.; Lu, Y.; Wang, J.; Bao, W.; Li, S.; Wu, C.; Zuo, Z. Comparative Investigation on Fracture of Suspension High Voltage Composite Insulators: A Review—Part I: Fracture Morphology Characteristics. IEEE Electr. Insul. Mag. 2021, 37, 7–17. [Google Scholar] [CrossRef]
- Wang, J.; Liang, X.; Gao, Y. Failure Analysis of Decay-like Fracture of Composite Insulator. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 2503–2511. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, C.; Tu, Y.; Wang, C.; Xiao, P.; Akram, S. Growth Law of Electrical Tree in Glass/Epoxy Resin Composite. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 476–484. [Google Scholar] [CrossRef]
- Xu, H.; Xie, C.; Gou, B.; Wang, R.; Li, Y.; Yang, H.; Li, L. Reappearance of Typical Characteristics of FRP Core Rods in the Decay-Like Fracture Insulator. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1449–1456. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, X. Study on Decay-Like Fracture of Composite Insulator, Part II: Experimental Simulation and Preventive Method Discussion of Decay-Like Fracture. Proc. CSEE 2016, 36, 5070–5077+5132. [Google Scholar]
- Liang, X.; Dai, J. Analysis of the acid sources of a field brittle fractured composite insulator. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 870–876. [Google Scholar] [CrossRef]
- Liang, X.; Wang, J.; Dai, J. Surface micro-crack initiated brittle fracture in fiber reinforced plastic rod of composite insulator. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 368–374. [Google Scholar] [CrossRef]
- Liang, X.; Gao, Y. Study on Decay-Like Fracture of Composite Insulator: Part I- the Principal Character, Definition and Criterion of Decay-Like Fracture. Proc. CSEE 2016, 36, 4778–4786. [Google Scholar]
- Yuan, Z.; Tu, Y.; Li, R.; Zhang, F.; Gong, B.; Wang, C. Review on characteristics, heating sources and evolutionary processes of the operating composite insulators with abnormal temperature rise. CSEE J. Power Energy Syst. 2020, 8, 910–921. [Google Scholar]
- Zhong, Z.; Chen, Y.; Liu, Y.; Hou, S.; Geng, J. Study on the influence mechanism of ambient humidity on the temperature rise of decay-like composite insulators. High Volt. 2022, 7, 916–924. [Google Scholar] [CrossRef]
- Yuan, Z.; Tu, Y.; Jiang, H.; Wang, C.; Wang, C. Study on Heating Mechanism of GRP Rod in Composite Insulator. IET Sci. Meas. Technol. 2019, 13, 108–113. [Google Scholar] [CrossRef]
- Zhang, Z.; Pang, V.; Lu, M.; Gao, C.; Jiang, X. Study on decay-like fracture of 500 kV composite insulators: Infrared, ultraviolet and electric field distribution detection. IET Gener. Transm. Distrib. 2022, 16, 4132–4141. [Google Scholar] [CrossRef]
- Yuan, Z.; Tu, Y.; Wang, C.; Wang, C. Heating source of glass fibre reinforced polymer under AC and DC electric fields after hygrothermal ageing. IET Sci. Meas. Technol. 2020, 14, 797–802. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, X.; Liu, Y.; Bao, W.; Li, S.; Wu, C. Effect of electrical stress on glass fiber reinforced polymer used in high voltage composite insulator under wet environment. Compos. Sci. Technol. 2018, 155, 151–159. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, X.; Lu, Y.; Wang, J.; Bao, W.; Li, S.; Wu, C.; Zuo, Z. Comparative Investigation on Fracture of Suspension High Voltage Composite Insulators: A Review—Part II: Chemical Properties and Criteria System. IEEE Electr. Insul. Mag. 2021, 37, 18–30. [Google Scholar] [CrossRef]
- Abdulmajeed, A.; Ansari, M.; Atiqah, A.; Begum, S.; Nazim, A. Water Absorption Properties of Kenaf/Glass Reinforced Unsaturated Polyester Composites used in Insulator Rods. Int. J. Eng. Adv. Technol. 2019, 9, 4208–4212. [Google Scholar]
- Liang, X.; Bao, W.; Gao, Y. Decay-like fracture mechanism of silicone rubber composite insulator. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 110–119. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, C.; Jin, L.; Tu, Y.; Zhang, Y.; An, Z.; Zhao, Y. A Modified Langmuir Model for Moisture Diffusion in UGFRE of Composite Insulator Considering the Composite Degradation. Polymers 2022, 14, 2922. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.; Guidi, W.; Burnham, J.; Gorur, R.; Hall, J. Accelerated aging and flashover tests on 138 kV nonceramic line post insulators. IEEE Trans. Power Deliv. 1993, 8, 325–336. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Bao, W.; Gao, Y.; Liu, S.; Liu, S.; Zuo, Z.; Wu, C.; Liang, X. Influence of Surface Discharge on Resin Degradation in Decay-like Fracture of Composite Insulators. Polymers 2023, 15, 790. https://doi.org/10.3390/polym15040790
Wang Q, Bao W, Gao Y, Liu S, Liu S, Zuo Z, Wu C, Liang X. Influence of Surface Discharge on Resin Degradation in Decay-like Fracture of Composite Insulators. Polymers. 2023; 15(4):790. https://doi.org/10.3390/polym15040790
Chicago/Turabian StyleWang, Qian, Weining Bao, Yanfeng Gao, Shuqi Liu, Shuming Liu, Zhou Zuo, Chao Wu, and Xidong Liang. 2023. "Influence of Surface Discharge on Resin Degradation in Decay-like Fracture of Composite Insulators" Polymers 15, no. 4: 790. https://doi.org/10.3390/polym15040790
APA StyleWang, Q., Bao, W., Gao, Y., Liu, S., Liu, S., Zuo, Z., Wu, C., & Liang, X. (2023). Influence of Surface Discharge on Resin Degradation in Decay-like Fracture of Composite Insulators. Polymers, 15(4), 790. https://doi.org/10.3390/polym15040790