Energy Consumption vs. Tensile Strength of Poly[methyl methacrylate] in Material Extrusion 3D Printing: The Impact of Six Control Settings
Abstract
:1. Introduction
- Quantify the energy demands when manufacturing parts with the PMMA polymer, with the MEX 3D printing process.
- Identify the effect of six generic, machine-independent 3D printing settings on the energy consumption and the mechanical properties of PMMA parts in MEX 3D printing.
- Analyze and optimize the energy consumption and the mechanical properties of these six 3D printing settings studied, aiming to provide a road map for future use.
- Contribute to the Increase of the sustainability of the MEX 3D printing process and the increase of the performance of the parts build with the process.
2. Materials and Methods
2.1. Materials
2.2. Filament Examination and Thermal Properties
2.3. Specimens Fabrication
2.4. Experimental Process and Samples Characterization
2.5. Energy Indicators
2.6. DOE and Regression Analysis
3. Results
3.1. Thermal Properties and Morphological Analysis
3.2. Taguchi Design and Experimental Results
3.3. Statistical Analysis
- Printing time (s): LT (mm) values result in a scattered pattern, except for the cases of 0.20 mm and 0.25 mm, in which printing-time values are gathered around three different values, which is not a clear compact response. Still, values are rather condensed around these values. For the PS (mm/s) control parameter, printing-time (s) values are scattered in all its levels.
- Part weight (g): both PS (mm/s) and NT (°C) control parameters resulted in a scattered response in the part-weight (g) indicator in all their levels.
- Tensile strength (MPa): both RDA (deg) and PS (mm/s) control parameters caused a scattered response in the tensile-strength (MPa) indicator in all their levels.
- EPC (MJ): both LT (mm) and NT (°C) control parameters caused a scattered response in the EPC (MJ) indicator in all their levels.
3.4. Regression Analysis
3.5. Confirmation Run
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
3DP | 3D printing |
ABS | Acrylonitrile Butadiene Styrene |
AM | Additive manufacturing |
ANOVA | Analysis of variances |
BT | Bed temperature |
DF | Degrees of freedom |
DOE | Design of experiment |
DSC | Differential scanning calorimetry |
E | Tensile modulus of elasticity |
EPC | Energy printing consumption |
FFF | Fused filament fabrication |
ID | Infill density |
LT | Layer thickness |
MEP | Main effect plot |
MEX | Material extrusion |
NT | Nozzle temperature |
ORA | Orientation angle |
PA | Polyamide |
PC | Polycarbonate |
PMMA | Poly[methyl methacrylate] |
PLA | Polylactic acid |
PT | Printing time |
PS | Printing speed |
RDA | Raster deposition angle |
QRM | Quadratic regression model |
RQRM | Reduced quadratic regression model |
sB | Compression strength |
SEM | Scanning electron microscopy |
SPE | Specific printing energy |
SPP | Specific printing power |
Tg | Glass transition temperature |
TGA | Thermogravimetric analysis |
References
- Bakhtiari, H.; Aamir, M.; Tolouei-Rad, M. Effect of 3D Printing Parameters on the Fatigue Properties of Parts Manufactured by Fused Filament Fabrication: A Review. Appl. Sci. 2023, 13, 904. [Google Scholar]
- Vidakis, N.; Vairis, A.; Petousis, M.; Savvakis, K.; Kechagias, J. Fused deposition modelling parts tensile strength characterisation. Acad. J. Manuf. Eng. 2016, 14, 87–94. [Google Scholar]
- Vidakis, N.; David, C.N.; Petousis, M.; Sagris, D.; Mountakis, N. Optimization of key quality indicators in material extrusion 3D printing of acrylonitrile butadiene styrene: The impact of critical process control parameters on the surface roughness, dimensional accuracy, and porosity. Mater. Today Commun. 2022, 34, 105171. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Kechagias, J.D. A comprehensive investigation of the 3D printing parameters’ effects on the mechanical response of polycarbonate in fused filament fabrication. Prog. Addit. Manuf. 2022, 7, 713–722. [Google Scholar] [CrossRef]
- Cantrell, J.T.; Rohde, S.; Damiani, D.; Gurnani, R.; DiSandro, L.; Anton, J.; Young, A.; Jerez, A.; Steinbach, D.; Kroese, C.; et al. Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyp. J. 2017, 23, 811–824. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, J.E.; Lee, H.B.; Park, J.; Lee, N.K.; Son, Y.; Park, S.H. 3D printing of bio-based polycarbonate and its potential applications in ecofriendly indoor manufacturing. Addit. Manuf. 2020, 31, 100974. [Google Scholar] [CrossRef]
- Gupta, A.; Fidan, I.; Hasanov, S.; Nasirov, A. Processing, mechanical characterization, and micrography of 3D-printed short carbon fiber reinforced polycarbonate polymer matrix composite material. Int. J. Adv. Manuf. Technol. 2020, 107, 3185–3205. [Google Scholar] [CrossRef]
- Vidakis, N.; David, C.; Petousis, M.; Sagris, D.; Mountakis, N.; Moutsopoulou, A. The effect of six key process control parameters on the surface roughness, dimensional accuracy, and porosity in material extrusion 3D printing of polylactic acid: Prediction models and optimization supported by robust design analysis. Adv. Ind. Manuf. Eng. 2022, 5, 100104. [Google Scholar] [CrossRef]
- Kechagias, J.D.; Zaoutsos, S.P.; Chaidas, D.; Vidakis, N. Multi-parameter optimization of PLA/Coconut wood compound for Fused Filament Fabrication using Robust Design. Int. J. Adv. Manuf. Technol. 2022, 119, 4317–4328. [Google Scholar] [CrossRef]
- Subramaniam, S.R.; Samykano, M.; Selvamani, S.K.; Ngui, W.K.; Kadirgama, K.; Sudhakar, K.; Idris, M.S. 3D printing: Overview of PLA progress. AIP Conf. Proc. 2019, 2059, 20015. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Kechagias, J.D. Parameter effects and process modelling of Polyamide 12 3D-printed parts strength and toughness. Mater. Manuf. Process. 2022, 37, 1358–1369. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Mountakis, N.; Maravelakis, E.; Zaoutsos, S.; Kechagias, J.D. Mechanical response assessment of antibacterial PA12/TiO2 3D printed parts: Parameters optimization through artificial neural networks modeling. Int. J. Adv. Manuf. Technol. 2022, 121, 785–803. [Google Scholar] [CrossRef]
- Kechagias, J.D.; Vidakis, N. Parametric optimization of material extrusion 3D printing process: An assessment of Box-Behnken vs. full-factorial experimental approach. Int. J. Adv. Manuf. Technol. 2022, 121, 3163–3172. [Google Scholar] [CrossRef]
- Zhu, D.; Ren, Y.; Liao, G.; Jiang, S.; Liu, F.; Guo, J.; Xu, G. Thermal and mechanical properties of polyamide 12/graphene nanoplatelets nanocomposites and parts fabricated by fused deposition modeling. J. Appl. Polym. Sci. 2017, 134, 45332. [Google Scholar] [CrossRef]
- Kam, M.; İpekçi, A.; Şengül, Ö. Investigation of the effect of FDM process parameters on mechanical properties of 3D printed PA12 samples using Taguchi method. J. Thermoplast. Compos. Mater. 2023, 36, 307–325. [Google Scholar] [CrossRef]
- Kechagias, J.D.; Vidakis, N.; Petousis, M. Parameter effects and process modeling of FFF-TPU mechanical response. Mater. Manuf. Process. 2021, 38, 341–351. [Google Scholar] [CrossRef]
- Rodríguez-Parada, L.; de la Rosa, S.; Mayuet, P.F. Influence of 3D-Printed TPU Properties for the Design of Elastic Products. Polymers 2021, 13, 2519. [Google Scholar]
- Das, S.C.; Paul, D.; Grammatikos, S.A.; Siddiquee, M.A.B.; Papatzani, S.; Koralli, P.; Islam, J.M.M.; Khan, M.A.; Shauddin, S.M.; Khan, R.A.; et al. Effect of stacking sequence on the performance of hybrid natural/synthetic fiber reinforced polymer composite laminates. Compos. Struct. 2021, 276, 114525. [Google Scholar] [CrossRef]
- Kechagias, J.D.; Vidakis, N.; Petousis, M.; Mountakis, N. A multi-parametric process evaluation of the mechanical response of PLA in FFF 3D printing. Mater. Manuf. Process. 2022, 1–13. [Google Scholar] [CrossRef]
- Rajkumar, A.; Ferrás, L.L.; Fernandes, C.; Carneiro, O.S.; Becker, M.; Nóbrega, J.M. Design Guidelines to Balance the Flow Distribution in Complex Profile Extrusion Dies. Int. Polym. Process. 2017, 32, 58–71. [Google Scholar] [CrossRef]
- Parandoush, P.; Lin, D. A review on additive manufacturing of polymer-fiber composites. Compos. Struct. 2017, 182, 36–53. [Google Scholar] [CrossRef]
- Ferrás, L.L.; Sitotaw, Y.; Fernandes, C.; Nóbrega, J.M.; Carneiro, O.S. A numerical and experimental study on weld lines formation and strength in extrusion. Polym. Eng. Sci. 2018, 58, 249–260. [Google Scholar] [CrossRef]
- Song, Y.; Li, Y.; Song, W.; Yee, K.; Lee, K.Y.; Tagarielli, V.L. Measurements of the mechanical response of unidirectional 3D-printed PLA. Mater. Des. 2017, 123, 154–164. [Google Scholar] [CrossRef]
- Jiang, Z.; Diggle, B.; Tan, M.L.; Viktorova, J.; Bennett, C.W.; Connal, L.A. Extrusion 3D Printing of Polymeric Materials with Advanced Properties. Adv. Sci. 2020, 7, 2001379. [Google Scholar] [CrossRef]
- Rajkumar, A.; Habla, F.; Fernandes, C.; Mould, S.; Sacramento, A.; Carneiro, O.S.; Nóbrega, J.M. Profile Extrusion: Experimental Assessment of a Numerical Code to Model the Temperature Evolution in the Cooling/Calibration Stage. Polym. Eng. Sci. 2019, 59, 2367–2376. [Google Scholar] [CrossRef]
- Geng, P.; Zhao, J.; Wu, W.; Ye, W.; Wang, Y.; Wang, S.; Zhang, S. Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament. J. Manuf. Process. 2019, 37, 266–273. [Google Scholar] [CrossRef]
- Harris, M.; Potgieter, J.; Ray, S.; Archer, R.; Arif, K.M. Preparation and characterization of thermally stable ABS/HDPE blend for fused filament fabrication. Mater. Manuf. Process. 2020, 35, 230–240. [Google Scholar] [CrossRef]
- Lavecchia, F.; Guerra, M.G.; Galantucci, L.M. Chemical vapor treatment to improve surface finish of 3D printed polylactic acid (PLA) parts realized by fused filament fabrication. Prog. Addit. Manuf. 2022, 7, 65–75. [Google Scholar] [CrossRef]
- Zandi, M.D.; Jerez-Mesa, R.; Lluma-Fuentes, J.; Jorba-Peiro, J.; Travieso-Rodriguez, J.A. Study of the manufacturing process effects of fused filament fabrication and injection molding on tensile properties of composite PLA-wood parts. Int. J. Adv. Manuf. Technol. 2020, 108, 1725–1735. [Google Scholar] [CrossRef]
- Weake, N.; Pant, M.; Sheroan, A.; Haleem, A.; Kumar, H. Optimising Process Parameters of Fused Filament Fabrication to Achieve Optimum Tensile Strength. Procedia Manuf. 2020, 51, 704–709. [Google Scholar] [CrossRef]
- Abeykoon, C.; McMillan, A.; Nguyen, B.K. Energy efficiency in extrusion-related polymer processing: A review of state of the art and potential efficiency improvements. Renew. Sustain. Energy Rev. 2021, 147, 111219. [Google Scholar] [CrossRef]
- Vidakis, N.; Kechagias, J.D.; Petousis, M.; Vakouftsi, F.; Mountakis, N. The effects of FFF 3D printing parameters on energy consumption. Mater. Manuf. Process. 2022, 1–18. [Google Scholar] [CrossRef]
- Sarı, A.; Alkan, C.; Biçer, A.; Altuntaş, A.; Bilgin, C. Micro/nanoencapsulated n-nonadecane with poly(methyl methacrylate) shell for thermal energy storage. Energy Convers. Manag. 2014, 86, 614–621. [Google Scholar] [CrossRef]
- Meng, Q.; Li, W.; Zheng, Y.; Zhang, Z. Effect of poly(methyl methacrylate) addition on the dielectric and energy storage properties of poly(vinylidene fluoride). J. Appl. Polym. Sci. 2010, 116, 2674–2684. [Google Scholar] [CrossRef]
- Gupta, R.; Kumar, V.; Goyal, P.K.; Kumar, S. Optical characterization of poly(methyl methacrylate) implanted with low energy ions. Appl. Surf. Sci. 2012, 263, 334–338. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, P.; Huang, X. Poly(vinylidene fluoride) terpolymer and poly(methyl methacrylate) composite films with superior energy storage performance for electrostatic capacitor application. Compos. Sci. Technol. 2019, 179, 115–124. [Google Scholar] [CrossRef]
- Chi, Q.; Zhou, Y.; Yin, C.; Zhang, Y.; Zhang, C.; Zhang, T.; Feng, Y.; Zhang, Y.; Chen, Q. A blended binary composite of poly(vinylidene fluoride) and poly(methyl methacrylate) exhibiting excellent energy storage performances. J. Mater. Chem. C 2019, 7, 14148–14158. [Google Scholar] [CrossRef]
- Morales-Gómez, J.A.; Garcia-Estrada, E.; Leos-Bortoni, J.E.; Delgado-Brito, M.; Flores-Huerta, L.E.; De La Cruz-Arriaga, A.A.; Torres-Díaz, L.J.; de León, Á.R.M.-P. Cranioplasty with a low-cost customized polymethylmethacrylate implant using a desktop 3D printer. J. Neurosurg. JNS 2019, 130, 1721–1727. [Google Scholar] [CrossRef]
- Petersmann, S.; Spoerk, M.; Huber, P.; Lang, M.; Pinter, G.; Arbeiter, F. Impact Optimization of 3D-Printed Poly(methyl methacrylate) for Cranial Implants. Macromol. Mater. Eng. 2019, 304, 1900263. [Google Scholar] [CrossRef]
- Scerrati, A.; Travaglini, F.; Gelmi, C.A.E.; Lombardo, A.; De Bonis, P.; Cavallo, M.A.; Zamboni, P. Patient specific Polymethyl methacrylate customised cranioplasty using 3D printed silicone moulds: Technical note. Int. J. Med. Robot. Comput. Assist. Surg. 2022, 18, e2353. [Google Scholar] [CrossRef]
- Caro-Osorio, E.; De la Garza-Ramos, R.; Martínez-Sánchez, S.R.; Olazarán-Salinas, F. Cranioplasty with polymethylmethacrylate prostheses fabricated by hand using original bone flaps: Technical note and surgical outcomes. Surg. Neurol. Int. 2013, 4, 136. [Google Scholar] [CrossRef]
- Chamo, D.; Msallem, B.; Sharma, N.; Aghlmandi, S.; Kunz, C.; Thieringer, F.M. Accuracy Assessment of Molded, Patient-Specific Polymethylmethacrylate Craniofacial Implants Compared to Their 3D Printed Originals. J. Clin. Med. 2020, 9, 832. [Google Scholar]
- De Oliveira Limírio, J.P.J.; de Luna Gomes, J.M.; Alves Rezende, M.C.R.; Lemos, C.A.A.; Rosa, C.D.D.R.D.; Pellizzer, E.P. Mechanical properties of polymethyl methacrylate as a denture base: Conventional versus CAD-CAM resin—A systematic review and meta-analysis of in vitro studies. J. Prosthet. Dent. 2022, 128, 1221–1229. [Google Scholar] [CrossRef]
- Salgado, H.; Gomes, A.T.P.C.; Duarte, A.S.; Ferreira, J.M.F.; Fernandes, C.; Figueiral, M.H.; Mesquita, P. Antimicrobial Activity of a 3D-Printed Polymethylmethacrylate Dental Resin Enhanced with Graphene. Biomedicines 2022, 10, 2607. [Google Scholar]
- Mills, D.K.; Jammalamadaka, U.; Tappa, K.; Weisman, J. Studies on the cytocompatibility, mechanical and antimicrobial properties of 3D printed poly(methyl methacrylate) beads. Bioact. Mater. 2018, 3, 157–166. [Google Scholar] [CrossRef]
- Letchmanan, K.; Shen, S.-C.; Ng, W.K.; Kingshuk, P.; Shi, Z.; Wang, W.; Tan, R.B.H. Mechanical properties and antibiotic release characteristics of poly(methyl methacrylate)-based bone cement formulated with mesoporous silica nanoparticles. J. Mech. Behav. Biomed. Mater. 2017, 72, 163–170. [Google Scholar] [CrossRef]
- Street, D.P.; Mah, A.H.; Patterson, S.; Pickel, D.L.; Bergman, J.A.; Stein, G.E.; Messman, J.M.; Kilbey, S.M. Interfacial interactions in PMMA/silica nanocomposites enhance the performance of parts created by Fused Filament Fabrication. Polymer 2018, 157, 87–94. [Google Scholar] [CrossRef]
- Mikhalchan, A.; Tay, T.E.; Banas, A.M.; Banas, K.; Breese, M.B.H.; Borkowska, A.M.; Nowakowski, M.; Kwiatek, W.M.; Paluszkiewicz, C. Development of continuous CNT fibre-reinforced PMMA filaments for additive manufacturing: A case study by AFM-IR nanoscale imaging. Mater. Lett. 2020, 262, 127182. [Google Scholar] [CrossRef]
- Lee, K.-H.; Rhee, S.-H. The mechanical properties and bioactivity of poly(methyl methacrylate)/SiO2–CaO nanocomposite. Biomaterials 2009, 30, 3444–3449. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, T.D.; Feng, H.X.; Zhang, H. Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage. Renew. Energy 2011, 36, 1814–1820. [Google Scholar] [CrossRef]
- Alkan, C.; Sari, A. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Sol. Energy 2008, 82, 118–124. [Google Scholar] [CrossRef]
- Liu, F.; Li, Q.; Li, Z.; Liu, Y.; Dong, L.; Xiong, C.; Wang, Q. Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics. Compos. Sci. Technol. 2017, 142, 139–144. [Google Scholar] [CrossRef]
- Ash, B.J.; Siegel, R.W.; Schadler, L.S. Mechanical Behavior of Alumina/Poly(methyl methacrylate) Nanocomposites. Macromolecules 2004, 37, 1358–1369. [Google Scholar] [CrossRef]
- Van de Voorde, B.; Katalagarianakis, A.; Huysman, S.; Toncheva, A.; Raquez, J.-M.; Duretek, I.; Holzer, C.; Cardon, L.; Bernaerts, K.V.; Van Hemelrijck, D.; et al. Effect of extrusion and fused filament fabrication processing parameters of recycled poly(ethylene terephthalate) on the crystallinity and mechanical properties. Addit. Manuf. 2022, 50, 102518. [Google Scholar] [CrossRef]
- Suresh, S.S.; Mohanty, S.; Nayak, S.K. Investigation into the mechanical and thermal properties of poly(methyl methacrylate) recovered from light guidance panels with a focus on future remanufacturing and sustainable waste management. J. Remanuf. 2017, 7, 217–233. [Google Scholar] [CrossRef] [Green Version]
- Wan, A.M.D.; Devadas, D.; Young, E.W.K. Recycled polymethylmethacrylate (PMMA) microfluidic devices. Sens. Actuators B Chem. 2017, 253, 738–744. [Google Scholar] [CrossRef]
- Prado, A.R.; Leal-Junior, A.G.; Marques, C.; Leite, S.; de Sena, G.L.; Machado, L.C.; Frizera, A.; Ribeiro, M.R.N.; Pontes, M.J. Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems. Opt. Express 2017, 25, 30051–30060. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Hirao, M.; Ookubo, T.; Sasaki, A. Design of recycling system for poly(methyl methacrylate) (PMMA). Part 1: Recycling scenario analysis. Int. J. Life Cycle Assess. 2014, 19, 120–129. [Google Scholar] [CrossRef]
- Moens, E.K.C.; De Smit, K.; Marien, Y.W.; Trigilio, A.D.; Van Steenberge, P.H.M.; Van Geem, K.M.; Dubois, J.-L.; D’hooge, D.R. Progress in Reaction Mechanisms and Reactor Technologies for Thermochemical Recycling of Poly(methyl methacrylate). Polymers 2020, 12, 1667. [Google Scholar]
- Lee, H.; Lee, J.W.; Hong, I.-K.; Lee, S. Optimal two-stage single-screw design for polymethyl methacrylate extrusion by taguchi technique. J. Ind. Eng. Chem. 2014, 20, 1119–1125. [Google Scholar] [CrossRef]
- Helmy, M.O.; Fath El-Bab, A.R.; El-Hofy, H.A. Fabrication and characterization of polymethyl methacrylate microchannel using dry and underwater CO2 laser. Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst. 2018, 232, 23–30. [Google Scholar] [CrossRef]
- Mohammad Khanlou, H.; Chin Ang, B.; Talebian, S.; Muhammad Afifi, A.; Andriyana, A. Electrospinning of polymethyl methacrylate nanofibers: Optimization of processing parameters using the Taguchi design of experiments. Text. Res. J. 2014, 85, 356–368. [Google Scholar] [CrossRef]
- Mahmoudian, M.; Poursattar Marjani, A.; Hasanzadeh, R.; Moradian, M.; Mamaghani Shishavan, S. Optimization of mechanical properties of in situ polymerized poly(methyl methacrylate)/alumina nanoparticles nanocomposites using Taguchi approach. Polym. Bull. 2020, 77, 2837–2854. [Google Scholar] [CrossRef]
- Al-Dwairi, Z.N.; Al Haj Ebrahim, A.A.; Baba, N.Z. A Comparison of the Surface and Mechanical Properties of 3D Printable Denture-Base Resin Material and Conventional Polymethylmethacrylate (PMMA). J. Prosthodont. 2022, 32, 40–48. [Google Scholar] [CrossRef]
- Dimitrova, M.; Corsalini, M.; Kazakova, R.; Vlahova, A.; Chuchulska, B.; Barile, G.; Capodiferro, S.; Kazakov, S. Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review. J. Compos. Sci. 2022, 6, 87. [Google Scholar]
- Lourinho, C.; Salgado, H.; Correia, A.; Fonseca, P. Mechanical Properties of Polymethyl Methacrylate as Denture Base Material: Heat-Polymerized vs. 3D-Printed—Systematic Review and Meta-Analysis of In Vitro Studies. Biomedicines 2022, 10, 2565. [Google Scholar]
- Mangal, U.; Min, Y.J.; Seo, J.-Y.; Kim, D.-E.; Cha, J.-Y.; Lee, K.-J.; Kwon, J.-S.; Choi, S.-H. Changes in tribological and antibacterial properties of poly(methyl methacrylate)-based 3D-printed intra-oral appliances by incorporating nanodiamonds. J. Mech. Behav. Biomed. Mater. 2020, 110, 103992. [Google Scholar] [CrossRef]
- Petersmann, S.; Spoerk, M.; Van De Steene, W.; Üçal, M.; Wiener, J.; Pinter, G.; Arbeiter, F. Mechanical properties of polymeric implant materials produced by extrusion-based additive manufacturing. J. Mech. Behav. Biomed. Mater. 2020, 104, 103611. [Google Scholar] [CrossRef]
- Espalin, D.; Arcaute, K.; Rodriguez, D.; Medina, F.; Posner, M.; Wicker, R. Fused deposition modeling of patient-specific polymethylmethacrylate implants. Rapid Prototyp. J. 2010, 16, 164–173. [Google Scholar] [CrossRef]
- Bardelcik, A.; Yang, S.; Alderson, F.; Gadsden, A. The effect of wash treatment on the mechanical properties and energy absorption potential of a 3D printed polymethyl methacrylate (PMMA). Mater. Today Commun. 2021, 26, 101728. [Google Scholar] [CrossRef]
- Chen, S.-G.; Yang, J.; Jia, Y.-G.; Lu, B.; Ren, L. TiO2 and PEEK Reinforced 3D Printing PMMA Composite Resin for Dental Denture Base Applications. Nanomaterials 2019, 9, 1049. [Google Scholar]
- Vidakis, N.; Petousis, M.; Mountakis, N.; Kechagias, J.D. Optimization of Friction Stir Welding Parameters in Hybrid Additive Manufacturing: Weldability of 3D-Printed Poly(methyl methacrylate) Plates. J. Manuf. Mater. Process. 2022, 6, 77. [Google Scholar]
- Miroshnychenko, I.; De Massis, A. Sustainability practices of family and nonfamily firms: A worldwide study. Technol. Forecast. Soc. Change 2022, 174, 121079. [Google Scholar] [CrossRef]
- Wang, J.; Ma, X.; Zhang, J.; Zhao, X. Impacts of digital technology on energy sustainability: China case study. Appl. Energy 2022, 323, 119329. [Google Scholar] [CrossRef]
- Laari, S.; Töyli, J.; Ojala, L. Supply chain perspective on competitive strategies and green supply chain management strategies. J. Clean. Prod. 2017, 141, 1303–1315. [Google Scholar] [CrossRef]
- Ahmadi-Gh, Z.; Bello-Pintado, A. Why is manufacturing not more sustainable? The effects of different sustainability practices on sustainability outcomes and competitive advantage. J. Clean. Prod. 2022, 337, 130392. [Google Scholar] [CrossRef]
- Cao, X.; Kannaiah, D.; Ye, L.; Khan, J.; Shabbir, M.S.; Bilal, K.; Tabash, M.I. Does sustainable environmental agenda matter in the era of globalization? The relationship among financial development, energy consumption, and sustainable environmental-economic growth. Environ. Sci. Pollut. Res. 2022, 29, 30808–30818. [Google Scholar] [CrossRef]
- Ramesh, P.; Vinodh, S. Analysis of factors influencing energy consumption of material extrusion-based additive manufacturing using interpretive structural modelling. Rapid Prototyp. J. 2021, 27, 1363–1377. [Google Scholar] [CrossRef]
- Freitas, D.; Almeida, H.A.; Bártolo, H.; Bártolo, P.J. Sustainability in extrusion-based additive manufacturing technologies. Prog. Addit. Manuf. 2016, 1, 65–78. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, Q.; Zhang, Y.; Li, T.; Zhang, H.C. Sustainability of 3D printing: A critical review and recommendations. In Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference 2016, Blacksburg, VA, USA, 27 June–1 July 2016; Volume 2, pp. 1–8. [Google Scholar] [CrossRef]
- Stoof, D.; Pickering, K. Sustainable composite fused deposition modelling filament using recycled pre-consumer polypropylene. Compos. Part B Eng. 2018, 135, 110–118. [Google Scholar] [CrossRef]
- Fico, D.; Rizzo, D.; Casciaro, R.; Corcione, C.E. A Review of Polymer-Based Materials for Fused Filament Recycled Materials. Polymers 2022, 14, 465. [Google Scholar] [CrossRef]
- Kumar, S.; Kazancoglu, Y.; Deniz, M.; Top, N.; Sahin, I. Optimizing fused deposition modelling parameters based on the design for additive manufacturing to enhance product sustainability. Comput. Ind. 2023, 145, 103833. [Google Scholar] [CrossRef]
- Dey, A.; Eagle, I.N.R.; Yodo, N. A review on filament materials for fused filament fabrication. J. Manuf. Mater. Process. 2021, 5, 69. [Google Scholar] [CrossRef]
- Suárez, L.; Domínguez, M. Sustainability and environmental impact of fused deposition modelling (FDM) technologies. Int. J. Adv. Manuf. Technol. 2020, 106, 1267–1279. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Reinicke, T. On the environmental impacts of 3D printing technology. Appl. Mater. Today 2020, 20, 100689. [Google Scholar] [CrossRef]
- Jung, W.-K.; Kim, H.; Park, Y.-C.; Lee, J.-W.; Ahn, S.-H. Smart sewing work measurement system using IoT-based power monitoring device and approximation algorithm. Int. J. Prod. Res. 2020, 58, 6202–6216. [Google Scholar] [CrossRef]
- Phadke, M.S. Quality Engineering Using Robust Design, 1st ed.; Prentice Hall PTR: Hoboken, NJ, USA, 1995; ISBN 0137451679. [Google Scholar]
- Sharma, G.; Vuppuluri, A.; Suresh, K. Essential work of fracture studies of 3D Printed PEEK (Poly-ether-ether-ketone) polymer. Eng. Fract. Mech. 2022, 271, 108656. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, W.; Li, Y.; Yang, W.; Wang, G. Flexural properties and fracture behavior of CF/PEEK in orthogonal building orientation by FDM: Microstructure and mechanism. Polymers 2019, 11, 656. [Google Scholar] [CrossRef]
- Swamidass, P.M. (Ed.) Mean Absolute Percentage Error (MAPE). In Encyclopedia of Production and Manufacturing Management; Springer: Boston, MA, USA, 2000; p. 462. ISBN 978-1-4020-0612-8. [Google Scholar]
- White, K.J. The Durbin-Watson Test for Autocorrelation in Nonlinear Models. Rev. Econ. Stat. 1992, 74, 370–373. [Google Scholar] [CrossRef]
- Khair, U.; Fahmi, H.; Hakim, S.A.; Rahim, R. Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error. J. Phys. Conf. Ser. 2017, 930, 12002. [Google Scholar] [CrossRef]
Run | ID | RDA | NT | PS | LT | BT |
---|---|---|---|---|---|---|
1 | 80 | 0.0 | 220 | 20 | 0.10 | 100 |
2 | 80 | 22.5 | 225 | 30 | 0.15 | 105 |
3 | 80 | 45.0 | 230 | 40 | 0.20 | 110 |
4 | 80 | 67.5 | 235 | 50 | 0.25 | 115 |
5 | 80 | 90.0 | 240 | 60 | 0.30 | 120 |
6 | 85 | 0.0 | 225 | 40 | 0.25 | 120 |
7 | 85 | 22.5 | 230 | 50 | 0.30 | 100 |
8 | 85 | 45.0 | 235 | 60 | 0.10 | 105 |
9 | 85 | 67.5 | 240 | 20 | 0.15 | 110 |
10 | 85 | 90.0 | 220 | 30 | 0.20 | 115 |
11 | 90 | 0.0 | 230 | 60 | 0.15 | 115 |
12 | 90 | 22.5 | 235 | 20 | 0.20 | 120 |
13 | 90 | 45.0 | 240 | 30 | 0.25 | 100 |
14 | 90 | 67.5 | 220 | 40 | 0.30 | 105 |
15 | 90 | 90.0 | 225 | 50 | 0.10 | 110 |
16 | 95 | 0.0 | 235 | 30 | 0.30 | 110 |
17 | 95 | 22.5 | 240 | 40 | 0.10 | 115 |
18 | 95 | 45.0 | 220 | 50 | 0.15 | 120 |
19 | 95 | 67.5 | 225 | 60 | 0.20 | 100 |
20 | 95 | 90.0 | 230 | 20 | 0.25 | 105 |
21 | 100 | 0.0 | 240 | 50 | 0.20 | 105 |
22 | 100 | 22.5 | 220 | 60 | 0.25 | 110 |
23 | 100 | 45.0 | 225 | 20 | 0.30 | 115 |
24 | 100 | 67.5 | 230 | 30 | 0.10 | 120 |
25 | 100 | 90.0 | 235 | 40 | 0.15 | 100 |
Run | Weight (g) | sB (MPa) | E (MPa) | Toughness (MJ/m3) |
---|---|---|---|---|
1 | 1.18 ± 0.04 | 40.85 ± 2.61 | 184.57 ± 4.25 | 7.75 ± 1.00 |
2 | 1.22 ± 0.02 | 31.25 ± 2.66 | 172.47 ± 7.34 | 3.68 ± 0.53 |
3 | 1.19 ± 0.01 | 21.20 ± 1.65 | 143.56 ± 8.04 | 1.63 ± 0.17 |
4 | 1.11 ± 0.01 | 15.23 ± 1.35 | 112.62 ± 8.15 | 0.84 ± 0.08 |
5 | 1.05 ± 0.03 | 14.93 ± 2.75 | 97.87 ± 15.79 | 1.09 ± 0.23 |
6 | 0.90 ± 0.02 | 27.55 ± 1.57 | 124.22 ± 4.06 | 4.10 ± 0.68 |
7 | 0.87 ± 0.00 | 12.11 ± 0.82 | 73.69 ± 3.69 | 1.27 ± 0.17 |
8 | 1.36 ± 0.01 | 27.39 ± 1.97 | 193.04 ± 7.37 | 2.19 ± 0.26 |
9 | 1.51 ± 0.00 | 35.64 ± 3.09 | 221.49 ± 12.00 | 2.99 ± 0.45 |
10 | 0.76 ± 0.05 | 8.71 ± 1.04 | 50.18 ± 4.78 | 1.09 ± 0.13 |
11 | 1.00 ± 0.01 | 32.78 ± 0.36 | 181.76 ± 4.71 | 3.72 ± 0.19 |
12 | 1.42 ± 0.01 | 44.23 ± 0.47 | 223.67 ± 1.03 | 5.46 ± 0.27 |
13 | 1.26 ± 0.01 | 25.00 ± 1.53 | 157.35 ± 10.87 | 2.02 ± 0.20 |
14 | 0.60 ± 0.02 | 6.53 ± 0.83 | 24.00 ± 4.25 | 0.42 ± 0.03 |
15 | 1.08 ± 0.02 | 8.68 ± 0.59 | 97.81 ± 13.91 | 0.47 ± 0.06 |
16 | 1.14 ± 0.03 | 27.97 ± 0.39 | 147.12 ± 4.59 | 3.51 ± 0.11 |
17 | 1.47 ± 0.02 | 37.79 ± 2.09 | 214.59 ± 5.49 | 4.31 ± 0.90 |
18 | 0.78 ± 0.03 | 10.48 ± 0.67 | 52.17 ± 1.72 | 1.56 ± 0.11 |
19 | 0.82 ± 0.02 | 7.31 ± 0.28 | 55.13 ± 3.44 | 0.71 ± 0.03 |
20 | 1.34 ± 0.02 | 21.66 ± 3.33 | 148.52 ± 11.89 | 1.72 ± 0.33 |
21 | 1.12 ± 0.01 | 32.61 ± 0.57 | 178.07 ± 7.21 | 4.06 ± 0.42 |
22 | 1.10 ± 0.04 | 35.81 ± 0.69 | 142.44 ± 6.29 | 6.78 ± 0.86 |
23 | 1.55 ± 0.04 | 28.38 ± 4.95 | 161.46 ± 22.72 | 3.62 ± 1.09 |
24 | 1.44 ± 0.04 | 20.96 ± 0.98 | 165.89 ± 4.49 | 1.54 ± 0.20 |
25 | 1.24 ± 0.04 | 15.34 ± 1.13 | 149.17 ± 14.70 | 0.54 ± 0.03 |
Run | Printing Time (s) | EPC (MJ) | SPE (MJ/g) | SPP (kW/g) |
---|---|---|---|---|
1 | 1522.20 ± 60.01 | 0.455 ± 0.023 | 0.386 ± 0.025 | 0.254 ± 0.013 |
2 | 684.80 ± 30.93 | 0.248 ± 0.020 | 0.204 ± 0.019 | 0.298 ± 0.041 |
3 | 470.40 ± 18.15 | 0.141 ± 0.005 | 0.119 ± 0.004 | 0.253 ± 0.009 |
4 | 375.40 ± 23.79 | 0.106 ± 0.018 | 0.095 ± 0.016 | 0.253 ± 0.035 |
5 | 254.60 ± 8.56 | 0.109 ± 0.032 | 0.104 ± 0.031 | 0.410 ± 0.135 |
6 | 372.20 ± 9.55 | 0.128 ± 0.009 | 0.142 ± 0.012 | 0.382 ± 0.037 |
7 | 326.80 ± 29.79 | 0.087 ± 0.012 | 0.101 ± 0.014 | 0.311 ± 0.056 |
8 | 686.00 ± 33.73 | 0.245 ± 0.022 | 0.179 ± 0.015 | 0.262 ± 0.025 |
9 | 1215.40 ± 86.92 | 0.340 ± 0.018 | 0.226 ± 0.012 | 0.186 ± 0.011 |
10 | 591.60 ± 11.76 | 0.225 ± 0.005 | 0.296 ± 0.023 | 0.500 ± 0.032 |
11 | 430.20 ± 16.28 | 0.186 ± 0.016 | 0.187 ± 0.017 | 0.433 ± 0.029 |
12 | 911.40 ± 24.35 | 0.316 ± 0.023 | 0.223 ± 0.015 | 0.244 ± 0.020 |
13 | 526.80 ± 11.86 | 0.149 ± 0.014 | 0.118 ± 0.011 | 0.224 ± 0.018 |
14 | 357.80 ± 10.71 | 0.163 ± 0.012 | 0.270 ± 0.022 | 0.754 ± 0.064 |
15 | 834.20 ± 13.90 | 0.315 ± 0.035 | 0.292 ± 0.031 | 0.351 ± 0.037 |
16 | 462.40 ± 21.00 | 0.216 ± 0.039 | 0.189 ± 0.030 | 0.408 ± 0.057 |
17 | 996.20 ± 30.77 | 0.360 ± 0.023 | 0.244 ± 0.016 | 0.245 ± 0.019 |
18 | 668.80 ± 22.20 | 0.238 ± 0.034 | 0.307 ± 0.051 | 0.458 ± 0.060 |
19 | 428.00 ± 11.34 | 0.147 ± 0.022 | 0.178 ± 0.025 | 0.417 ± 0.057 |
20 | 802.20 ± 27.45 | 0.298 ± 0.041 | 0.222 ± 0.029 | 0.278 ± 0.046 |
21 | 435.60 ± 18.99 | 0.115 ± 0.010 | 0.103 ± 0.009 | 0.237 ± 0.030 |
22 | 331.40 ± 21.95 | 0.112 ± 0.017 | 0.102 ± 0.019 | 0.308 ± 0.059 |
23 | 812.00 ± 105.91 | 0.369 ± 0.064 | 0.239 ± 0.045 | 0.296 ± 0.061 |
24 | 1313.80 ± 31.77 | 0.440 ± 0.019 | 0.305 ± 0.008 | 0.232 ± 0.008 |
25 | 691.20 ± 26.24 | 0.212 ± 0.014 | 0.170 ± 0.009 | 0.247 ± 0.020 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 12 | 12,606,678 | 10,50,557 | 181.50 | 0.000 |
ID | 1 | 83,911 | 83,911 | 14.50 | 0.000 |
RDA | 1 | 23,329 | 23,329 | 4.03 | 0.047 |
NT | 1 | 52,548 | 52,548 | 9.08 | 0.003 |
PS | 1 | 1,147,549 | 1,147,549 | 198.26 | 0.000 |
LT | 1 | 1,532,669 | 1,532,669 | 264.80 | 0.000 |
BT | 1 | 106,752 | 106,752 | 18.44 | 0.000 |
ID2 | 1 | 88,388 | 88,388 | 15.27 | 0.000 |
RDA2 | 1 | 16,198 | 16,198 | 2.80 | 0.097 |
NT2 | 1 | 52,387 | 52,387 | 9.05 | 0.003 |
PS2 | 1 | 556,406 | 556,406 | 96.13 | 0.000 |
LT2 | 1 | 806,208 | 806,208 | 139.29 | 0.000 |
BT2 | 1 | 108,451 | 108,451 | 18.74 | 0.000 |
Error | 112 | 648,269 | 5788 | ||
Total | 124 | 13,254,947 | 1,056,345 | ||
R2 | 95.11% | ||||
R2 (adj) | 94.59% | ||||
R2 (pred) | 93.96% |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 12 | 7.11585 | 0.59299 | 102.39 | 0 |
ID | 1 | 0.51381 | 0.51381 | 88.72 | 0 |
RDA | 1 | 0.29362 | 0.29362 | 50.70 | 0 |
NT | 1 | 0.26159 | 0.26159 | 45.17 | 0 |
PS | 1 | 1.01651 | 1.01651 | 175.52 | 0 |
LT | 1 | 0.24564 | 0.24564 | 42.41 | 0 |
BT | 1 | 0.20200 | 0.20200 | 34.88 | 0 |
ID2 | 1 | 0.53806 | 0.53806 | 92.91 | 0 |
RDA2 | 1 | 0.35444 | 0.35444 | 61.20 | 0 |
NT2 | 1 | 0.24257 | 0.24257 | 41.88 | 0 |
PS2 | 1 | 0.67637 | 0.67637 | 116.79 | 0 |
LT2 | 1 | 0.14169 | 0.14169 | 24.46 | 0 |
BT2 | 1 | 0.19688 | 0.19688 | 33.99 | 0 |
Error | 112 | 0.64864 | 0.00579 | ||
Total | 124 | 7.76449 | 0.59878 | ||
R2 | 91.65% | ||||
R2 (adj) | 90.75% | ||||
R2 (pred) | 89.59% |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 12 | 13,843.7 | 1153.64 | 72.57 | 0.000 |
ID | 1 | 270.2 | 270.15 | 16.99 | 0.000 |
RDA | 1 | 437.0 | 437.00 | 27.49 | 0.000 |
NT | 1 | 139.5 | 139.52 | 8.78 | 0.004 |
PS | 1 | 2593.5 | 2593.47 | 163.13 | 0.000 |
LT | 1 | 9.5 | 9.46 | 0.60 | 0.442 |
BT | 1 | 297.9 | 297.91 | 18.74 | 0.000 |
ID2 | 1 | 274.9 | 274.94 | 17.29 | 0.000 |
RDA2 | 1 | 6.6 | 6.56 | 0.41 | 0.522 |
NT2 | 1 | 150.7 | 150.73 | 9.48 | 0.003 |
PS2 | 1 | 2019.6 | 2019.56 | 127.03 | 0.000 |
LT2 | 1 | 54.8 | 54.76 | 3.44 | 0.066 |
BT2 | 1 | 286.9 | 286.92 | 18.05 | 0.000 |
Error | 112 | 1780.6 | 15.90 | ||
Total | 124 | 15,624.3 | 1169.54 | ||
R2 | 88.60% | ||||
R2 (adj) | 87.38% | ||||
R2 (pred) | 85.74% |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 12 | 1.37912 | 0.114926 | 156.71 | 0.000 |
ID | 1 | 0.00017 | 0.000171 | 0.23 | 0.630 |
RDA | 1 | 0.00153 | 0.001526 | 2.08 | 0.152 |
NT | 1 | 0.00034 | 0.000338 | 0.46 | 0.499 |
PS | 1 | 0.14123 | 0.141228 | 192.58 | 0.000 |
LT | 1 | 0.27703 | 0.277027 | 377.75 | 0.000 |
BT | 1 | 0.00002 | 0.000021 | 0.03 | 0.866 |
ID2 | 1 | 0.00038 | 0.000378 | 0.52 | 0.474 |
RDA2 | 1 | 0.00053 | 0.000533 | 0.73 | 0.396 |
NT2 | 1 | 0.00039 | 0.000393 | 0.54 | 0.466 |
PS2 | 1 | 0.07216 | 0.072162 | 98.40 | 0.000 |
LT2 | 1 | 0.18530 | 0.185297 | 252.67 | 0.000 |
BT2 | 1 | 0.00000 | 0.000000 | 0.00 | 1.000 |
Error | 112 | 0.08214 | 0.000733 | ||
Total | 124 | 1.46126 | 0.115659 | ||
R2 | 94.38% | ||||
R2 (adj) | 93.78% | ||||
R2 (pred) | 92.95% |
Run | ID | RDA | NT | PS | LT | BT |
---|---|---|---|---|---|---|
26 | 100 | 0.0 | 240 | 20 | 0.10 | 112.1 |
27 | 80 | 0.0 | 240 | 56.8 | 0.25 | 100 |
Run | Weight (g) | sB (MPa) | E (MPa) | Toughness (MJ/m3) |
---|---|---|---|---|
26 | 2.09 ± 0.07 | 65.06 ± 1.70 | 260.00 ± 10.71 | 8.62 ± 0.31 |
27 | 0.86 ± 0.01 | 28.20 ± 0.63 | 188.46 ± 5.67 | 3.88 ± 0.07 |
Run | Printing Time (s) | EPC (MJ) | SPE (MJ/g) | SPP (kW/g) |
---|---|---|---|---|
26 | 1219.60 ± 45.99 | 0.600 ± 0.034 | 0.288 ± 0.024 | 0.236 ± 0.021 |
27 | 295.20 ± 10.18 | 0.069 ± 0.008 | 0.080 ± 0.008 | 0.272 ± 0.024 |
Run | 26 | 27 | |
---|---|---|---|
Actual | sB (MPa) | 65.06 | 28.20 |
EPC (MJ) | 0.60 | 0.07 | |
Predicted | sB (MPa) | 56.46 | 32.83 |
EPC (MJ) | 0.53 | 0.06 | |
Absolute Error | sB (%) | 13.21 | 16.43 |
EPC (%) | 11.39 | 7.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidakis, N.; Petousis, M.; Mountakis, N.; Moutsopoulou, A.; Karapidakis, E. Energy Consumption vs. Tensile Strength of Poly[methyl methacrylate] in Material Extrusion 3D Printing: The Impact of Six Control Settings. Polymers 2023, 15, 845. https://doi.org/10.3390/polym15040845
Vidakis N, Petousis M, Mountakis N, Moutsopoulou A, Karapidakis E. Energy Consumption vs. Tensile Strength of Poly[methyl methacrylate] in Material Extrusion 3D Printing: The Impact of Six Control Settings. Polymers. 2023; 15(4):845. https://doi.org/10.3390/polym15040845
Chicago/Turabian StyleVidakis, Nectarios, Markos Petousis, Nikolaos Mountakis, Amalia Moutsopoulou, and Emmanuel Karapidakis. 2023. "Energy Consumption vs. Tensile Strength of Poly[methyl methacrylate] in Material Extrusion 3D Printing: The Impact of Six Control Settings" Polymers 15, no. 4: 845. https://doi.org/10.3390/polym15040845
APA StyleVidakis, N., Petousis, M., Mountakis, N., Moutsopoulou, A., & Karapidakis, E. (2023). Energy Consumption vs. Tensile Strength of Poly[methyl methacrylate] in Material Extrusion 3D Printing: The Impact of Six Control Settings. Polymers, 15(4), 845. https://doi.org/10.3390/polym15040845