Antimicrobial Formulation of a Bacterial Nanocellulose/Propolis-Containing Photosensitizer for Biomedical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Nanocellulose Pulp
2.2. Hydrogel Production
2.3. Characterization of Bacterial Nanocellulose Hydrogels Containing Propolis
2.4. Characterization of Bacterial Nanocellulose Hydrogels Containing Propolis/Methylene Blue
3. Results and Discussion
3.1. Characterization of Bacterial Nanocellulose Hydrogels Containing Propolis
3.1.1. Scanning Electron Microscopy (SEM)
3.1.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.1.3. Thermogravimetric Analysis (TGA)
3.1.4. Rheological Analysis
3.1.5. Chemical Profile of EPP-AF® Biomarkers and Release Study
3.1.6. Mutagenic Potential
3.2. Characterization of Bacterial Nanocellulose Hydrogels Containing Propolis/Methylene Blue
3.2.1. Spectroscopic Analysis
3.2.2. Confocal Fluorescence Microscopy
3.3. Antimicrobial and Photodynamic Inactivation Assays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Broughton, G.; Janis, J.E.; Attinger, C.E. The Basic Science of Wound Healing. Plast. Reconstr. Surg. 2006, 117, 12S–34S. [Google Scholar] [CrossRef] [PubMed]
- Broughton, G.; Janis, J.E.; Attinger, C.E. Wound Healing: An Overview. Plast. Reconstr. Surg. 2006, 117, 1e. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; DiPietro, L.A. Critical Review in Oral Biology & Medicine: Factors Affecting Wound Healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Healy, B.; Freedman, A. ABC of Wound Healing:Infections. Bmj 2006, 333, 838–841. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Dong, L.; He, X.; Zhao, C.; Zhang, W.; Li, X.; Lu, Y. Treatment of Infected Wounds with Methylene Blue Photodynamic Therapy: An Effective and Safe Treatment Method. Photodiagnosis Photodyn. Ther. 2020, 32, 102051. [Google Scholar] [CrossRef] [PubMed]
- Coelho, V.H.M.; Alvares, L.D.; Carbinatto, F.M.; de Aquino Junior, A.E.; Ramirez Angarita, D.P.; Bagnato, V.S. Photodynamic Therapy, Laser Therapy and Cellulose Membrane for the Healing of Venous Ulcers: Results of a Pilot Study. J. Nurs. Care 2017, 6, 6–9. [Google Scholar] [CrossRef]
- Boateng, J.; Catanzano, O. Advanced Therapeutic Dressings for Effective Wound Healing—A Review. J. Pharm. Sci. 2015, 104, 3653–3680. [Google Scholar] [CrossRef] [Green Version]
- Han, G.; Ceilley, R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv. Ther. 2017, 34, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Pereira, G.B.; Ferreira, V.; Martins, G.L.; Oliveira Barud, H.G.; Balestra, F.L.; Banhos, E.; Parro, M.C.; Jacon, J.C.; Barud, H.S. Tratamentos Tópicos Com Ênfase Em Principais Curativos-Cap. 23. In Feridas, Um Desafio Para a Saúde Pública, 1st ed.; Aquino Junior, A.E., Carbinatto, F.M., Coelho, V.H.M., Bagnato, V.S., Eds.; Instituto de Física de São Carlos-USP: São Carlos, Brazil, 2019; Volume 1, pp. 167–186. [Google Scholar]
- Gürgen, M. Excess Use of Antibiotics in Patients with Non-Healing Ulcers. Ewma J. 2014, 14, 17–22. [Google Scholar]
- Czaja, W.; Krystynowicz, A.; Bielecki, S.; Brown, R.M. Microbial Cellulose—The Natural Power to Heal Wounds. Biomaterials 2006, 27, 145–151. [Google Scholar] [CrossRef]
- Czaja, W.K.; Young, D.J.; Kawecki, M.; Brown, R.M. The Future Prospects of Microbial Cellulose in Biomedical Applications. Biomacromolecules 2007, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Loh, E.Y.X.; Mohamad, N.; Fauzi, M.B.; Ng, M.H.; Ng, S.F.; Mohd Amin, M.C.I. Development of a Bacterial Cellulose-Based Hydrogel Cell Carrier Containing Keratinocytes and Fibroblasts for Full-Thickness Wound Healing. Sci. Rep. 2018, 8, 2875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Klemm, D.; Cranston, E.D.; Fischer, D.; Gama, M.; Kedzior, S.A.; Kralisch, D.; Kramer, F.; Kondo, T.; Lindström, T.; Nietzsche, S.; et al. Nanocellulose as a Natural Source for Groundbreaking Applications in Materials Science: Today’s State. Mater. Today 2018, 21, 720–748. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.S.; Chen, H.H. Physical Properties of Bacterial Cellulose Composites for Wound Dressings. Food Hydrocoll. 2016, 53, 75–83. [Google Scholar] [CrossRef]
- Barud, H.S.; Regiani, T.; Marques, R.F.C.; Lustri, W.R.; Messaddeq, Y.; Ribeiro, S.J.L. Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes. J. Nanomater. 2011, 2011, 721631. [Google Scholar] [CrossRef] [Green Version]
- Horue, M.; Cacicedo, M.L.; Fernandez, M.A.; Rodenak-Kladniew, B.; Torres Sánchez, R.M.; Castro, G.R. Antimicrobial Activities of Bacterial Cellulose—Silver Montmorillonite Nanocomposites for Wound Healing. Mater. Sci. Eng. C 2020, 116, 111152. [Google Scholar] [CrossRef]
- Popa, L.; Truşcă, R.D.; Ilie, C.-I.; Tipela, R.E.; Ficai, D.; Oprea, O.; Stoica-Guzun, A.; Ficai, A.; Ditu, L.-M. Antibacterial Activity of Bacterial Cellulose Loaded. Molecules 2020, 25, 4069. [Google Scholar] [CrossRef]
- Barud, H.D.S.; de Araújo Júnior, A.M.; Saska, S.; Mestieri, L.B.; Campos, J.A.D.B.; de Freitas, R.M.; Ferreira, N.U.; Nascimento, A.P.; Miguel, F.G.; Vaz, M.M.D.O.L.L.; et al. Antimicrobial Brazilian Propolis (EPP-AF) Containing Biocellulose Membranes as Promising Biomaterial for Skin Wound Healing. Evid. Based Complement. Altern. Med. 2013, 2013, 703024. [Google Scholar] [CrossRef] [Green Version]
- Kabir, S.M.F.; Sikdar, P.P.; Haque, B.; Bhuiyan, M.A.R.; Ali, A.; Islam, M.N. Cellulose-Based Hydrogel Materials: Chemistry, Properties and Their Prospective Applications. Prog. Biomater. 2018, 7, 153–174. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.K.; Alencar, S.M.; Aguiar, C.L. Botanical Origin and Chemical Composition of Brazilian Propolis. Agric. Food Chemisry 2002, 50, 2502–2506. [Google Scholar] [CrossRef] [PubMed]
- Cauich-Kumul, R.; Segura Campos, M.R. Bee Propolis: Properties, Chemical Composition, Applications and Potencial Health Effects. In Bioactive Compounds; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 227–243. ISBN 9780128147740. [Google Scholar]
- Berretta, A.A.; Nascimento, A.P.; Pires Bueno, P.C.; Lima Leite Vaz MM, D.O.; Marchetti, J.M. Propolis Standardized Extract (EPP-AF®), an Innovative Chemically and Biologically Reproducible Pharmaceutical Compound for Treating Wounds. Int. J. Biol. Sci. 2012, 8, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.B. do R.E. dos; Ávila, D. da S.; Ramos, L. de P.; Yu, A.R.; Santos, C.E. da R.; Berretta, A.A.; Camargo, S.E.A.; Oliveira, J.R. de; Oliveira, L.D. de Effects of Brazilian Green Propolis Extract on Planktonic Cells and Biofilms of Multidrug-Resistant Strains of Klebsiella Pneumoniae and Pseudomonas Aeruginosa. Biofouling 2020, 36, 834–845. [Google Scholar] [CrossRef] [PubMed]
- Paulino, N.; Abreu, S.R.L.; Uto, Y.; Koyama, D.; Nagasawa, H.; Hori, H.; Dirsch, V.M.; Vollmar, A.M.; Scremin, A.; Bretz, W.A. Anti-Inflammatory Effects of a Bioavailable Compound, Artepillin C, in Brazilian Propolis. Eur. J. Pharmacol. 2008, 587, 296–301. [Google Scholar] [CrossRef]
- Almeida-Junior, S.; Pereira, D.V.; Ferreira, T.M.F.; Freitas, R.A.; Silva, C.C.; Santos, M.F.C.; Borges, C.H.G.; Andrade e Silva, M.; Ambrósio, S.R.; Bastos, J.K.; et al. Anti-Inflammatory and Antinociceptive Effects of Kaempferide from the Brazilian Green Propolis. Res. Soc. Dev. 2020, 9, 1689–1699. [Google Scholar] [CrossRef]
- Diniz, D.P.; Lorencini, D.A.; Berretta, A.A.; Cintra, M.A.C.T.; Lia, E.N.; Jordão, A.A.; Coelho, E.B. Antioxidant Effect of Standardized Extract of Propolis (EPP-AF®) in Healthy Volunteers: A “before and After” Clinical Study. Evid. Based Complement. Altern. Med. 2020, 2020, 7538232. [Google Scholar] [CrossRef]
- Bhargava, P.; Grover, A.; Nigam, N.; Kaul, A.; Doi, M.; Ishida, Y.; Kakuta, H.; Kaul, S.C.; Terao, K.; Wadhwa, R. Anticancer Activity of the Supercritical Extract of Brazilian Green Propolis and Its Active Component, Artepillin C: Bioinformatics and Experimental Analyses of Its Mechanisms of Action. Int. J. Oncol. 2018, 52, 925–932. [Google Scholar] [CrossRef]
- Quintino, R.L.; Reis, A.C.; Fernandes, C.C.; Martins, C.H.G.; Colli, A.C.; Crotti, A.E.M.; Squarisi, I.S.; Ribeiro, A.B.; Tavares, D.C.; Miranda, M.L.D. Brazilian Green Propolis: Chemical Composition of Essential Oil and Their In Vitro Antioxidant, Antibacterial and Antiproliferative Activities. Braz. Arch. Biol. Technol. 2020, 63, 1–9. [Google Scholar] [CrossRef]
- Ebadi, P.; Fazeli, M. Evaluation of the Potential in Vitro Effects of Propolis and Honey on Wound Healing in Human Dermal Fibroblast Cells. South Afr. J. Bot. 2021, 137, 414–422. [Google Scholar] [CrossRef]
- Marquele-Oliveira, F.; da Silva Barud, H.; Torres, E.C.; Machado, R.T.A.; Caetano, G.F.; Leite, M.N.; Frade, M.A.C.; Ribeiro, S.J.L.; Berretta, A.A. Development, Characterization and Pre-Clinical Trials of an Innovative Wound Healing Dressing Based on Propolis (EPP-AF®)-Containing Self-Microemulsifying Formulation Incorporated in Biocellulose Membranes. Int. J. Biol. Macromol. 2019, 136, 570–578. [Google Scholar] [CrossRef]
- Hawkins, D.; Abrahamse, H. Effect of Multiple Exposures of Low-Level Laser Therapy on the Cellular Responses of Wounded Human Skin Fibroblasts. Photomed. Laser Surg. 2006, 24, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Magni, G.; Tatini, F.; Banchelli, M.; Cherchi, F.; Rossi, M.; Coppi, E.; Pugliese, A.M.; Rossi Degl’Innocenti, D.; Alfieri, D.; et al. Photobiomodulation of Human Fibroblasts and Keratinocytes with Blue Light: Implications in Wound Healing. Biomedicines 2021, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Rahman, S.U.; Tang, E.; Engel, K.; Hall, B.; Kulkarni, A.B.; Arany, P.R. Accelerated Burn Wound Healing with Photobiomodulation Therapy Involves Activation of Endogenous Latent TGF-Β1. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Mosca, R.C.; Ong, A.A.; Albasha, O.; Bass, K.; Arany, P. Photobiomodulation Therapy for Wound Care: A Potent, Noninvasive, Photoceutical Approach. Adv. Ski. Wound Care 2019, 32, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Grecco, C.; Moriyama, L.T. Princípios Básicos Em Terapia Fotodinâmica. In Terapia Fotodinâmica Dermatológica: Programa TFD Brasil; Compacta Gráfica e Editora: São Carlos, Brazil, 2015; pp. 39–49. ISBN 9788579932632. [Google Scholar]
- Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in Photodynamic Therapy: Part One—Photosensitizers, Photochemistry and Cellular Localization. Photodiagnosis Photodyn. Ther. 2004, 1, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic Therapy—Mechanisms, Photosensitizers and Combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef]
- Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic Therapy for Cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef]
- Yano, T.; Wang, K.K. Photodynamic Therapy for Gastrointestinal Cancer. Photochem. Photobiol. 2020, 96, 517–523. [Google Scholar] [CrossRef]
- Huang, L.; Dai, T.; Hamblin, M.R. Antimicrobial Photodynamic Inactivation and Photodynamic Therapy for Infections. In Photodynamic Therapy: Methods in Molecular Biology; Gomer, C., Ed.; Humana Press: Totowa, NJ, USA, 2010; Volume 635, pp. 155–173. ISBN 978-1-60761-696-2. [Google Scholar] [CrossRef] [Green Version]
- Hamblin, M.R. Antimicrobial Photodynamic Inactivation: A Bright New Technique to Kill Resistant Microbes. Curr. Opin. Microbiol. 2016, 33, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Blanco, K.C.; Inada, N.M.; Carbinatto, F.M.; Giusti, A.L.; Bagnato, V.S. Treatment of Recurrent Pharyngotonsillitis by Photodynamic Therapy. Photodiagnosis Photodyn. Ther. 2017, 18, 138–139. [Google Scholar] [CrossRef]
- Carmello, J.C.; Alves, F.; Basso, F.G.; de Souza Costa, C.A.; Bagnato, V.S.; Mima, E.G.D.O.; Pavarina, A.C. Treatment of Oral Candidiasis Using Photodithazine®-Mediated Photodynamic Therapy in Vivo. PLoS ONE 2016, 11, e0156947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, A.P.; Kurachi, C.; Bagnato, V.S.; Inada, N.M. Fast Elimination of Onychomycosis by Hematoporphyrin Derivative-Photodynamic Therapy. Photodiagnosis Photodyn. Ther. 2013, 10, 328–330. [Google Scholar] [CrossRef]
- Kharkwal, G.B.; Sharma, S.K.; Huang, Y.Y.; Dai, T.; Hamblin, M.R. Photodynamic Therapy for Infections: Clinical Applications. Lasers Surg. Med. 2011, 43, 755–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nezhadi, J.; Eslami, H.; Fakhrzadeh, V.; Moaddab, S.R.; Zeinalzadeh, E.; Kafil, H.S. Photodynamic Therapy of Infection in Burn Patients. Rev. Med. Microbiol. 2019, 30, 228–239. [Google Scholar] [CrossRef]
- Paolillo, F.R.; Rodrigues, P.G.S.; Bagnato, V.S.; Alves, F.; Pires, L.; Corazza, A.V. The Effect of Combined Curcumin-Mediated Photodynamic Therapy and Artificial Skin on Staphylococcus Aureus–Infected Wounds in Rats. Lasers Med. Sci. 2021, 36, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Tardivo, J.P.; del Giglio, A.; de Oliveira, C.S.; Gabrielli, D.S.; Junqueira, H.C.; Tada, D.B.; Severino, D.; de Fátima Turchiello, R.; Baptista, M.S. Methylene Blue in Photodynamic Therapy: From Basic Mechanisms to Clinical Applications. Photodiagnosis Photodyn. Ther. 2005, 2, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Calixto, G.M.F.; Bernegossi, J.; de Freitas, L.M.; Fontana, C.R.; Chorilli, M.; Grumezescu, A.M. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review. Molecules 2016, 21, 342. [Google Scholar] [CrossRef]
- Maron, D.M.; Ames, B.N. Revised Methods for the Salmonella Mutagenicity Test. Mutat. Res. Environ. Mutagen. Relat. Subj. 1983, 113, 173–215. [Google Scholar] [CrossRef]
- Resende, F.A.; Munari, C.C.; de Azevedo Bentes Monteiro Neto, M.; Tavares, D.C.; Bastos, J.K.; da Silva Filho, A.A.; Varanda, E.A. Comparative Studies of the (Anti) Mutagenicity of Baccharis Dracunculifolia and Artepillin C by the Bacterial Reverse Mutation Test. Molecules 2012, 17, 2335–2350. [Google Scholar] [CrossRef]
- Mortelmans, K.; Zeiger, E. The Ames Salmonella/Microsome Mutagenicity Assay. Acarologia 2000, 455, 29–60. [Google Scholar] [CrossRef]
- de Paula Campos, C.; de Paula D’Almeida, C.; Nogueira, M.S.; Moriyama, L.T.; Pratavieira, S.; Kurachi, C. Fluorescence Spectroscopy in the Visible Range for the Assessment of UVB Radiation Effects in Hairless Mice Skin. Photodiagnosis Photodyn. Ther. 2017, 20, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Romano, R.A.; Pratavieira, S.; da Silva, A.P.; Kurachi, C.; Guimarães, F.E.G. Multispectral Confocal Microscopy Images and Artificial Neural Nets to Monitor the Photosensitizer Uptake and Degradation in Candida Albicans Cells. In Proceedings of the European Conference on Biomedical Optics, Munich, Germany, 25–29 June 2017. [Google Scholar] [CrossRef]
- de Oliveira Barud, H.G.; da Silva, R.R.; da Silva Barud, H.; Tercjak, A.; Gutierrez, J.; Lustri, W.R.; de Oliveira, O.B.; Ribeiro, S.J.L. A Multipurpose Natural and Renewable Polymer in Medical Applications: Bacterial Cellulose. Carbohydr. Polym. 2016, 153, 406–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacheco, G.; da Silva Filho, E.C.; Machado, R.T.A.; Ribeiro, S.J.L.; Meneguin, A.B.; Barud, H.D.S.; Nogueira, C.R.; Silva, M.C.C.; Trovatti, E. Development and Characterization of Bacterial Cellulose Produced by Cashew Tree Residues as Alternative Carbon Source. Ind. Crops Prod. 2017, 107, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Radovanović, V.; Vlainić, J.; Hanžić, N.; Ukić, P.; Oršolić, N.; Baranović, G.; Jembrek, M.J. Neurotoxic Effect of Ethanolic Extract of Propolis in the Presence of Copper Ions Is Mediated through Enhanced Production of ROS and Stimulation of Caspase-3/7 Activity. Toxins 2019, 11, 273. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.N.; McGuinness, G.B.; Rouze, R.; Quilty, B.; Cahill, P.; Soares, G.D.A.; Thiré, R.M.S.M. PVA Hydrogels Loaded with a Brazilian Propolis for Burn Wound Healing Applications. J. Appl. Polym. Sci. 2015, 132, 42129. [Google Scholar] [CrossRef]
- Mohammadkazemi, F.; Azin, M.; Ashori, A. Production of Bacterial Cellulose Using Different Carbon Sources and Culture Media. Carbohydr. Polym. 2015, 117, 518–523. [Google Scholar] [CrossRef]
- Gong, T.; Hou, Y.; Yang, X.; Guo, Y. Gelation of Hydroxyethyl Cellulose Aqueous Solution Induced by Addition of Colloidal Silica Nanoparticles. Int. J. Biol. Macromol. 2019, 134, 547–556. [Google Scholar] [CrossRef]
- Rocha, B.A.; Rodrigues, M.R.; Bueno, P.C.P.; de Mello Costa-Machado, A.R.; de Oliveira Lima Leite Vaz, M.M.; Nascimento, A.P.; Barud, H.S.; Berretta-Silva, A.A. Preparation and Thermal Characterization of Inclusion Complex of Brazilian Green Propolis and Hydroxypropyl-β-Cyclodextrin: Increased Water Solubility of the Chemical Constituents and Antioxidant Activity. J. Therm. Anal. Calorim. 2012, 108, 87–94. [Google Scholar] [CrossRef]
- Barud, H.S.; Assunção, R.M.N.; Martines, M.A.U.; Dexpert-Ghys, J.; Marques, R.F.C.; Messaddeq, Y.; Ribeiro, S.J.L. Bacterial Cellulose-Silica Organic-Inorganic Hybrids. J. Solgel Sci. Technol. 2008, 46, 363–367. [Google Scholar] [CrossRef]
- Corrêa, N.M.; Camargo Júnior, F.B.; Ignácio, R.F.; Leonardi, G.R. Avaliação Do Comportamento Reológico de Diferentes Géis Hidrofílicos. Rev. Bras. De Ciências Farm. 2005, 41, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Carbinatto, F.M.; Sábio, R.M.; Meneguin, A.B.; Cestari, S.E.; Cruz, S.A.; Barud, H.S. Bacterial Cellulose-Based Hydrogel for Wound Healing: Characterization and in Vitro Evaluation. Int. J. Adv. Med. Biotechnol. 2018, 1, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Schramm, L.L. Emulsions, Foams, and Suspensions: Fundamentals and Applications; Wiley-VCH: Weinheim, Germany, 2006; ISBN 3527307435. [Google Scholar]
- Lee, C.H.; Moturi, V.; Lee, Y. Thixotropic Property in Pharmaceutical Formulations. J. Control. Release 2009, 136, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.C.; Calixto, G.; Hatakeyama, I.N.; Luz, G.M.; Gremião, M.P.D.; Chorilli, M. Rheological, Mechanical, and Bioadhesive Behavior of Hydrogels to Optimize Skin Delivery Systems. Drug Dev. Ind. Pharm. 2013, 39, 1750–1757. [Google Scholar] [CrossRef] [PubMed]
- De Lima, G.G.; de Souza, R.O.; Bozzi, A.D.; Poplawska, M.A.; Devine, D.M.; Nugent, M.J.D. Extraction Method Plays Critical Role in Antibacterial Activity of Propolis-Loaded Hydrogels. J. Pharm. Sci. 2016, 105, 1248–1257. [Google Scholar] [CrossRef]
- Fontes, M.D.L.; Meneguin, A.B.; Tercjak, A.; Gutierrez, J.; Cury, B.S.F.; Cury, F.; dos Santos, A.M.; Ribeiro, S.J.L. Effect of in Situ Modification of Bacterial Cellulose with Carboxymethylcellulose on Its Nano/Microstructure and Methotrexate Release Properties. Carbohydr. Polym. 2018, 179, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Kachel, E.; Moshkovitz, Y.; Sternik, L.; Sahar, G.; Grosman-Rimon, L.; Belotserkovsky, O.; Reichart, M.; Stark, Y.; Emanuel, N. Local Prolonged Release of Antibiotic for Prevention of Sternal Wound Infections Postcardiac Surgery—A Novel Technology. J. Card. Surg. 2020, 35, 2695–2703. [Google Scholar] [CrossRef]
- Parente, M.E.; Ochoa Andrade, A.; Ares, G.; Russo, F.; Jiménez-Kairuz, A. Bioadhesive Hydrogels for Cosmetic Applications. Int. J. Cosmet. Sci. 2015, 37, 511–518. [Google Scholar] [CrossRef]
- Lopes, C.M.; Manuel, J.; Lobo, S.; Costa, P. Formas Farmacêuticas de Liberação Modificada: Polímeros Hidrifílicos. Rev. Bras. De Cienc. Farm. Braz. J. Pharm. Sci. 2005, 41, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, L.; Marcinkevicius, K.; Borelli, R.; Gennari, G.; Salomón, V.; Isla, M.I.; Vera, N.; Borelli, V. Differentiation of Argentine Propolis from Different Species of Bees and Geographical Origins by UV Spectroscopy and Chemometric Analysis. J. Saudi Soc. Agric. Sci. 2018, 18, 185–191. [Google Scholar] [CrossRef]
- Legnani, C.; Barud, H.S.; Caiut, J.M.A.; Calil, V.L.; Maciel, I.O.; Quirino, W.G.; Ribeiro, S.J.L.; Cremona, M. Transparent Bacterial Cellulose Nanocomposites Used as Substrate for Organic Light-Emitting Diodes. J. Mater. Sci. Mater. Electron. 2019, 30, 16718–16723. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.; Yang, X.; Peng, Z.; Liu, W.; Xu, J.; Tang, J.; He, X. ChemComm. Chamical Commun. 2015, 51, 14357–14360. [Google Scholar] [CrossRef]
- Selvam, S.; Sarkar, I.; Selvam, S.; Sarkar, I. Author’s Accepted Manuscript Molecular Mechanics Based Approach Bile Salt Induced Solubilization of Methylene Blue: Study on Methylene Blue Fluorescence and Molecular Mechanics Based Approach. J. Pharm. Anal. 2016, 7, 71–75. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, L.; Chen, X.; Chen, Z.; Wu, F. Hydrogel-Based Phototherapy for Fighting Cancer and Bacterial Infection. Sci. China Mater. 2017, 60, 487–503. [Google Scholar] [CrossRef]
- Luengas, S.L.P.; Marin, G.H.; Aviles, K.; Acuña, R.C.; Roque, G.; Nieto, F.R.; Sanchez, F.; Tarditi, A.; Rivera, L.; Mansilla, E. Enhanced Singlet Oxygen Production by Photodynamic Therapy and a Novel Method for Its Intracellular Measurement. Cancer Biother. Radiopharm. 2014, 29, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Vecchio, D.; Gupta, A.; Huang, L.; Landi, G.; Avci, P.; Rodas, A.; Hamblina, M.R. Bacterial Photodynamic Inactivation Mediated by Methylene Blue and Red Light Is Enhanced by Synergistic Effect of Potassium Iodide. Antimicrob. Agents Chemother. 2015, 59, 5203–5212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, K.; Ou, J.; Huang, J.; Ou, S. P-Coumaric Acid and Its Conjugates: Dietary Sources, Pharmacokinetic Properties and Biological Activities. J. Sci. Food Agric. 2016, 96, 2952–2962. [Google Scholar] [CrossRef] [PubMed]
- Khoshnevisan, K.; Maleki, H.; Samadian, H.; Doostan, M.; Reza, M. Antibacterial and Antioxidant Assessment of Cellulose Acetate/Polycaprolactone Nano Fibrous Mats Impregnated with Propolis. Int. J. Biol. Macromol. 2019, 140, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-C.; Wang, Y.-X.; Yu, N.-Q.; Hu, D.; Wang, X.-Y.; Chen, X.-G.; Liao, Y.-W.; Yao, J.; Wang, H.; He, L.; et al. Brazilian Green Propolis Extract Synergizes with Protoporphyrin IX-Mediated Photodynamic Therapy via Enhancement of Intracellular Accumulation of Protoporphyrin IX and Attenuation of NF-ΚB and COX-2. Molecules 2017, 22, 732. [Google Scholar] [CrossRef] [Green Version]
- Volpi, N. Separation of Flavonoids and Phenolic Acids from Propolis by Capillary Zone Electrophoresis. Electrophoresis 2004, 25, 1872–1878. [Google Scholar] [CrossRef]
Biomarker | Mean Concentration (mg/g) ± SD | ||
---|---|---|---|
BNCH/P1 | BNCH/P2 | BNCH/P3 | |
p-Coumaric acid | 0.151 ± 0.0008 | 0.336 ± 0.0160 | 0.453 ± 0.0042 |
Artepillin C | 0.782 ± 0.0154 | 1.583 ± 0.0740 | 2.171 ± 0.0404 |
Baccharin | 0.103 ± 0.00262 | 0.17 ± 0.00738 | 0.211 ± 0.0034 |
Biomarker | Formulation | Correlation Coefficients (r) | ||
---|---|---|---|---|
Zero-Order µg/h | Higuchi Model µg/√h | First-Order Log(µg)/h | ||
p-Coumaric acid | BNCH/P1 | 0.566 | 0.720 | 0.554 |
BNCH/P2 | 0.717 | 0.839 | 0.684 | |
BNCH/P3 | 0.472 | 0.617 | 0.418 | |
Artepillin C | BNCH/P1 | 0.853 | 0.945 | 0.771 |
BNCH/P2 | 0.969 | 0.995 | 0.872 | |
BNCH/P3 | 0.917 | 0.980 | 0.750 |
Treatment | Number of Revertants (M ± SD)/Plate and MI | |||||||
---|---|---|---|---|---|---|---|---|
TA98 | TA100 | TA102 | TA97a | |||||
µg /Plate | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 |
DMSO | 16 ± 0 | 26 ± 3 | 102 ± 8 | 93 ± 11 | 228 ± 22 | 289 ± 31 | 146 ± 10 | 120 ± 18 |
BNCH | 14 ± 1 (0.88) | 27 ± 2 (1.02) | 95 ± 5 (0.93) | 115 ± 14 (1.23) | 231 ± 12 (1.01) | 254 ± 25 (0.88) | 133 ± 17 (0.91) | 129 ± 11 (1.08) |
BNCH/P3 | 10 ± 2 (0.59) | 16 ± 2 (0.62) | 78 ± 3 (0.77) | 90 ± 18 (0.97) | 128 ± 7 (0.56) | 250 ± 33 (0.87) | 88 ± 2 (0.60) | 102 ± 17 (0.85) |
BNCH/P2 | 15 ± 1 (0.94) | 21 ± 1 (0.81) | 90 ± 4 (0.89) | 95 ± 8 (1.02) | 204 ± 28 (0.90) | 270 ± 20 (0.94) | 116 ± 14 (0.80) | 113 ± 11 (0.95) |
BNCH/P1 | 18 ± 1 (1.13) | 27 ± 2 (1.02) | 98 ± 9 (0.96) | 98 ± 4 (1.05) | 257 ± 35 (1.13) | 308 ± 35 (1.07) | 175 ± 22 (1.20) | 134 ± 13 (1.12) |
C + | 599 ± 56 (a),* | 927 ± 89 (d),* | 1266 ± 152 (b),* | 1886 ± 175 (d),* | 1882 ± 103 (c)* | 1266 ± 101 (e),* | 612 ± 62 (a),* | 1756 ± 135 (d),* |
Mean Inhibition Halo (mm) ± SD | ||
---|---|---|
Samples | Dark | Light (660 nm–50 J cm−2) |
S. aureus | 0.0 ± 0.0 | 0.0 ± 0.0 |
BH | 1.0 ± 0.1 | 0.0 ± 0.0 |
BNCH | 0.0 ± 0.0 | 0.0 ± 0.0 |
BNCH/P1 * | 3.0 ± 0.0 | 3.0 ± 0.0 |
BNCH/MB1 * | 3.0 ± 0.1 | 4.0 ± 0.1 |
BNCH/MB2 * | 5.0 ± 0.1 | 5.0 ± 0.1 |
BNCH/P1/MB1 * | 2.0 ± 0.0 | 3.0 ± 0.1 |
BNCH/P1/MB2 * | 2.0 ± 0.1 | 2.0 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, I.S.; Lima, L.R.; Berretta, A.A.; Amorim, N.A.; Pratavieira, S.; Corrêa, T.Q.; Nogueira, F.A.R.; Barud, H.S. Antimicrobial Formulation of a Bacterial Nanocellulose/Propolis-Containing Photosensitizer for Biomedical Applications. Polymers 2023, 15, 987. https://doi.org/10.3390/polym15040987
Gonçalves IS, Lima LR, Berretta AA, Amorim NA, Pratavieira S, Corrêa TQ, Nogueira FAR, Barud HS. Antimicrobial Formulation of a Bacterial Nanocellulose/Propolis-Containing Photosensitizer for Biomedical Applications. Polymers. 2023; 15(4):987. https://doi.org/10.3390/polym15040987
Chicago/Turabian StyleGonçalves, Isabella Salgado, Lais Roncalho Lima, Andresa Aparecida Berretta, Nathaly Alcazar Amorim, Sebastião Pratavieira, Thaila Quatrini Corrêa, Flávia Aparecida Resende Nogueira, and Hernane Silva Barud. 2023. "Antimicrobial Formulation of a Bacterial Nanocellulose/Propolis-Containing Photosensitizer for Biomedical Applications" Polymers 15, no. 4: 987. https://doi.org/10.3390/polym15040987
APA StyleGonçalves, I. S., Lima, L. R., Berretta, A. A., Amorim, N. A., Pratavieira, S., Corrêa, T. Q., Nogueira, F. A. R., & Barud, H. S. (2023). Antimicrobial Formulation of a Bacterial Nanocellulose/Propolis-Containing Photosensitizer for Biomedical Applications. Polymers, 15(4), 987. https://doi.org/10.3390/polym15040987