Direct In-Mold Impregnation of Glass Fiber Fabric by Polypropylene with Supercritical Nitrogen in Microcellular Injection Molding Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation
2.3. Numerical Simulation
2.4. Weight Measurement and Tensile Testing
2.5. Morphological Observation
3. Results
3.1. Impregnation Process
3.2. Morphological Properteis
3.2.1. Apparent Morphology
3.2.2. Fracture Morphology
3.2.3. Cell Morphology
3.3. Tensile Properties
3.3.1. Effect of Injection Temperature
3.3.2. Effect of Sample Structure
3.3.3. Effect of Position
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holmes, M. High volume composites for the automotive challenge. Reinf. Plast. 2017, 61, 294–298. [Google Scholar] [CrossRef]
- Kusic, D.; Bozic, U.; Monzon, M.; Paz, R.; Bordon, P. Thermal and mechanical characterization of banana fiber reinforced composites for its application in injection molding. Materials 2020, 13, 3581. [Google Scholar] [CrossRef] [PubMed]
- Mattner, T.; Popp, J.; Kleffel, T.; Gröschel, C.; Drummer, D. High-speed forming of continuous fiber reinforced thermoplastics. Appl. Compos. Mater. 2020, 27, 37–54. [Google Scholar] [CrossRef]
- Unterweger, C.; Brüggemann, O.; Fürst, C. Synthetic fibers and thermoplastic short-fiber-reinforced polymers: Properties and characterization. Polym. Compos. 2014, 35, 227–236. [Google Scholar] [CrossRef]
- Bafna, S.S.; Baird, D.G. An impregnation model for the preparation of thermoplastic prepregs. J. Compos. Mater. 1992, 26, 683–707. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Sultan, M.T.H.; Rajeswari, N. 4—Manufacturing techniques of composites for aerospace applications. In Sustainable Composites for Aerospace Applications; Jawaid, M., Thariq, M., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 55–67. [Google Scholar] [CrossRef]
- Chung, D.D.L. Processing-structure-property relationships of continuous carbon fiber polymer-matrix composites. Mater. Sci. Eng. R Rep. 2017, 113, 1–29. [Google Scholar] [CrossRef]
- Gibson, A.G.; Månson, J.A. Impregnation technology for thermoplastic matrix composites. Compos. Manuf. 1992, 3, 223–233. [Google Scholar] [CrossRef]
- Esfandiari, P.; Silva, J.F.; Novo, P.J.; Nunes, J.P.; Marques, A.T. Production and processing of pre-impregnated thermoplastic tapes by pultrusion and compression moulding. J. Compos. Mater. 2022, 56, 1667–1676. [Google Scholar] [CrossRef]
- Garofalo, J.; Walczyk, D. In situ impregnation of continuous thermoplastic composite prepreg for additive manufacturing and automated fiber placement. Compos. Part A Appl. Sci. Manuf. 2021, 147, 106446. [Google Scholar] [CrossRef]
- Kim, J.W.; Lee, J.S. The effect of the melt viscosity and impregnation of a film on the mechanical properties of thermoplastic composites. Materials 2016, 9, 448. [Google Scholar] [CrossRef]
- Tröltzsch, J.; Helbig, F.; Kroll, L. Glass fiber multilayer construction for textile reinforced injection molded structures. In Proceedings of the 58th Ilmenau Scientific Colloquium, Ilmenau, Germany, 8–12 September 2014. [Google Scholar]
- Yan, X.; Cao, S. Structure and interfacial shear strength of polypropylene-glass fiber/carbon fiber hybrid composites fabricated by direct fiber feeding injection molding. Compos. Struct. 2018, 185, 362–372. [Google Scholar] [CrossRef]
- Wang, J.; Mao, Q.; Jiang, N.; Chen, J. Effects of injection molding parameters on properties of insert-injection molded polypropylene single-polymer composites. Polymers 2021, 14, 23. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Chen, D. Development and characterization of insert injection moulded polypropylene single-polymer composites with sandwiched woven fabric. Compos. Sci. Technol. 2015, 117, 18–25. [Google Scholar] [CrossRef]
- Studer, J.; Dransfeld, C.; Fiedler, B. Direct thermoplastic melt impregnation of carbon fibre fabrics by injection moulding. In Proceedings of the 17th European Conference on Composite Materials, Munich, Germany, 26–30 June 2016. [Google Scholar]
- Studer, J.; Dransfeld, C.; Jauregui Cano, J.; Keller, A.; Wink, M.; Masania, K.; Fiedler, B. Effect of fabric architecture, compaction and permeability on through thickness thermoplastic melt impregnation. Compos. Part A Appl. Sci. Manuf. 2019, 122, 45–53. [Google Scholar] [CrossRef]
- Gurarslan, A.; Tonelli, A.E. Single-component polymer composites. Macromolecules 2011, 44, 3856–3861. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, C.H. Direct impregnation of thermoplastic melt into flax textile reinforcement for semi-structural composite parts. Ind. Crops Prod. 2017, 95, 651–663. [Google Scholar] [CrossRef]
- Schmidt, T.M.; Goss, T.M.; Amico, S.C.; Lekakou, C. Permeability of hybrid reinforcements and mechanical properties of their composites molded by resin transfer molding. J. Reinf. Plast. Compos. 2009, 28, 2839–2850. [Google Scholar] [CrossRef]
- Sherif El-Gizawy, A.; Kuan, Y.-D. Modeling part warpage and residual stresses in resin transfer molding of composites. J. Manuf. Process. 2003, 5, 40–45. [Google Scholar] [CrossRef]
- Tuncol, G.; Danisman, M.; Kaynar, A.; Sozer, E.M. Constraints on monitoring resin flow in the resin transfer molding (rtm) process by using thermocouple sensors. Compos. Part A Appl. Sci. Manuf 2007, 38, 1363–1386. [Google Scholar] [CrossRef]
- Jeong, E.; Kim, Y.; Hong, S.; Yoon, K.; Lee, S. Innovative injection molding process for the fabrication of woven fabric reinforced thermoplastic composites. Polymers 2022, 14, 1577. [Google Scholar] [CrossRef]
- Tröltzsch, J.; Helbig, F.; Kroll, L. Mechanical properties of polymer melt-impregnated fiber tape sandwiches using injection molding technology. J. Thermoplast. Compos. Mater. 2014, 29, 1033–1046. [Google Scholar] [CrossRef]
- Werlen, V.; Rytka, C.; Wegmann, S.; Philipp, H.; Khalaf, Y.; Michaud, V.; Brauner, C.; Dransfeld, C. Novel tooling for direct melt impregnation of textile with variotherm injection moulding: Methodology and proof of concept. J. Compos. Mater. 2022, 56, 4245–4257. [Google Scholar] [CrossRef]
- Jin, B.; Meng, F.; Ma, H.; Zhang, B.; Gong, P.; Park, C.; Li, G. Synergistic manipulation of zero-dimension and one-dimension hybrid nanofillers in multi-layer two-dimension thin films to construct light weight electromagnetic interference material. Polymers 2021, 13, 3278. [Google Scholar] [CrossRef]
- Ma, H.; Gong, P.; Zhai, S.; Huang, Y.; Niu, Y.; Park, C.B.; Li, G. Multi-dimensional analysis of micro-/nano-polymeric foams by confocal laser scanning microscopy and foam simulations. Chem. Eng. Sci. 2019, 207, 892–902. [Google Scholar] [CrossRef]
- Rizvi, A.; Tabatabaei, A.; Barzegari, M.R.; Mahmood, S.H.; Park, C.B. In situ fibrillation of CO2-philic polymers: Sustainable route to polymer foams in a continuous process. Polymer 2013, 54, 4645–4652. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, H.; Gong, P.; Huang, Y.; Park, C.B.; Li, G. Fluorescence assisted visualization and destruction of particles embedded thin cell walls in polymeric foams via supercritical foaming. J. Supercrit. Fluids 2022, 181, 105511. [Google Scholar] [CrossRef]
- Hwang, S.-s.; Hsu, P.P. Effects of silica particle size on the structure and properties of polypropylene/silica composites foams. J. Ind. Eng. Chem. 2013, 19, 1377–1383. [Google Scholar] [CrossRef]
- Okolieocha, C.; Raps, D.; Subramaniam, K.; Altstädt, V. Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions—A review. Eur. Polym. J. 2015, 73, 500–519. [Google Scholar] [CrossRef]
- Yang, W.; Dong, Q.; Liu, S.; Xie, H.; Liu, L.; Li, J. Recycling and disposal methods for polyurethane foam wastes. Procedia Environ. Sci. 2012, 16, 167–175. [Google Scholar] [CrossRef]
- Kramschuster, A.; Cavitt, R.; Ermer, D.; Chen, Z.B.; Turng, L.S. Effect of processing conditions on shrinkage and warpage and morphology of injection moulded parts using microcellular injection moulding. Plast. Rubber Compos. 2006, 35, 198–209. [Google Scholar] [CrossRef]
- Wang, X.; Wu, G.; Xie, P.; Gao, X.; Yang, W. Microstructure and properties of glass fiber-reinforced polyamide/nylon microcellular foamed composites. Polymers 2020, 12, 2368. [Google Scholar] [CrossRef]
- Yeh, S.-K.; Hsieh, C.-C.; Chang, H.-C.; Yen, C.C.C.; Chang, Y.-C. Synergistic effect of coupling agents and fiber treatments on mechanical properties and moisture absorption of polypropylene–rice husk composites and their foam. Compos. Part A Appl. Sci. Manuf. 2015, 68, 313–322. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Zhang, J.; Lu, B.-X.; Xin, Z.X.; Kang, C.K.; Kim, J.K. Effect of flame retardants on mechanical properties, flammability and foamability of pp/wood–fiber composites. Compos. B Eng. 2012, 43, 150–158. [Google Scholar] [CrossRef]
- Xi, Z.; Sha, X.; Liu, T.; Zhao, L. Microcellular injection molding of polypropylene and glass fiber composites with supercritical nitrogen. J. Cell. Plast. 2014, 50, 489–505. [Google Scholar] [CrossRef]
- Kasemphaibulsuk, P.; Holzner, M.; Kuboki, T.; Hrymak, A. Foam injection molding of glass fiber reinforced polypropylene composites with laminate skins. Polym. Compos. 2017, 39, 4322–4332. [Google Scholar] [CrossRef]
- Wang, J.; Chen, D. Microcellular polypropylene single-polymer composites prepared by insert-microcellular injection molding. Compos. Part A Appl. Sci. Manuf. 2016, 90, 567–576. [Google Scholar] [CrossRef]
- Wang, J.; Chen, D. Flexural properties and morphology of microcellular-insert injection molded all-polypropylene composite foams. Compos. Struct. 2018, 187, 403–410. [Google Scholar] [CrossRef]
Brand | Materials | Areal Density (g/m2) | Breaking Strength (≥N/25 mm) | Number of Bundles (Threads/cm) | Woven Type | Thickness (mm) | ||
---|---|---|---|---|---|---|---|---|
Warp | Weft | Warp | Weft | |||||
EWR300 | E-glass | 300 ± 15 | 1200 | 1200 | 5 | 5 | Plain | 0.3 |
EWR600 | E-glass | 600 ± 30 | 1800 | 1800 | 2.5 | 2.5 | Plain | 0.6 |
Process Parameters | Microcellular Injection Molding | Conventional Injection Molding |
---|---|---|
Injection temperature (°C) | 230, 240, and 250 | 230, 240, and 250 |
Injection velocity profile (mm/s) | 50 → 40 | 50 → 40 |
Injection pressure profile (bar) | 70 → 60 | 70 → 60 |
Velocity/Pressure switch-over | by screw position | by screw position |
Packing pressure (bar) | n/a | 30 |
Packing time (s) | n/a | 3 |
Cooling time (s) | 30 | 30 |
SCN injection flowrate (kg/h) | 0.5 | n/a |
SCN injection pressure (bar) | 125 | n/a |
SCN dosage time (s) | 0.5 | n/a |
Process | Injection Temperature [°C] | Material Type | Weight [g] | Tensile Strength [MPa] | Specific Tensile Strength [MPa·cm3/g] | Elongation at Break [%] |
---|---|---|---|---|---|---|
Foaming | 230 | Pure | 1.218 ± 0.012 | 18.263 ± 1.423 | 25.622 ± 2.221 | 20.250 ± 7.932 |
EWR300 | 1.326 ± 0.001 | 19.888 ± 1.003 | 26.121 ± 1.204 | 20.000 ± 6.055 | ||
EWR600 | 1.408 ± 0.022 | 22.690 ± 2.622 | 27.982 ± 3.108 | 10.500 ± 3.317 | ||
240 | Pure | 1.232 ± 0.012 | 19.550 ± 0.564 | 27.107 ± 0.732 | 17.750 ± 6.850 | |
EWR300 | 1.418 ± 0.014 | 20.633 ± 2.857 | 25.390 ± 3.384 | 16.247 ± 10.411 | ||
EWR600 | 1.318 ± 0.016 | 18.050 ± 1.526 | 23.980 ± 1.902 | 7.250 ± 3.862 | ||
250 | Pure | 1.195 ± 0.011 | 17.710 ± 0.655 | 25.310 ± 0.800 | 28.500 ± 10.376 | |
EWR300 | 1.221 ± 0.006 | 17.710 ± 0.658 | 25.223 ± 0.944 | 19.250 ± 8.958 | ||
EWR600 | 1.335 ± 0.022 | 20.310 ± 2.280 | 26.609 ± 2.593 | 26.500 ± 8.103 | ||
Unfoaming | 230 | Pure | 1.510 ± 0.020 | 32.410 ± 1.717 | 37.092 ± 1.631 | 880.000 ± 30.735 |
EWR300 | 1.590 ± 0.047 | 30.890 ± 0.466 | 33.912 ± 0.745 | 31.750 ± 16.358 | ||
EWR600 | 1.690 ± 0.026 | 29.190 ± 4.565 | 30.242 ± 5.039 | 29.500 ± 46.336 | ||
240 | Pure | 1.484 ± 0.008 | 33.100 ± 2.405 | 38.108 ± 2.938 | 848.000 ± 54.851 | |
EWR300 | 1.581 ± 0.007 | 31.920 ± 0.890 | 34.993 ± 0.815 | 38.250 ± 19.517 | ||
EWR600 | 1.643 ± 0.008 | 29.710 ± 0.575 | 31.821 ± 0.585 | 20.750 ± 8.732 | ||
250 | Pure | 1.480 ± 0.005 | 30.6625 ± 0.522 | 35.202 ± 0.712 | 720.250 ± 249.600 | |
EWR300 | 1.573 ± 0.012 | 31.590 ± 1.326 | 34.948 ± 1.929 | 58.500 ± 54.274 | ||
EWR600 | 1.629 ± 0.014 | 35.500 ± 5.229 | 38.082 ± 5.589 | 22.750 ± 2.872 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Yang, W.; Wang, J.; Ren, F.; Wang, D.; Li, F.; Shi, Z. Direct In-Mold Impregnation of Glass Fiber Fabric by Polypropylene with Supercritical Nitrogen in Microcellular Injection Molding Process. Polymers 2023, 15, 875. https://doi.org/10.3390/polym15040875
He Q, Yang W, Wang J, Ren F, Wang D, Li F, Shi Z. Direct In-Mold Impregnation of Glass Fiber Fabric by Polypropylene with Supercritical Nitrogen in Microcellular Injection Molding Process. Polymers. 2023; 15(4):875. https://doi.org/10.3390/polym15040875
Chicago/Turabian StyleHe, Qichao, Weimin Yang, Jian Wang, Feng Ren, Da Wang, Fuhai Li, and Zhonghe Shi. 2023. "Direct In-Mold Impregnation of Glass Fiber Fabric by Polypropylene with Supercritical Nitrogen in Microcellular Injection Molding Process" Polymers 15, no. 4: 875. https://doi.org/10.3390/polym15040875
APA StyleHe, Q., Yang, W., Wang, J., Ren, F., Wang, D., Li, F., & Shi, Z. (2023). Direct In-Mold Impregnation of Glass Fiber Fabric by Polypropylene with Supercritical Nitrogen in Microcellular Injection Molding Process. Polymers, 15(4), 875. https://doi.org/10.3390/polym15040875