Investigation of Fumasep® FAA3-50 Membranes in Alkaline Direct Methanol Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Membrane and Ionomer Preparation
2.2. Determination of Ion Exchange Capacity (IEC), Dimensional Variation and Swelling
2.3. In-Plane Anion Conductivity
2.4. Membrane Electrode Assembly (MEA)
2.5. Electrochemical Measurements
3. Results and Discussion
3.1. Membrane Characterization
3.2. Hardware Set-Up for AEM-DMFC Tests
3.3. AEM-DMFC Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Sun, C.; Ge, M. Review of the Research Status of Cost-Effective Zinc–Iron Redox Flow Batteries. Batteries 2022, 8, 202. [Google Scholar] [CrossRef]
- Huang, W.C.; Zhang, Q.; You, F. Impacts of Battery Energy Storage Technologies and Renewable Integration on the Energy Transition in the New York State. Adv. Appl. Energy 2023, 9, 100126. [Google Scholar] [CrossRef]
- Pagliaro, M. Renewable Energy Systems: Enhanced Resilience, Lower Costs. Energy Technol. 2019, 7, 1900791. [Google Scholar] [CrossRef]
- Aricò, A.; Baglio, V.; Antonucci, V. Direct Methanol Fuel Cells: History, Status and Perspectives. In Electrocatalysis of Direct Methanol Fuel Cells: From Fundamentals to Applications; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; Volume 7, pp. 1–78. [Google Scholar] [CrossRef]
- Barton, S.C.; Patterson, T.; Wang, E.; Fuller, T.F.; West, A.C. Mixed-Reactant, Strip-Cell Direct Methanol Fuel Cells. J. Power Sources 2001, 96, 329–336. [Google Scholar] [CrossRef]
- Falcão, D.S.; Oliveira, V.B.; Rangel, C.M.; Pinto, A.M.F.R. Review on Micro-Direct Methanol Fuel Cells. Renew. Sustain. Energy Rev. 2014, 34, 58–70. [Google Scholar] [CrossRef] [Green Version]
- Wee, J.H. A Feasibility Study on Direct Methanol Fuel Cells for Laptop Computers Based on a Cost Comparison with Lithium-Ion Batteries. J. Power Sources 2007, 173, 424–436. [Google Scholar] [CrossRef]
- Ali, S.; Razzaq, A.; Kim, H.; In, S.-I. Activity, Selectivity, and Stability of Earth-Abundant CuO/Cu2O/Cu0-Based Photocatalysts toward CO2 Reduction. Chem. Eng. J. 2022, 429, 131579. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z. Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals. Adv. Sci. 2017, 5, 1700275. [Google Scholar] [CrossRef]
- Kuhl, K.P.; Hatsukade, T.; Cave, E.R.; Abram, D.N.; Kibsgaard, J.; Jaramillo, T.F. Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces. J. Am. Chem. Soc. 2014, 136, 14107–14113. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, H.; Zhang, B.; Gong, F.; Feng, J.; Huang, H.; Vanka, S.; Fan, R.; Cao, Q.; Shen, M.; et al. Renewable Formate from Sunlight, Biomass and Carbon Dioxide in a Photoelectrochemical Cell. Nat. Commun. 2023, 14, 1013. [Google Scholar] [CrossRef]
- De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S.A.; Jaramillo, T.F.; Sargent, E.H. What Would It Take for Renewably Powered Electrosynthesis to Displace Petrochemical Processes? Science 2019, 364, 3506. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.; Zhang, X.; Sun, H.; Wang, S.; Sun, G. Recent Advances in Multi-Scale Design and Construction of Materials for Direct Methanol Fuel Cells. Nano Energy 2019, 65, 104048. [Google Scholar] [CrossRef]
- Rambabu, G.; Bhat, S.D.; Figueiredo, F.M.L. Carbon Nanocomposite Membrane Electrolytes for Direct Methanol Fuel Cells—A Concise Review. Nanomaterials 2019, 9, 1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnadio, A.; Pica, M.; Carbone, A.; Gatto, I.; Posati, T.; Mariangeloni, G.; Casciola, M. Double Filler Reinforced Ionomers: A New Approach to the Design of Composite Membranes for Fuel Cell Applications. J. Mater. Chem. A Mater. 2015, 3, 23530–23538. [Google Scholar] [CrossRef]
- Prapainainar, P.; Du, Z.; Theampetch, A.; Prapainainar, C.; Kongkachuichay, P.; Holmes, S.M. Properties and DMFC Performance of Nafion/Mordenite Composite Membrane Fabricated by Solution-Casting Method with Different Solvent Ratio. Energy 2020, 190, 116451. [Google Scholar] [CrossRef]
- Yadav, V.; Niluroutu, N.; Bhat, S.D.; Kulshrestha, V. Sulfonated Poly(Ether Sulfone) Based Sulfonated Molybdenum Sulfide Composite Membranes: Proton Transport Properties and Direct Methanol Fuel Cell Performance. Mater. Adv. 2020, 1, 820–829. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Nale, A.; Pagot, G.; Vezzù, K.; Zawodzinski, T.A.; Meda, L.; Gambaro, C.; di Noto, V. An Efficient Barrier toward Vanadium Crossover in Redox Flow Batteries: The Bilayer [Nafion/(WO3)x] Hybrid Inorganic-Organic Membrane. Electrochim. Acta 2021, 378, 138133. [Google Scholar] [CrossRef]
- Osmieri, L.; Escudero-Cid, R.; Armandi, M.; Monteverde Videla, A.H.A.; Fierro, J.L.G.; Ocón, P.; Specchia, S. Fe-N/C Catalysts for Oxygen Reduction Reaction Supported on Different Carbonaceous Materials. Performance in Acidic and Alkaline Direct Alcohol Fuel Cells. Appl. Catal B 2017, 205, 637–653. [Google Scholar] [CrossRef]
- Varcoe, J.R.; Atanassov, P.; Dekel, D.R.; Herring, A.M.; Hickner, M.A.; Kohl, P.A.; Kucernak, A.R.; Mustain, W.E.; Nijmeijer, K.; Scott, K.; et al. Anion-Exchange Membranes in Electrochemical Energy Systems. Energy Environ. Sci. 2014, 7, 3135–3191. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, F.; Fang, Y.; Zhu, J.; Luo, H.; Qi, J.; Wu, W. Self-Assembled Flower-like MnO2 Grown on Fe-Containing Urea-Formaldehyde Resins Based Carbon as Catalyst for Oxygen Reduction Reaction in Alkaline Direct Methanol Fuel Cells. Appl. Surf. Sci. 2019, 496, 143566. [Google Scholar] [CrossRef]
- Mclean, G.F.; Niet, T.; Prince-Richard, S.; Djilali, N. An Assessment of Alkaline Fuel Cell Technology. Int. J. Hydrogen Energy 2002, 27, 507–526. [Google Scholar] [CrossRef]
- Lo Vecchio, C.; Lyu, X.; Gatto, I.; Zulevi, B.; Serov, A.; Baglio, V.; Vecchio, C.L.; Gatto, I.; Baglio, V. Performance Investigation of Alkaline Direct Methanol Fuel Cell with Commercial PGM-Free Cathodic Materials. J. Power Sources 2023, 561, 232732. [Google Scholar] [CrossRef]
- Janarthanan, R.; Kishore Pilli, S.; Horan, J.L.; Gamarra, D.A.; Hibbs, M.R.; Herring, A.M. A Direct Methanol Alkaline Fuel Cell Based on Poly(Phenylene) Anion Exchange Membranes. J. Electrochem. Soc. 2014, 161, F944–F950. [Google Scholar] [CrossRef] [Green Version]
- Antolini, E.; Gonzalez, E.R. Alkaline Direct Alcohol Fuel Cells. J. Power Sources 2010, 195, 3431–3450. [Google Scholar] [CrossRef]
- Bidault, F.; Brett, D.J.L.; Middleton, P.H.; Brandon, N.P. Review of Gas Diffusion Cathodes for Alkaline Fuel Cells. J. Power Sources 2009, 187, 39–48. [Google Scholar] [CrossRef]
- Sajjad, S.D.; Liu, D.; Wei, Z.; Sakri, S.; Shen, Y.; Hong, Y.; Liu, F. Guanidinium Based Blend Anion Exchange Membranes for Direct Methanol Alkaline Fuel Cells (DMAFCs). J. Power Sources 2015, 300, 95–103. [Google Scholar] [CrossRef]
- Gupta, U.K.; Pramanik, H. Electrooxidation Study of Pure Ethanol/Methanol and Their Mixture for the Application in Direct Alcohol Alkaline Fuel Cells (DAAFCs). Int. J. Hydrogen Energy 2019, 44, 421–435. [Google Scholar] [CrossRef]
- Varcoe, J.R.; Slade, R.C.T.; Yee, E.L.H.; Poynton, S.D.; Driscoll, D.J. Investigations into the Ex Situ Methanol, Ethanol and Ethylene Glycol Permeabilities of Alkaline Polymer Electrolyte Membranes. J. Power Sources 2007, 173, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Prakash, G.K.S.; Krause, F.C.; Viva, F.A.; Narayanan, S.R.; Olah, G.A. Study of Operating Conditions and Cell Design on the Performance of Alkaline Anion Exchange Membrane Based Direct Methanol Fuel Cells. J. Power Sources 2011, 196, 7967–7972. [Google Scholar] [CrossRef]
- Santasalo-Aarnio, A.; Hietala, S.; Rauhala, T.; Kallio, T. In and Ex Situ Characterization of an Anion-Exchange Membrane for Alkaline Direct Methanol Fuel Cell (ADMFC). J. Power Sources 2011, 196, 6153–6159. [Google Scholar] [CrossRef]
- Lo Vecchio, C.; Carbone, A.; Trocino, S.; Gatto, I.; Patti, A.; Baglio, V.; Aricò, A.S. Anionic Exchange Membrane for Photo-Electrolysis Application. Polymers 2020, 12, 2991. [Google Scholar] [CrossRef] [PubMed]
- Carbone, A.; Zignani, S.C.; Gatto, I.; Trocino, S.; Aricò, A.S. Assessment of the FAA3-50 Polymer Electrolyte in Combination with a NiMn2O4 Anode Catalyst for Anion Exchange Membrane Water Electrolysis. Int. J. Hydrogen Energy 2020, 45, 9285–9292. [Google Scholar] [CrossRef]
- Carbone, A.; Pedicini, R.; Gatto, I.; Saccà, A.; Patti, A.; Bella, G.; Cordaro, M. Development of Polymeric Membranes Based on Quaternized Polysulfones for AMFC Applications. Polymers 2020, 12, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatto, I.; Caprì, A.; lo Vecchio, C.; Zignani, S.; Patti, A.; Baglio, V. Optimal Operating Conditions Evaluation of an Anion-Exchange-Membrane Electrolyzer Based on FUMASEP® FAA3-50 Membrane. Int. J. Hydrogen Energy 2023, 48, 11914–11921. [Google Scholar] [CrossRef]
- Mazin, P.V.; Kapustina, N.A.; Tarasevich, M.R. Direct Ethanol Oxidation Fuel Cell with Anionite Membrane and Alkaline Electrolyte. Russ. J. Electrochem. 2011, 47, 275–281. [Google Scholar] [CrossRef]
- Hertz, J.; Shen, W. Non-Flooding Polymer Electrolyte Fuel Cell. Patent Application No. WO2012071495, 23 December 2011. [Google Scholar]
- Galvan, V.; Shrimant, B.; Bae, C.; Prakash, G.K.S. Ionomer Significance in Alkaline Direct Methanol Fuel Cell to Achieve High Power with a Quarternized Poly(Terphenylene) Membrane. ACS Appl. Energy Mater 2021, 4, 5858–5867. [Google Scholar] [CrossRef]
- Chaabane, L.; Bulvestre, G.; Larchet, C.; Nikonenko, V.; Deslouis, C.; Takenouti, H. The Influence of Absorbed Methanol on the Swelling and Conductivity Properties of Cation-Exchange Membranes. Evaluation of Nanostructure Parameters. J. Memb. Sci. 2008, 323, 167–175. [Google Scholar] [CrossRef]
- Sherazi, T.A.; Yong Sohn, J.; Moo Lee, Y.; Guiver, M.D. Polyethylene-Based Radiation Grafted Anion-Exchange Membranes for Alkaline Fuel Cells. J. Membr. Sci. 2013, 441, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Baglio, V.; Stassi, A.; Modica, E.; Antonucci, V.; Aric, A.S.; Caracino, P.; Ballabio, O.; Colombo, M.; Kopnin, E. Performance Comparison of Portable Direct Methanol Fuel Cell Mini-Stacks Based on a Low-Cost Fluorine-Free Polymer Electrolyte and Nafion Membrane. Electrochim. Acta. 2010, 55, 6022–6027. [Google Scholar] [CrossRef]
- Li, Q.; Wang, T.; Havas, D.; Zhang, H.; Xu, P.; Han, J.; Cho, J.; Wu, G. High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode. Adv. Sci. 2016, 3, 1600140. [Google Scholar] [CrossRef] [Green Version]
- lo Vecchio, C.; Serov, A.; Romero, H.; Lubers, A.; Zulevi, B.; Aricò, A.S.; Baglio, V. Commercial Platinum Group Metal-Free Cathodic Electrocatalysts for Highly Performed Direct Methanol Fuel Cell Applications. J. Power Sources 2019, 437, 226948. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, J.; Wu, Y.; Xu, H.; Chi, X.; Li, W.; Yang, Y.; Yan, G.; Zhuang, Y. Novel Fluoropolymer Anion Exchange Membranes for Alkaline Direct Methanol Fuel Cells. J. Colloid. Interface Sci. 2012, 381, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Qu, T.; Shu, C.Y.; Liu, Y.; He, Y.; Zhai, W.; Guo, S.W.; Liu, L.; Liu, Y.N. High-Performance Polymer Fiber Membrane Based Direct Methanol Fuel Cell System with Non-Platinum Catalysts. ACS Sustain. Chem. Eng. 2019, 7, 17145–17153. [Google Scholar] [CrossRef]
- Fashedemi, O.O.; Mwonga, P.v.; Miller, H.A.; Maphanga, R.R.; Vizza, F.; Ozoemena, K.I. Performance of Pd@FeCo Catalyst in Anion Exchange Membrane Alcohol Fuel Cells. Electrocatalysis 2021, 12, 295–309. [Google Scholar] [CrossRef]
- da Silva Freitas, W.; Mecheri, B.; lo Vecchio, C.; Gatto, I.; Baglio, V.; Ficca, V.C.A.; Patra, A.; Placidi, E.; D’Epifanio, A. Metal-Organic-Framework-Derived Electrocatalysts for Alkaline Polymer Electrolyte Fuel Cells. J. Power Sources 2022, 550, 232135. [Google Scholar] [CrossRef]
- Msomi, P.F.; Nonjola, P.T.; Ndungu, P.G.; Ramontja, J. Poly (2, 6-Dimethyl-1, 4-Phenylene)/Polysulfone Anion Exchange Membrane Blended with TiO2 with Improved Water Uptake for Alkaline Fuel Cell Application. Int. J. Hydrogen Energy 2020, 45, 29465–29476. [Google Scholar] [CrossRef]
- Joghee, P.; Pylypenko, S.; Wood, K.; Bender, G.; O’Hayre, R. High-Performance Alkaline Direct Methanol Fuel Cell Using a Nitrogen-Postdoped Anode. ChemSusChem 2014, 7, 1854–1857. [Google Scholar] [CrossRef] [PubMed]
- Jurzinsky, T.; Bär, R.; Cremers, C.; Tübke, J.; Elsner, P. Highly Active Carbon Supported Palladium-Rhodium PdXRh/C Catalysts for Methanol Electrooxidation in Alkaline Media and Their Performance in Anion Exchange Direct Methanol Fuel Cells (AEM-DMFCs). Electrochim. Acta 2015, 176, 1191–1201. [Google Scholar] [CrossRef]
Membrane | KOH Uptake, % | λ | A, % | Th, % | [OH], M | Dσ, cm2/s | Eatt, kJ/mol |
---|---|---|---|---|---|---|---|
FAA3-50 (1 M KOH) | 70 | 25 | 33 | 12 | 1.1 | 7.17 × 10−6 | 27.4 |
FAA3-50 1 M KOH + 1 M MeOH | 86 | 30 | 56 | 7 | 1.1 | 1.06 × 10−6 | 26.5 |
FAA3-50 (1 M KOH/1 M MeOH mixture) | 86 | 30 | 35 | 13 | 1.0 | 1.53 × 10−6 | 41.0 |
Reference | Working Temperature (°C) | Anode and Pt Loading (mg cm−2) | Anionic Exchange Membrane Electrolyte | Cathode Catalyst Loading (mg cm−2) | [MeOH]/ [KOH] (mol/L) | Open Circuit Voltage (V) | Maximum Power Density (mW cm−2) |
---|---|---|---|---|---|---|---|
Sajjad et al. [27] | 25 | Pt/C 1.0 | Guanidinium–chitosan | Pt/C 1.0 | 3 M/1 M | 0.69 | 2.0 |
Gupta et al. [28] | 30 | PtRu/C 1.0 | KOH-doped PVA | Pt/C 1.0 | 3 M/6 M | 0.60 | 7.1 |
Janarthanan et al. [24] | 80 | Pt/C 2.5 | TMAC6PP | Pt/C 2.5 | 1 M/1 M | 0.84 | 53.8 |
Janarthanan et al. [24] | Pt/C 2.5 | TMAC6PP | Pt/C 2.5 | 1 M/KOH-free | 0.56 | 3.97 | |
Varcoe et al. [29] | 50 | Poly(ethylene-co-tetrafluoro ethylene) | 2 M/KOH-free | 0.48 | 2.16 | ||
Prakash et al. [30] | 60 | PtRu 8.0 | Tokuyama | Pt 8.0 | 1 M/1 M | 0.79 | 56.0 |
Zhang et al. [44] | 65 | PtRu/C 1.0 | AQPVBH | Pt/C 1.0 | 1 M/1 M NaOH | 0.71 | 53.2 |
Galvan et al. [38] | 60 | PtRu 0.7 | TPN | Pt 1.3 | 2 M/4 M | 0.71 | 151 |
Galvan et al. [38] | 60 | PtRu 0.7 | TPN | Pt 1.3 | 2 M/KOH-free | 0.58 | 20 |
Santasalo et al. [31] | 30 | PtRu/C 1.0 | FAA-2 Fumatech | Pt/C 1.0 | 1 M/KOH-free | 0.58 | 0.32 |
This work | 60 | PtRu/C 1.5 | FAA3-50 Fumatech | Pt/C 1.0 | 1 M/1 M | 0.845 | 13.4 |
This work | 70 | PtRu/C 1.5 | FAA3-50 Fumatech | Pt/C 1.0 | 1 M/1 M | 0.868 | 20.2 |
This work | 80 | PtRu/C 1.5 | FAA3-50 Fumatech | Pt/C 1.0 | 1 M/1 M | 0.874 | 33.2 |
This work | 60 | PtRu/C 1.5 | FAA3-50 Fumatech | Pt/C 1.0 | 1 M/KOH-free | 0.775 | 5.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Vecchio, C.; Carbone, A.; Gatto, I.; Baglio, V. Investigation of Fumasep® FAA3-50 Membranes in Alkaline Direct Methanol Fuel Cells. Polymers 2023, 15, 1555. https://doi.org/10.3390/polym15061555
Lo Vecchio C, Carbone A, Gatto I, Baglio V. Investigation of Fumasep® FAA3-50 Membranes in Alkaline Direct Methanol Fuel Cells. Polymers. 2023; 15(6):1555. https://doi.org/10.3390/polym15061555
Chicago/Turabian StyleLo Vecchio, Carmelo, Alessandra Carbone, Irene Gatto, and Vincenzo Baglio. 2023. "Investigation of Fumasep® FAA3-50 Membranes in Alkaline Direct Methanol Fuel Cells" Polymers 15, no. 6: 1555. https://doi.org/10.3390/polym15061555
APA StyleLo Vecchio, C., Carbone, A., Gatto, I., & Baglio, V. (2023). Investigation of Fumasep® FAA3-50 Membranes in Alkaline Direct Methanol Fuel Cells. Polymers, 15(6), 1555. https://doi.org/10.3390/polym15061555