One-Step Treatment for Upgrading Bleached Bamboo Pulp to Dissolving Pulp High Solvency in Green Alkali/Urea Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Bamboo Cellulose Dissolving Pulp with Controllable Mη
2.3. Preparation of Different Mη Bamboo Cellulose Solution
2.4. Preparation of Bamboo Cellulose Hydrogels and Films with Different Mη
2.5. Characterization
3. Results and Discussion
3.1. Effects of Alkaline Peroxide Treatment for Bamboo Cellulose Mη
3.2. Solubility of Different Mη Bamboo Cellulose in LiOH/Urea/Aqueous Solution
3.3. Structure and Mechanical Properties of Hydrogels and Dry Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, T.; Chen, C.; Brozena, A.H.; Zhu, J.Y.; Xu, L.; Driemeier, C.; Dai, J.; Rojas, O.J.; Isogai, A.; Wågberg, L. Developing fibrillated cellulose as a sustainable technological material. Nature 2021, 590, 47–56. [Google Scholar] [CrossRef]
- El Amri, A.; Ouass, A.; Wardighi, Z.; Bouhassane, F.Z.; Zarrouk, A.; Habsaoui, A.; Rifi, E.-H.; Lebkiri, A. Extraction and characterization of cellulosic nanocrystals from stems of the reed plant large-leaved cattail (Typha latifolia). Mater Today Proc. 2022, 8, 408. [Google Scholar] [CrossRef]
- Peng, B.; Yao, Z.; Wang, X.; Crombeen, M.; Sweeney, D.G.; Tam, K.C. Cellulose-based materials in wastewater treatment of petroleum industry. Green Energy Environ. 2020, 5, 37–49. [Google Scholar] [CrossRef]
- Tu, H.; Zhu, M.; Duan, B.; Zhang, L. Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 2021, 33, 2000682. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, H.; Athar, M.; Dehghani, M.; Garnier, G.; Batchelor, W. Recent advancements, trends, fundamental challenges and opportunities in spray deposited cellulose nanofibril films for packaging applications. Sci. Total Environ. 2022, 836, 155654. [Google Scholar] [CrossRef]
- Azimi, B.; Maleki, H.; Gigante, V.; Bagherzadeh, R.; Mezzetta, A.; Milazzo, M.; Guazzelli, L.; Cinelli, P.; Lazzeri, A.; Danti, S. Cellulose-based fiber spinning processes using ionic liquids. Cellulose 2022, 29, 3079–3129. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Ma, Z.; Yan, L. Dissolution of highly molecular weight cellulose isolated from wheat straw in deep eutectic solvent of choline/l-lysine hydrochloride. Green Energy Environ. 2020, 5, 232–239. [Google Scholar] [CrossRef]
- Zainal, S.H.; Mohd, N.H.; Suhaili, N.; Anuar, F.H.; Lazim, A.M.; Othaman, R. Preparation of cellulose-based hydrogel: A review. J. Mater. Res. Technol. 2021, 10, 935–952. [Google Scholar] [CrossRef]
- Reimer, M.; Zollfrank, C. Cellulose for light manipulation: Methods, applications, and prospects. Adv. Energy Mater. 2021, 11, 2003866. [Google Scholar] [CrossRef]
- Rosenau, T.; French, A.D. N-methylmorpholine-n-oxide (nmmo): Hazards in practice and pitfalls in theory. Cellulose 2021, 28, 5985–5990. [Google Scholar] [CrossRef]
- Singh, S.K.; Savoy, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 2020, 297, 112038. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, B.; Koo, Y.-M.; MacFarlane, D.R. Introduction: Ionic liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, G.; Liu, X.; Li, Z.; Li, S.; Liu, J.; Li, W. Characterizing gelation kinetics of chitosan dissolved in an alkali/urea aqueous solution: Mechanisms accounting for the morphological development. J. Membr. Sci. 2021, 635, 119516. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, X.; Yu, S.; Quan, K.; Zhao, C.; Shao, Z.; Ye, D.; Qi, H.; Chen, P. Parameterization of classical nonpolarizable force field for hydroxide toward the large-scale molecular dynamics simulation of cellulose in pre-cooled alkali/urea aqueous solution. J. Appl. Polym. Sci. 2021, 138, 51477. [Google Scholar] [CrossRef]
- Lao, T.L.B.; Cordura, S.L.A.; Diaz, L.J.L.; Vasquez, M.R. Influence of plasma treatment on the dissolution of cellulose in lithum chloride–dimethylacetamide. Cellulose 2020, 27, 9801–9811. [Google Scholar] [CrossRef]
- Wang, W.; Li, Y.; Li, W.; Zhang, B.; Liu, Y. Effect of solvent pre-treatment on the structures and dissolution of microcrystalline cellulose in lithium chloride/dimethylacetamide. Cellulose 2019, 26, 3095–3109. [Google Scholar] [CrossRef]
- Li, C.; Wu, J.; Shi, H.; Xia, Z.; Sahoo, J.K.; Yeo, J.; Kaplan, D.L. Fiber-based biopolymer processing as a route toward sustainability. Adv. Mater. 2022, 34, 2105196. [Google Scholar] [CrossRef]
- Wang, S.; Lu, A.; Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 2016, 53, 169–206. [Google Scholar] [CrossRef]
- Xie, K.; Tu, H.; Dou, Z.; Liu, D.; Wu, K.; Liu, Y.; Chen, F.; Zhang, L.; Fu, Q. The effect of cellulose molecular weight on internal structure and properties of regenerated cellulose fibers as spun from the alkali/urea aqueous system. Polymer 2021, 215, 123379. [Google Scholar] [CrossRef]
- Sayyed, A.J.; Deshmukh, N.A.; Pinjari, D.V. A critical review of manufacturing processes used in regenerated cellulosic fibres: Viscose, cellulose acetate, cuprammonium, licl/dmac, ionic liquids, and nmmo based lyocell. Cellulose 2019, 26, 2913–2940. [Google Scholar] [CrossRef]
- Felgueiras, C.; Azoia, N.G.; Gonçalves, C.; Gama, M.; Dourado, F. Trends on the cellulose-based textiles: Raw materials and technologies. Front. Bioeng. Biotechnol. 2021, 9, 608826. [Google Scholar] [CrossRef] [PubMed]
- Gomri, C.; Cretin, M.; Semsarilar, M. Recent progress on chemical modification of cellulose nanocrystal (cnc) and its application in nanocomposite films and membranes-a comprehensive review. Carbohydr. Polym. 2022, 294, 119790. [Google Scholar] [CrossRef] [PubMed]
- Rajeswari, A.; Christy, E.J.S.; Swathi, E.; Pius, A. Fabrication of improved cellulose acetate-based biodegradable films for food packaging applications. Environ. Toxicol. Chem. 2020, 2, 107–114. [Google Scholar] [CrossRef]
- Dong, Y.D.; Zhang, H.; Zhong, G.J.; Yao, G.; Lai, B. Cellulose/carbon composites and their applications in water treatment–a review. Chem. Eng. J. 2021, 405, 126980. [Google Scholar] [CrossRef]
- Liu, C.H.; Shang, J.P.; Su, X.; Zhao, S.; Peng, Y.; Li, Y.B. Fabrication of superhydrophobic/superoleophilic bamboo cellulose foam for oil/water separation. Polymers 2022, 14, 5162. [Google Scholar] [CrossRef]
- Gopakumar, D.A.; Pai, A.R.; Pottathara, Y.B.; Pasquini, D.; de Morais, L.C.; Khalil Hps, A.; Nzihou, A.; Thomas, S. Flexible papers derived from polypyrrole deposited cellulose nanofibers for enhanced electromagnetic interference shielding in gigahertz frequencies. J. Appl. Polym. Sci. 2021, 138, 50262. [Google Scholar] [CrossRef]
- Zhu, M.; Yan, X.; Xu, H.; Xu, Y.; Kong, L. Highly conductive and flexible bilayered mxene/cellulose paper sheet for efficient electromagnetic interference shielding applications. Ceram. Int. 2021, 47, 17234–17244. [Google Scholar] [CrossRef]
- Baharin, K.W.; Zakaria, S.; Ellis, A.V.; Talip, N.; Kaco, H.; Gan, S.; Zailan, F.D.; Hashim, S.N.A.S. Factors affecting cellulose dissolution of oil palm empty fruit bunch and kenaf pulp in NaOH/urea solvent. Sains Malays 2018, 47, 377–386. [Google Scholar]
- Liu, X.; Xiao, W.; Ma, X.; Huang, L.; Ni, Y.; Chen, L.; Ouyang, X.; Li, J. Conductive regenerated cellulose film and its electronic devices—A review. Carbohydr. Polym. 2020, 250, 116969. [Google Scholar] [CrossRef]
- Tu, H.; Li, X.; Liu, Y.; Luo, L.; Duan, B.; Zhang, R. Recent progress in regenerated cellulose-based fibers from alkali/urea system via spinning process. Carbohydr. Polym. 2022, 296, 119942. [Google Scholar] [CrossRef]
- Sheng, Z.; Guo, A.; Wang, J.; Chen, X. Preparation, physicochemical properties and antimicrobial activity of chitosan from fly pupae. Heliyon 2022, 8, e11168. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Wang, Y.; Zhang, L.; Chen, L. Rapid dissolution of spruce cellulose in H2SO4 aqueous solution at low temperature. Cellulose 2016, 23, 3463–3473. [Google Scholar] [CrossRef]
- Ling, Z.; Wang, T.; Makarem, M.; Santiago Cintrón, M.; Cheng, H.N.; Kang, X.; Bacher, M.; Potthast, A.; Rosenau, T.; King, H. Effects of ball milling on the structure of cotton cellulose. Cellulose 2019, 26, 305–328. [Google Scholar] [CrossRef]
- Mattonai, M.; Pawcenis, D.; Del Seppia, S.; Łojewska, J.; Ribechini, E. Effect of ball-milling on crystallinity index, degree of polymerization and thermal stability of cellulose. Bioresour. Technol. 2018, 270, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Hernando, A.; Martín-Juárez, J.; Bolado-Rodríguez, S. Study of steam explosion pretreatment and preservation methods of commercial cellulose. Carbohydr. Polym. 2018, 191, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Cateto, C.; Hu, G.; Ragauskas, A. Enzymatic hydrolysis of organosolv kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy Environ. Sci. 2011, 4, 1516–1521. [Google Scholar] [CrossRef]
- Wang, H.; Pang, B.; Wu, K.; Kong, F.; Li, B.; Mu, X. Two stages of treatments for upgrading bleached softwood paper grade pulp to dissolving pulp for viscose production. Biochem. Eng. J. 2014, 82, 183–187. [Google Scholar] [CrossRef]
- Gavrilescu, M.; Chisti, Y. Biotechnology—A sustainable alternative for chemical industry. Biotechnol. Adv. 2005, 23, 471–499. [Google Scholar] [CrossRef]
- Bjerre, A.B.; Olesen, A.B.; Fernqvist, T.; Plöger, A.; Schmidt, A.S. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol. Bioeng. 1996, 49, 568–577. [Google Scholar] [CrossRef]
- Zeronian, S.H.; Inglesby, M.K. Bleaching of cellulose by hydrogen peroxide. Cellulose 1995, 2, 265–272. [Google Scholar] [CrossRef]
- Rastinfard, A.; Dalisson, B.; Barralet, J. Aqueous decomposition behavior of solid peroxides: Effect of ph and buffer composition on oxygen and hydrogen peroxide formation. Acta Biomater. 2022, 145, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Golova, O.g.P.; Nosova, N.I. Degradation of cellulose by alkaline oxidation. Russ. Chem. Rev. 1973, 42, 327. [Google Scholar] [CrossRef]
- Hosoya, T.; Rosenau, T. Degradation of 2, 5-dihydroxy-1, 4-benzoquinone by hydrogen peroxide under moderately alkaline conditions resembling pulp bleaching: A combined kinetic and computational study. J. Org. Chem. 2013, 78, 11194–11203. [Google Scholar] [CrossRef]
- Brooks, R.E.; Moore, S.B. Alkaline hydrogen peroxide bleaching of cellulose. Cellulose 2000, 7, 263–286. [Google Scholar] [CrossRef]
- Pandis, P.K.; Kalogirou, C.; Kanellou, E.; Vaitsis, C.; Savvidou, M.G.; Sourkouni, G.; Zorpas, A.A.; Argirusis, C. Key points of advanced oxidation processes (AOPs) for wastewater, organic pollutants and pharmaceutical waste treatment: A mini review. Chem. Eng. J. 2022, 6, 8. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, H.; Guo, S. Preparation of cellulose/chitin blend materials and influence of their properties on sorption of heavy metals. Sustainability 2021, 13, 6460. [Google Scholar] [CrossRef]
- Conner, A.H. Size exclusion chromatography of cellulose and cellulose derivatives. J. Chromatogr. Sci. 1995, 69, 331–352. [Google Scholar]
- Tsai, L.Y.; Lee, K.T.; Liu, T.Z. Evidence for accelerated generation of hydroxyl radicals in experimental obstructive jaundice of rats. Free Radic. Biol. Med. 1998, 24, 732–737. [Google Scholar] [CrossRef]
- Babbs, C.F.; Griffin, D.W. Scatchard analysis of methane sulfinic acid production from dimethyl sulfoxide: A method to quantify hydroxyl radical formation in physiologic systems. Free Radic. Biol. Med. 1989, 6, 493–503. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Qi, H.; Lue, A.; Hu, K.; Cheng, G.; Zhang, L. Role of sodium zincate on cellulose dissolution in NaOH/urea aqueous solution at low temperature. Carbohydr. Polym. 2011, 83, 1185–1191. [Google Scholar] [CrossRef]
- Yokoyama, T.; Matsumoto, Y.; Meshitsuka, G. Enhancement of the reaction between pulp components and hydroxyl radical produced by the decomposition of hydrogen peroxide under alkaline conditions. J. Wood Sci. 2002, 48, 191–196. [Google Scholar] [CrossRef]
- Duan, L.; Liu, R.; Li, Q. A more efficient fenton oxidation method with high shear mixing for the preparation of cellulose nanofibers. Starke 2020, 72, 1900259. [Google Scholar] [CrossRef]
- Yang, J.; Tu, M.; Xia, C.; Keller, B.; Huang, Y.; Sun, F.F. Effect of fenton pretreatment on c1 and c6 oxidation of cellulose and its enzymatic hydrolyzability. ACS Sustain. Chem. Eng. 2019, 7, 7071–7079. [Google Scholar] [CrossRef]
- Xu, X.; Lu, N.; Wang, S.; Huang, M.; Qu, S.; Xuan, F. Extraction and characterization of microfibrillated cellulose from discarded cotton fibers through catalyst preloaded fenton oxidation. Adv. Mater. Sci. Eng. 2021, 2021, 5545409. [Google Scholar] [CrossRef]
Mη (w) | α-Cellulose (%) | Hemicellulose (%) | Ash (%) | Fe3+ (mg/kg) | Whiteness (%) | Dichloromethane Extract (%) | Yield (%) | χc (%) |
---|---|---|---|---|---|---|---|---|
C4.0 | / | 3.2 ± 0.45 | 1.0 ± 0.01 | 58.8 ± 1.25 | 86.6 ± 1.83 | 4.8 | 85.0 | 60.0 |
C5.1 | 90.0 ± 0.01 | 7.0 ± 0.67 | 1.1 ± 0.02 | 58.8 ± 1.71 | 87.0 ± 2.31 | 4.7 | 87.0 | 48.5 |
C6.7 | 89.0 ± 0.21 | 7.1 ± 0.54 | 1.0 ± 0.04 | 59.4 ± 1.83 | 87.0 ± 1.48 | 5.8 | 90.0 | 47.3 |
C8.3 | 88.4 ± 0.11 | 9.7 ± 0.38 | 0.9 ± 0.01 | 62.4 ± 2.01 | 86.0 ± 1.38 | 5.6 | 92.0 | 49.1 |
C10 | 87.5 ± 0.17 | 9.7 ± 0.34 | 1.1 ± 0.03 | 61.2 ± 2.23 | 85.0 ± 1.54 | 5.9 | 94.0 | 53.2 |
C14 | 86.0 ± 0.01 | 14.2 ± 0.43 | 1.1 ± 0.04 | 60.3 ± 1.34 | 84.0 ± 1.67 | 6.0 | / | 57.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, J.-P.; Liang, P.; Peng, Y.; Xu, D.-F.; Li, Y.-B. One-Step Treatment for Upgrading Bleached Bamboo Pulp to Dissolving Pulp High Solvency in Green Alkali/Urea Aqueous Solution. Polymers 2023, 15, 1475. https://doi.org/10.3390/polym15061475
Shang J-P, Liang P, Peng Y, Xu D-F, Li Y-B. One-Step Treatment for Upgrading Bleached Bamboo Pulp to Dissolving Pulp High Solvency in Green Alkali/Urea Aqueous Solution. Polymers. 2023; 15(6):1475. https://doi.org/10.3390/polym15061475
Chicago/Turabian StyleShang, Jiao-Ping, Pin Liang, Yun Peng, Ding-Feng Xu, and Yi-Bao Li. 2023. "One-Step Treatment for Upgrading Bleached Bamboo Pulp to Dissolving Pulp High Solvency in Green Alkali/Urea Aqueous Solution" Polymers 15, no. 6: 1475. https://doi.org/10.3390/polym15061475
APA StyleShang, J. -P., Liang, P., Peng, Y., Xu, D. -F., & Li, Y. -B. (2023). One-Step Treatment for Upgrading Bleached Bamboo Pulp to Dissolving Pulp High Solvency in Green Alkali/Urea Aqueous Solution. Polymers, 15(6), 1475. https://doi.org/10.3390/polym15061475