Effect of Styrene-Maleic Anhydride Copolymer on Properties of PBST/PLA Blends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Procedures
2.2.1. Preparation of PSMA
2.2.2. Preparation of PBST/PLA Blends
2.3. Analyses
3. Results
3.1. FTIR Analysis of PSMA and PBST/PLA Blends
3.2. Thermal and Crystallization Behaviors of PBST/PLA Blends
3.3. Mechanical Properties of PBST/PLA Blends
3.4. Rheological Behavior of PBST/PLA Blends
3.4.1. Capillary Rheometry
3.4.2. Dynamic Rheological Properties
3.5. SEM Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnston, P.; Adhikari, R. Synthesis, properties and applications of degradable ionomers. Eur. Polym. J. 2017, 95, 138–160. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.; Guan, J.; Yang, X.; Luo, B. Synergistic flame retardancy of phosphatized sesbania gum/ammonium polyphosphate on polylactic acid. Molecules 2022, 27, 4748. [Google Scholar] [CrossRef]
- Koh, J.J.; Zhang, X.W.; Kong, J.H.; He, C.B. Compatibilization of multicomponent composites through a transitioning phase: Interfacial tensions considerations. Compos. Sci. Technol. 2018, 164, 34–43. [Google Scholar] [CrossRef]
- Mohamed, S.A.A.; El-Sakhawy, M.; El-Sakhawy, M.A.M. Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydr. Polym. 2020, 238, 116178. [Google Scholar] [CrossRef]
- Zhang, F.; King, M.W. Biodegradable polymers asthe pivotal player in the design of tissue engineering scaffolds. Adv. Healthc. Mater. 2020, 9, 13. [Google Scholar] [CrossRef]
- Luo, S.L.; Li, F.X.; Yu, J.Y. The thermal, mechanical and viscoelastic properties of poly(butylene succinate-co-terephthalate) (PBST) copolyesters with high content of BT units. J. Polym. Res. 2011, 18, 393–400. [Google Scholar] [CrossRef]
- Luo, S.L.; Li, F.X.; Yu, J.Y.; Cao, A.M. Synthesis of poly(butylene succinate-co-butylene terephthalate) (PBST) copolyesters with high molecular weights via direct esterification and polycondensation. J. Appl. Polym. Sci. 2010, 115, 2203–2211. [Google Scholar] [CrossRef]
- Yan, X.Y.; Xie, R.; Pan, H.; Zhao, T.; Han, L.; Bian, J.; Yang, H.; Zhao, Y.; Wu, G.; Zhang, H. Effect of 1,4-bis(tert-butyl peroxy isopropyl) benzene on the rheological, mechanical, thermal and barrier properties of poly(butylene succinate-co-terephthalate)/poly(lactic acid) blends and blown films. Mater. Today Commun. 2022, 31, 103830. [Google Scholar] [CrossRef]
- Zhang, J.; Lou, J.Z.; Ilias, S.; Krishnamachari, P.; Yan, J. Thermal properties of poly(lactic acid) fumed silica nanocomposites: Experiments and molecular dynamics simulations. Polymer 2008, 49, 2381–2386. [Google Scholar] [CrossRef]
- Castro-Aguirre, E.; Iniguez-Franco, F.; Samsudin, H.; Fang, X. Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 2016, 107, 333–336. [Google Scholar] [CrossRef]
- Liu, S.; Qin, S.; He, M.; Zhou, D.; Qin, Q.; Wang, H. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Compos. Part B Eng. 2020, 199, 108238. [Google Scholar] [CrossRef]
- Benvenuta-Tapia, J.J.; Vivaldo-Lima, E. Reduction of molar mass loss and enhancement of thermal and rheological properties of recycled poly(lactic acid) by using chain extenders obtained from RAFT chemistry. React. Funct. Polym. 2020, 153, 104628. [Google Scholar] [CrossRef]
- Leluk, K.; Frackowiak, S.; Ludwiczak, J.; Rydzkowski, T.; Thakur, V.K. The impact of filler geometry on polylactic acid-based sustainable polymer composites. Molecules 2021, 26, 149. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, D.; Zhang, H.; Su, G.; Li, G. Preparation and properties of poly(lactic acid)/sesbania gum/nano-TiO2 composites. Polym. Bull. 2018, 75, 623–635. [Google Scholar] [CrossRef]
- Wróblewska-Krepsztul, J.; Rydzkowski, T.; Michalska-Pożoga, I.; Thakur, V.K. Biopolymers for biomedical and pharmaceutical applications: Recent advances and overview of alginate electrospinning. Nanomaterials 2019, 9, 404. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Gao, X.; Zhao, L.; Xu, Z.; Li, N.; Pan, X.; Dai, J.; Hu, D. Preparation of biodegradable PBST/PLA microcellular foams under supercritical CO2: Heterogeneous nucleation and anti-shrinkage effect of PLA. Polym. Degrad. Stab. 2022, 197, 109844. [Google Scholar] [CrossRef]
- Wang, X.; Pan, H.; Jia, S.; Wang, Z.; Tian, H.; Han, L.; Zhang, H. In-Situ reaction compatibilization modification of poly(butylene succinate-co-terephthalate)/polylactide acid blend films by multifunctional epoxy compound. Int. J. Biol. Macromol. 2022, 213, 934–943. [Google Scholar] [CrossRef]
- Zhao, X.P.; Hu, H.; Wang, X.; Yu, X.; Zhou, W.; Peng, S. Super tough poly(lactic acid) blends: A comprehensive review. RSC Adv. 2020, 10, 13316–13368. [Google Scholar] [CrossRef] [Green Version]
- Anakabe, J.; Huici, A.M.Z.; Eceiza, A.; Arbelaiz, A. The effect of the addition of poly(styrene-co-glycidyl methacrylate) copolymer on the properties of polylactide/poly(methyl methacrylate) blend. J. Appl. Polym. Sci. 2016, 133, 43935. [Google Scholar] [CrossRef]
- Gardella, L.; Calabrese, M.; Monticelli, O. PLA maleation: An easy and effective method to modify the properties of PLA/PCL immiscible blends. Colloid Polym. Sci. 2012, 20, 810–816. [Google Scholar] [CrossRef]
- Torres, S.; Navia, R.; Murdy, R.C.; Cooke, P.; Misra, M.; Mohanty, A. Green composites from residual microalgae biomass and poly(butylene adipate-co-terephthalate): Processing and plasticization. ACS Sustain. Chem. Eng. 2015, 3, 614–624. [Google Scholar] [CrossRef]
- Guo, J.B.; Xu, Y.; He, W.D.; Wang, N.; Tang, M.Q.; Chen, X.L.; Hu, S.J.; He, M.; Qin, S.H. Phase morphology evolution and compatibilization of immiscible polyamide 6/polystyrene blends using nano-montmorillonite. Polym. Eng. Sci. 2018, 58, 752–758. [Google Scholar] [CrossRef]
- Ding, W.J.; Zhou, Y.F.; Wang, W.Q.; Wang, J.K. The reactive compatibilization of montmorillonite for immiscible anionic polyamide 6/polystyrene blends via in situ polymerization. Polym. Plast. Technol. Mat. 2020, 59, 884–894. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, Y.; Liu, H.; Shu, S.; Chen, W. Effects of Endic Anhydride Grafted PPC on the Properties of PHBV Blends. Materials 2022, 15, 6179. [Google Scholar] [CrossRef]
- Rigolin, T.R.; Costa, L.C.; Chinelatto, M.A.; Muñoz, P.A.R.; Bettini, S.H.P. Chemical modification of poly(lactic acid) and its use as matrix in poly(lactic acid) poly(butylene adipateco-terephthalate) blends. Polym. Test. 2017, 63, 542–549. [Google Scholar] [CrossRef]
- Teamsinsungvon, A.; Jarapanyacheep, R.; Rukasakulpiwat, Y.; Jarukumjorn, K. Melt processing of maleic anhydride grafted poly(lactic acid) and its compatibilizing effect on poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend and their composite. Polym. Sci. 2017, 59, 384–396. [Google Scholar] [CrossRef]
- Świtała-Żeliazkow, M. Thermal degradation of copolymers of styrene with dicarboxylic acids—II: Copolymers obtained by radical copolymerisation of styrene with maleic acid or fumaric acid. Polym. Degrad. Stab. 2006, 91, 1233–1239. [Google Scholar] [CrossRef]
- Jamnongkan, T.; Jaroensuk, O.; Khankhuean, A.; Laobuthee, A.; Srisawat, N.; Pangon, A.; Mongkholrattanasit, R.; Phuengphai, P.; Wattanakornsiri, A.; Huang, C.-F. A Comprehensive evaluation of mechanical, thermal, and antibacterial properties of PLA/ZnO nanoflower biocomposite filaments for 3D printing application. Polymers 2022, 14, 600. [Google Scholar] [CrossRef]
- Xu, J.; Guo, B. Poly(butylene succinate) and its copolymers: Research, develop- ment and industrialization. Biotechnol. J. 2010, 5, 1149–1163. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, B.L.; Wu, M.; Zhang, H.L.; Yao, J.R.; Chen, X.; Shao, Z.Z. Preparation and characterization of antibacterial poly(lactic acid) nanocomposites with N-halamine modified silica. Int. J. Biol. Macromol. 2020, 155, 1468–1477. [Google Scholar] [CrossRef]
- Świtała-Żeliazkow, M. Thermal degradation of copolymers of styrene with dicarboxylic acids—I: Alternating styrene-maleic acid copolymer. Polym. Degrad. Stab. 2001, 74, 579–584. [Google Scholar] [CrossRef]
- Kaczmarek, H.; Felczak, A.; Szalla, A. Studies of photochemical transformations in polystyrene and styrene–maleic anhydride copolymer. Polym. Degrad. Stab. 2008, 93, 1259–1266. [Google Scholar] [CrossRef]
- Costa, A.R.M.; Ito, E.N.; Cavalho, L.H.; Canedo, E.L. Nonisothermal melt crystallization kinetics of poly(3-hydroxybutyrate), poly(butylene adipate-coterephthalate) and its mixture. Polímeros 2019, 29, e2019006. [Google Scholar] [CrossRef]
- Li, Z.; Yang, F.; Qiu, Z. Miscibility and crystallization behaviors of biodegradable poly(butylene succinate-co-butylene terephthalate)/phenoxy blends. J. Appl. Polym. Sci. 2011, 121, 720–726. [Google Scholar] [CrossRef]
- Kumar, M.; Mohanty, S.; Nayak, S.K.; Parvaiz, M.R. Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour. Technol. 2010, 101, 8406–8415. [Google Scholar] [CrossRef] [PubMed]
- Nofar, M.; Heuzey, M.C.; Carreau, P.J.; Kamal, M.R. Effects of nanoclay and its localization on the morphology stabilization of PLA/PBAT blends under shear flow. Polymer 2016, 98, 353–364. [Google Scholar] [CrossRef]
- Wang, X.; Peng, S.; Chen, H.; Yu, X.; Zhao, X. Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization. Compos. Part B-Eng. 2019, 173, 107028. [Google Scholar] [CrossRef]
- Bhatia, A.; Gupta, R.K.; Bhaftacharya, S.N.; Choi, H. Compatibility of biodegradable poly(lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application. Korea-Aust. Rheol. J. 2007, 19, 125–131. [Google Scholar]
Samples | PBST (wt%) | PLA (wt%) | PSMA (wt%) |
---|---|---|---|
PBST | 100 | 0 | 0 |
PLA | 0 | 100 | 0 |
PB/PL | 70 | 30 | 0 |
PB/PL/PS1 | 70 | 30 | 1 |
PB/PL/PS2 | 70 | 30 | 2 |
PB/PL/PS3 | 70 | 30 | 3 |
PB/PL/PS4 | 70 | 30 | 4 |
PB/PL/PS5 | 70 | 30 | 5 |
Samples | Tc (°C) | Tg (°C) | Tm (°C) | |
---|---|---|---|---|
PBST | 45.3 | −16.2 | 119.0 | 14.5 |
PLA | - | 61.7 | 166.3 | 10.8 |
PB/PL | 51.7 | −14.5/60.4 | 122.1/161.6 | 14.2/19.3 |
PB/PL/PS1 | 50.8 | −4.3/50.8 | 125.9/155.6 | 14.3/14.8 |
PB/PL/PS2 | 48.7 | 7.8/33.4 | 127.3/153.5 | 14.1/8.5 |
PB/PL/PS3 | 48.1 | 14.9/28.5 | 127.7/151.2 | 10.5/7.2 |
PB/PL/PS4 | 47.3 | 20.8 | 128.1 | 6.3 |
PB/PL/PS5 | 46.9 | 22.3 | 129.6 | 5.9 |
Samples | T5% (°C) | T50% (°C) |
---|---|---|
PBST | 379.5 | 419.2 |
PLA | 331.2 | 367.4 |
PB/PL | 338.0 | 398.2 |
PB/PL/PS1 | 340.6 | 400.9 |
PB/PL/PS2 | 341.3 | 401.7 |
PB/PL/PS3 | 344.5 | 403.1 |
PB/PL/PS4 | 344.9 | 403.6 |
PB/PL/PS5 | 346.7 | 406.1 |
Samples | Tensile Strength (MPa) | Elongation at Break (%) | Impact Strength (kJ/m2) |
---|---|---|---|
PBST | 18.1 ± 0.6 | 425.8 ± 10.7 | No fracture |
PLA | 43.7 ± 0.8 | 7.3 ± 2.5 | 3.5 ± 0.1 |
PB/PL | 18.3 ± 0.5 | 356.6 ± 8.2 | No fracture |
PB/PL/PS1 | 22.2 ± 0.6 | 372.5 ± 10.3 | 4.8 ± 0.2 |
PB/PL/PS2 | 26.0 ± 0.5 | 380.1 ± 9.6 | 5.1 ± 0.2 |
PB/PL/PS3 | 29.6 ± 0.7 | 385.6 ± 10.1 | 5.3 ± 0.1 |
PB/PL/PS4 | 26.3 ± 0.6 | 387.3 ± 8.5 | 5.7 ± 0.3 |
PB/PL/PS5 | 24.5 ± 0.4 | 364.5 ± 9.0 | 5.0 ± 0.2 |
Samples | Non-Newtonian Index (n) a | ||||
---|---|---|---|---|---|
180 °C | 190 °C | 200 °C | 210 °C | 220 °C | |
PB/PL | 0.572 ± 0.012 | 0.586 ± 0.039 | 0.601 ± 0.031 | 0.615 ± 0.043 | 0.630 ± 0.025 |
PB/PL/PS1 | 0.562 ± 0.025 | 0.574 ± 0.031 | 0.587 ± 0.022 | 0.600 ± 0.036 | 0.612 ± 0.017 |
PB/PL/PS2 | 0.544 ± 0.017 | 0.556 ± 0.026 | 0.570 ± 0.028 | 0.584 ± 0.030 | 0.599 ± 0.026 |
PB/PL/PS3 | 0.526 ± 0.034 | 0.439 ± 0.018 | 0.550 ± 0.026 | 0.562 ± 0.029 | 0.575 ± 0.023 |
PB/PL/PS4 | 0.545 ± 0.019 | 0.560 ± 0.023 | 0.573 ± 0.030 | 0.587 ± 0.016 | 0.601 ± 0.038 |
PB/PL/PS5 | 0.566 ± 0.022 | 0.578 ± 0.027 | 0.591 ± 0.036 | 0.605 ± 0.041 | 0.619 ± 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Gao, Y.; Luo, B.; Cui, Y.; Shu, S.; Chen, W.; Wang, L. Effect of Styrene-Maleic Anhydride Copolymer on Properties of PBST/PLA Blends. Polymers 2023, 15, 952. https://doi.org/10.3390/polym15040952
Zhang Q, Gao Y, Luo B, Cui Y, Shu S, Chen W, Wang L. Effect of Styrene-Maleic Anhydride Copolymer on Properties of PBST/PLA Blends. Polymers. 2023; 15(4):952. https://doi.org/10.3390/polym15040952
Chicago/Turabian StyleZhang, Qing, Yongguang Gao, Baojing Luo, Yan Cui, Shili Shu, Wei Chen, and Lei Wang. 2023. "Effect of Styrene-Maleic Anhydride Copolymer on Properties of PBST/PLA Blends" Polymers 15, no. 4: 952. https://doi.org/10.3390/polym15040952
APA StyleZhang, Q., Gao, Y., Luo, B., Cui, Y., Shu, S., Chen, W., & Wang, L. (2023). Effect of Styrene-Maleic Anhydride Copolymer on Properties of PBST/PLA Blends. Polymers, 15(4), 952. https://doi.org/10.3390/polym15040952