Combining Experimental and Theoretical Tools to Probe Radio-Oxidation Products in Polyethylene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.1.1. Sample Preparation
2.1.2. Irradiation
2.1.3. Fourier Transform Infrared Spectroscopy
2.2. Theoretical Approach
2.3. Calculation of Carbonyl Concentrations
3. Results and Discussion
3.1. Analysis of Experimental FTIR Spectra
3.2. Calculated IR Spectra
3.3. Concentrations of Carbonyl Species
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [Green Version]
- Ghatge, S.; Yang, Y.; Ahn, J.H.; Hur, H.G. Biodegradation of polyethylene: A brief review. Appl. Biol. Chem. 2020, 63, 27. [Google Scholar] [CrossRef]
- Ferry, M.; Roma, G.; Cochin, F.; Esnouf, S.; Dauvois, V.; Nizeyimana, F.; Gervais, B.; Ngono-Ravache, Y. 3.16—Polymers in the Nuclear Power Industry. In Comprehensive Nuclear Materials, 2nd ed.; Konings, R.J., Stoller, R.E., Eds.; Elsevier: Oxford, UK, 2020; pp. 545–580. [Google Scholar] [CrossRef]
- Ferry, M.; Pellizzi, E.; Boughattas, I.; Fromentin, E.; Dauvois, V.; de Combarieu, G.; Coignet, P.; Cochin, F.; Ngono-Ravache, Y.; Balanzat, E.; et al. Effect of cumulated dose on hydrogen emission from polyethylene irradiated under oxidative atmosphere using gamma rays and ion beams. Radiat. Phys. Chem. 2016, 118, 124–127. [Google Scholar] [CrossRef]
- Seguchi, T.; Arakawa, K.; Hayakawa, N.; Machi, S. Radiation induced oxidative degradation of polymers—IV. Dose rate effects on chemical and mechanical properties. Radiat. Phys. Chem. (1977) 1981, 18, 671–678. [Google Scholar] [CrossRef]
- Reynolds, A.; Bell, R.; Bryson, N.; Doyle, T.; Hall, M.; Mason, L.; Quintric, L.; Terwilliger, P. Dose-rate effects on the radiation-induced oxidation of electric cable used in nuclear power plants. Radiat. Phys. Chem. 1995, 45, 103–110. [Google Scholar] [CrossRef]
- Sidi, A.; Colombani, J.; Larché, J.F.; Rivaton, A. Multiscale analysis of the radiooxidative degradation of EVA/EPDM composites. ATH filler and dose rate effect. Radiat. Phys. Chem. 2018, 142, 14–22. [Google Scholar] [CrossRef]
- Suraci, S.V.; Amat, S.; Hippolyte, L.; Malechaux, A.; Fabiani, D.; Le Gall, C.; Juan, O.; Dupuy, N. Ageing evaluation of cable insulations subjected to radiation ageing: Application of principal component analyses to Fourier Transform Infra-Red and dielectric spectroscopy. High Volt. 2022, 7, 652–665. [Google Scholar] [CrossRef]
- Fessenden, R.W.; Schuler, R.H. Electron Spin Resonance Studies of Transient Alkyl Radicals. J. Chem. Phys. 1963, 39, 2147–2195. [Google Scholar] [CrossRef]
- Keyser, R.M.; Tsuji, K.; Williams, F. Trapped Electrons in γ-Irradiated Polyethylene Indentified by Electron Spin Resonance Spectroscopy. Macromolecules 1968, 1, 289–290. [Google Scholar] [CrossRef]
- Hikmet, R.; Keller, A. Crystallinity dependent free radical formation and decay in irradiated polyethylene in the presence of oxygen. Int. J. Radiat. Appl. Instrum. Part C Radiat. Phys. Chem. 1987, 29, 15–19. [Google Scholar] [CrossRef]
- Salih, M.; Buttafava, A.; Ravasio, U.; Mariani, M.; Faucitano, A. EPR investigation on radiation-induced graft copolymerization of styrene onto polyethylene: Energy transfer effects. Radiat. Phys. Chem. 2007, 76, 1360–1366. [Google Scholar] [CrossRef]
- Przybytniak, G.; Sadło, J.; Walo, M.; Wróbel, N.; Žák, P. Comparison of radical processes in non-aged and radiation-aged polyethylene unprotected or protected by antioxidants. Mater. Today Commun. 2020, 25, 101521. [Google Scholar] [CrossRef]
- Osawa, Z.; Kuroda, H. Differences in polyene formation between polyethylene and polypropylene during photo-irradiation. Polymer Photochem. 1986, 7, 231–236. [Google Scholar] [CrossRef]
- Teyssedre, G.; Cissé, L.; Laurent, C.; Massines, F.; Tiemblo, P. Spectral Analysis of Optical Emission Due to Isothermal Charge Recombination in Polyolefins. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 527–535. [Google Scholar] [CrossRef]
- Randall, J.; Zoepfl, F.; Silverman, J. High-resolution solution carbon 13 NMR measurements of irradiated polyethylene. Radiat. Phys. Chem. (1977) 1983, 22, 183–192. [Google Scholar] [CrossRef]
- Palmas, P.; Le Campion, L.; Bourgeoisat, C.; Martel, L. Curing and thermal ageing of elastomers as studied by 1H broadband and 13C high-resolution solid-state NMR. Polymer 2001, 42, 7675–7683. [Google Scholar] [CrossRef]
- Fallgatter, M.B.; Dole, M. The Radiation Chemistry of Polyethylene. VII. Polyene Formation1. J. Phys. Chem. 1964, 68, 1988–1997. [Google Scholar] [CrossRef]
- Mailhot, B.; Gardette, J.L. Polystyrene photooxidation. 2. A pseudo wavelength effect. Macromolecules 1992, 25, 4127–4133. [Google Scholar] [CrossRef]
- Möller, K.; Gevert, T. A solid-state investigation of the desorption/evaporation of hindered phenols from low density polyethylene using FTIR and UV spectroscopy with integrating sphere: The effect of molecular size on the desorption. J. Appl. Polym. Sci. 1996, 61, 1149–1162. [Google Scholar] [CrossRef]
- Rivaton, A.; Cambon, S.; Gardette, J.L. Radiochemical ageing of EPDM elastomers: 2. Identification and quantification of chemical changes in EPDM and EPR films γ-irradiated under oxygen atmosphere. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2005, 227, 343–356. [Google Scholar] [CrossRef]
- Gardette, M.; Perthue, A.; Gardette, J.L.; Janecska, T.; Földes, E.; Pukánszky, B.; Therias, S. Photo- and thermal-oxidation of polyethylene: Comparison of mechanisms and influence of unsaturation content. Polym. Degrad. Stab. 2013, 98, 2383–2390. [Google Scholar] [CrossRef] [Green Version]
- Celina, M.C.; Linde, E.; Martinez, E. Carbonyl Identification and Quantification Uncertainties for Oxidative Polymer Degradation. Polym. Degrad. Stab. 2021, 188, 109550. [Google Scholar] [CrossRef]
- Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515. [Google Scholar] [CrossRef] [Green Version]
- Schott, A.P.; Radom, L. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical ScaleFactors. J. Phys. Chem. 1996, 100, 16502. [Google Scholar] [CrossRef]
- Porezag, D.; Pederson, M.R. Infrared intensities and Raman-scattering activities within density-functional theory. Phys. Rev. B 1996, 54, 7830. [Google Scholar] [CrossRef] [PubMed]
- Halls, M.D.; Schlegel, H.B. Comparison of the performance of local, gradient-corrected, and hybrid density functional models in predicting infrared intensities. J. Chem. Phys. 1998, 109, 10587–10593. [Google Scholar] [CrossRef] [Green Version]
- Gaigeot, M.P.; Sprik, M. Ab Initio Molecular Dynamics Computation of the Infrared Spectrum of Aqueous Uracil. J. Phys. Chem. B 2003, 107, 10344. [Google Scholar] [CrossRef]
- Welch, M.D.; Montgomery, W.; Balan, E.; Lerch, P. Insights into the high-pressure behavior of kaolinite from infrared spectroscopy and quantum-mechanical calculations. Phys. Chem. Miner. 2012, 39, 143–151. [Google Scholar] [CrossRef]
- Ferry, M.; Carpentier, F.; Cornaton, M. Radio-Oxidation Ageing of XLPE Containing Different Additives and Filler: Effect on the Gases Emission and Consumption. Polymers 2021, 13, 2845. [Google Scholar] [CrossRef]
- Gillen, K.T.; Clough, R.L. Quantitative Confirmation of Simple Theoretical Models for Diffusion-Limited Oxidation. In Radiation Effects on Polymers; American Chemical Society: Washington, DC, USA, 1991; Chapter 28; pp. 457–472. [Google Scholar] [CrossRef]
- Ngono-Ravache, Y.; Damaj, Z.; Dannoux-Papin, A.; Ferry, M.; Esnouf, S.; Cochin, F.; De Combarieu, G.; Balanzat, E. Effect of swift heavy ions on an EPDM elastomer in the presence of oxygen: LET effect on the radiation-induced chemical ageing. Polym. Degrad. Stab. 2015, 111, 89–101. [Google Scholar] [CrossRef]
- Boullier, I. Étude du comportement de polyoléfines et de polymères fluorés dans des conditions de vieillissement naturel et Accéléré. Ph.D. Thesis, Université des Antilles et de la Guyane, Pointe-à-Pitre, France, 2000. [Google Scholar]
- Lacoste, J.; Carlsson, D.J. Gamma-, photo-, and thermally-initiated oxidation of linear low density polyethylene: A quantitative comparison of oxidation products. J. Polym. Sci. Part A Polym. Chem. 1992, 30, 493–500. [Google Scholar] [CrossRef]
- Luongo, J.P. Infrared study of oxygenated groups formed in polyethylene during oxidation. J. Polym. Sci. 1960, 42, 139–150. [Google Scholar] [CrossRef]
- Teissèdre, G.; Pilichowski, J.; Lacoste, J. Photoageing of polyolefins. I. Photolysis of low molecular weight hydroperoxide at λ≥ 300 nm. Polym. Degrad. Stab. 1994, 45, 145–153. [Google Scholar] [CrossRef]
- Ahn, Y.; Roma, G.; Colin, X. Elucidating the Role of Alkoxy Radicals in Polyethylene Radio-Oxidation Kinetics. Macromolecules 2022, 55, 8676–8684. [Google Scholar] [CrossRef]
- Klimeš, J.; Bowler, D.R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131. [Google Scholar] [CrossRef] [Green Version]
- Roma, G.; Bruneval, F.; Martin-Samos, L. Optical Properties of Saturated and Unsaturated Carbonyl Defects in Polyethylene. J. Phys. Chem. B 2018, 122, 2023–2030. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Lacoste, J.; Carlsson, D.; Falicki, S.; Wiles, D. Polyethylene hydroperoxide decomposition products. Polym. Degrad. Stab. 1991, 34, 309–323. [Google Scholar] [CrossRef]
- Carlsson, D.J.; Wiles, D.M. The Photodegradation of Polypropylene Films. II. Photolysis of Ketonic Oxidation Products. Macromolecules 1969, 2, 587–597. [Google Scholar] [CrossRef]
- Sadtler Research Labs Under US-EPA Contract. NIST Standard Reference Database 35, NIST/EPA Gas-Phase Infrared Database JCAMP Format; Wallace, W.E. (Director) Technical Report; NIST Mass Spectrometry Data Center: Gaithersburg, MD, USA, 2018. [Google Scholar] [CrossRef]
- Zhou, H.; Wilkes, G. Comparison of lamellar thickness and its distribution determined from d.s.c., SAXS, TEM and AFM for high-density polyethylene films having a stacked lamellar morphology. Polymer 1997, 38, 5735–5747. [Google Scholar] [CrossRef]
- Savage, R.C.; Mullin, N.; Hobbs, J.K. Molecular Conformation at the Crystal–Amorphous Interface in Polyethylene. Macromolecules 2015, 48, 6160–6165. [Google Scholar] [CrossRef] [Green Version]
- Fodor, Z.; Iring, M.; Tüdős, F.; Kelen, T. Determination of carbonyl-containing functional groups in oxidized polyethylene. J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 2539–2550. [Google Scholar] [CrossRef]
- Costa, L.; Luda, M.; Trossarelli, L. Ultra high molecular weight polyethylene—II. Thermal-and photo-oxidation. Polym. Degrad. Stab. 1997, 58, 41–54. [Google Scholar] [CrossRef]
- Salvalaggio, M.; Bagatin, R.; Fornaroli, M.; Fanutti, S.; Palmery, S.; Battistel, E. Multi-component analysis of low-density polyethylene oxidative degradation. Polym. Degrad. Stab. 2006, 91, 2775–2785. [Google Scholar] [CrossRef]
- Khelidj, N.; Colin, X.; Audouin, L.; Verdu, J.; Monchy-Leroy, C.; Prunier, V. Oxidation of polyethylene under irradiation at low temperature and low dose rate. Part I. The case of “pure” radiochemical initiation. Polym. Degrad. Stab. 2006, 91, 1593–1597. [Google Scholar] [CrossRef]
- Cambon, S. Étude du mécanisme de dégradation radiochimique d’un élastomère de type EPDM. Ph.D. Thesis, Université de Clermont Ferrand, Clermont-Ferrand, France, 2001. [Google Scholar]
- Carlsson, D.J.; Brousseau, R.; Zhang, C.; Wiles, D.M. Identification of Products from Polyolefin Oxidation by Derivatization Reactions. In Chemical Reactions on Polymers; American Chemical Society: Washington, DC, USA, 1988; pp. 376–389. [Google Scholar] [CrossRef]
- Hulse, G.E.; Kersting, R.J.; Warfel, D.R. Chemistry of dicumyl peroxide-induced crosslinking of linear polyethylene. J. Polym. Sci. Polym. Chem. Ed. 1981, 19, 655–667. [Google Scholar] [CrossRef]
- Xu, A.; Roland, S.; Colin, X. Physico-chemical characterization of the blooming of Irganox 1076® antioxidant onto the surface of a silane-crosslinked polyethylene. Polym. Degrad. Stab. 2020, 171, 109046. [Google Scholar] [CrossRef]
Nominal Dose (kGy) | Dose Rate (Gy/h) | Real Dose (kGy) |
---|---|---|
12 | 1.07 | 11.96 ± 0.72 |
24 | 1.07 | 24.02 ± 1.44 |
50 | 1.06 | 49.98 ± 3.00 |
100 | 1.06 | 99.98 ± 6.00 |
FTIR Band Assignment | [cm] | Degree of Freedom | Reference | |
---|---|---|---|---|
[cm] | [cm] | |||
Lactone | 1785 | 1783 | 1787 | Ref. [33] |
Ketone + alcohol | 1706 | 1704 | 1708 | Theory, this work |
Free carboxylic acid | 1756 | 1754 | 1758 | Refs. [33,34] |
Ester | 1740 | 1738 | 1742 | Ref. [35] |
Aldehyde | 1730 | 1728 | 1732 | Ref. [35] |
Ketone | 1718 | 1716 | 1720 | Ref. [35] |
H-bonded carboxylic acid | 1710 | 1708 | 1712 | Ref. [36] |
Conjugated ketone | 1685 | 1683 | 1687 | Ref. [32] |
FTIR Band Attribution | [cm] | LLDPE 50 kGy | LLDPE 100 kGy | ||||
---|---|---|---|---|---|---|---|
Height | FWHM | Height | FWHM | ||||
Lactone | 1785 | 1787 | 1.20 | 20 | 1787 | 3.1 | 20 |
Ketone + alcohol | 1706 | 1704 | 6.70 | 20 | 1705 | 0.00189 | 19.5 |
Carboxyl | 1756 | 1758 | 1.12 | 20 | 1758 | ≃2.95 | 20 |
Ester | 1740 | 1741 | 2.47 | 15.4 | 1742 | 2.45 | 15.4 |
Aldehyde | 1730 | 1730 | 3.39 | 19.7 | 1730 | 0.00104 | 19.6 |
Ketone | 1718 | 1718 | 0.00148 | 18 | 1719 | 0.00312 | 13.5 |
H-bonded carboxyl | 1710 | 1710 | 3.52 | 20 | 1711 | 0.00139 | 10 |
Conj. ketone | 1685 | 1685 | 2.70 | 20 | 1683 | 6.08 | 19.6 |
FTIR Band Attribution | [cm] | XLPE 50 kGy | XLPE 100 kGy | ||||
---|---|---|---|---|---|---|---|
Height | FWHM | Height | FWHM | ||||
Lactone | 1785 | 1785 | 7.27 | 20 | 1784 | 0.00175 | 20 |
Ketone + alcohol | 1706 | 1705 | 0.0032 | 19.4 | 1704 | 0.00467 | 20 |
Carboxyl | 1756 | 1758 | 1.21 | 20 | 1758 | 0.00108 | 20 |
Ester | 1740 | 1740 | 0.0019 | 17.8 | 1741 | 0.00322 | 17.3 |
Aldehyde | 1730 | 1728 | 0.00252 | 13.5 | 1730 | 0.00466 | 19.7 |
Ketone | 1718 | 1719 | 0.00779 | 10.6 | 1718 | 0.00879 | 14.5 |
H-bonded carboxyl | 1710 | 1711 | 0.0033 | 10.1 | 1712 | 0.00218 | 20 |
Conjugated ketone | 1685 | 1685 | 4.95 | 20 | 1684 | 0.00121 | 20 |
[cm] | [cm] | IR Activity [(D/Å)amu] | [L molcm] | |
---|---|---|---|---|
Lactone | – | 1785 | – | 720 [41] |
Ester | 1684 (9.4) | 1740 | 10.99 (1.422) | 450 [42] |
Ketone | 1672 (9.9) | 1718 | 7.02 (0.827) | 300 [42] |
Aldehyde | 1702 (5.1) | 1734 | 7.25 (1.313) | 235 [23] |
Free carboxylic acid | 1711 (3.7) | 1756 | 11.50 (2.571) | 516 [23] |
H-bonded carboxyl | – | 1710 | – | 680 [42] |
Conjugated ketone | 1658 (16.3) | 1685 | 5.10 (1.659) | 388 [23] |
Ketone + alcohol | 1664 (12.1) | – | 6.99 (1.291) | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferry, M.; Ahn, Y.; Le Dantec, F.; Ngono, Y.; Roma, G. Combining Experimental and Theoretical Tools to Probe Radio-Oxidation Products in Polyethylene. Polymers 2023, 15, 1537. https://doi.org/10.3390/polym15061537
Ferry M, Ahn Y, Le Dantec F, Ngono Y, Roma G. Combining Experimental and Theoretical Tools to Probe Radio-Oxidation Products in Polyethylene. Polymers. 2023; 15(6):1537. https://doi.org/10.3390/polym15061537
Chicago/Turabian StyleFerry, Muriel, Yunho Ahn, Florian Le Dantec, Yvette Ngono, and Guido Roma. 2023. "Combining Experimental and Theoretical Tools to Probe Radio-Oxidation Products in Polyethylene" Polymers 15, no. 6: 1537. https://doi.org/10.3390/polym15061537
APA StyleFerry, M., Ahn, Y., Le Dantec, F., Ngono, Y., & Roma, G. (2023). Combining Experimental and Theoretical Tools to Probe Radio-Oxidation Products in Polyethylene. Polymers, 15(6), 1537. https://doi.org/10.3390/polym15061537