Teeth Restored with Bulk–Fill Composites and Conventional Resin Composites; Investigation of Stress Distribution and Fracture Lifespan on Enamel, Dentin, and Restorative Materials via Three-Dimensional Finite Element Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fejerskov, O.; Kidd, E.A.M.; Kidd, E. (Eds.) Dental Caries: The Disease and Its Clinical Management; Blackwell Monksgaard: Copenhagen, Denmark, 2003. [Google Scholar]
- Pitts, N.B. Are we ready to move from operative to non-operative/preventive treatment of dental caries in clinical practice? Caries Res. 2004, 38, 294–304. [Google Scholar] [CrossRef]
- Featherstone, J.D. The science and practice of caries prevention. J. Am. Dent. Assoc. 2000, 131, 887–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US Department of Health and Human Services. Oral Health in America: A Report of The Surgeon General; NIH publication: Rockville, MD, USA, 2000; pp. 155–188. [Google Scholar]
- Kidd, E.A.; Giedrys-Leeper, E.; Simons, D. Take two dentists: A tale of root caries. Dent. Update 2000, 27, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, J.; Fahd, J.C.; McConnell, R.J. Post-operative sensitivity and posterior composite resin restorations: A review. Dent. Update 2018, 45, 207–213. [Google Scholar] [CrossRef]
- Lee, W.C.; Eakle, W.S. Stress-induced cervical lesions: Review of advances in the past 10 years. J. Prosthet. Dentistry 1996, 75, 487–494. [Google Scholar] [CrossRef]
- Mjör, I.A.; Toffentti, F. Secondary caries: A literature review with case reports. Quintessence Int. 2000, 31, 165–179. [Google Scholar]
- Yazici, A.R.; Ustunkol, I.; Ozgunaltay, G.; Dayangac, B. Three-year clinical evaluation of different restorative resins in class I restorations. Oper. Dent. 2014, 39, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Borgia, E.; Baron, R.; Borgia, J.L. Quality and survival of direct light-activated composite resin restorations in posterior teeth: A 5- to 20-year retrospective longitudinal study. J. Prosthodont. 2019, 28, e195–e203. [Google Scholar] [CrossRef] [Green Version]
- Sideridou, I.D.; Karabela, M.M.; Vouvoudi, E.C. Physical properties of current dental nanohybrid and nanofill light-cured resin composites. Dent. Mater. 2011, 27, 598–607. [Google Scholar] [CrossRef]
- Ferracane, J.L. Resin-based composite performance: Are there some things we can’t predict? Dent. Mater. 2013, 29, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Ilie, N.; Keßler, A.; Durner, J. Influence of various irradiation processes on the mechanical properties and polymerisation kinetics of bulk-fill resin based composites. J. Dent. 2013, 41, 695–702. [Google Scholar] [CrossRef]
- Leprince, J.G.; Palin, W.M.; Vanacker, J.; Sabbagh, J.; Devaux, J.; Leloup, G. Physico-mechanical characteristics of commercially available bulk-fill composites. J. Dent. 2014, 42, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Moszner, N.; Klapdohr, S. Nanotechnology for dental composites. Int. J. Nanotechnol. 2004, 1, 130–156. [Google Scholar] [CrossRef]
- Abe, Y.; Lambrechts, P.; Inoue, S.; Braem, M.J.; Takeuchi, M.; Vanherle, G.; Van Meerbeek, B. Dynamic elastic modulus of ‘packable’composites. Dent. Mater. 2001, 17, 520–525. [Google Scholar] [CrossRef]
- Mesquita, R.V.; Axmann, D.; Geis-Gerstorfer, J. Dynamic visco-elastic properties of dental composite resins. Dent. Mater. 2006, 22, 258–267. [Google Scholar] [CrossRef]
- Chung, S.M.; Yap, A.U.; Koh, W.K.; Tsai, K.T.; Lim, C.T. Measurement of Poisson’s ratio of dental composite restorative materials. Biomaterials 2004, 25, 2455–2460. [Google Scholar] [CrossRef] [PubMed]
- Guler, M.S.; Guler, C.; Cakici, F.; Cakici, E.B.; Sen, S. Finite element analysis of thermal stress distribution in different restorative materials used in class V cavities. Niger. J. Clin. Pract. 2016, 19, 30–34. [Google Scholar] [CrossRef]
- Yamanel, K.; Çaglar, A.; Gülsahi, K.; Özden, U.A. Effects of different ceramic and composite materials on stress distribution in inlay and onlay cavities: 3-D finite element analysis. Dent. Mater. J. 2009, 28, 661–670. [Google Scholar] [CrossRef] [Green Version]
- Yaman, S.D.; Şahin, M.; Aydin, C. Finite element analysis of strength characteristics of various resin based restorative materials in Class V cavities. J. Oral Rehabil. 2003, 30, 630–641. [Google Scholar] [CrossRef]
- Korioth, T.W.; Versluis, A. Modeling the mechanical behavior of the jaws and their related structures by finite element (FE) analysis. Crit. Rev. Oral Biol. Med. 1997, 8, 90–104. [Google Scholar] [CrossRef] [Green Version]
- Geng, J.P.; Tan, K.B.; Liu, G.R. Application of finite element analysis in implant dentistry: A review of the literature. J. Prosthet. Dent. 2001, 85, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Shetty, P.; Hegde, A.; Rai, K. Finite element method–an effective research tool for dentistry. J. Clin. Pediatr. Dent. 2010, 34, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Yan, W.; Xu, W. (Eds.) Application of The Finite Element Method in Implant Dentistry; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Van Staden, R.C.; Guan, H.; Loo, Y.C. Application of the finite element method in dental implant research. Comput. Methods Biomech. Biomed. Eng. 2006, 9, 257–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, M.S.; Sundram, R.; Abdemagyd, H.A. Application of finite element model in implant dentistry: A systematic review. J. Pharm. Bioallied Sci. 2019, 11 (Suppl. 2), S85. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.D.; Desai, H. Basic concepts of finite element analysis and its applications in dentistry: An overview. J. Oral Hyg. Health 2014, 2, 156. [Google Scholar] [CrossRef]
- Srirekha, A.; Bashetty, K. Infinite to finite: An overview of finite element analysis. Indian J. Dent. Res. 2010, 21, 425. [Google Scholar] [CrossRef]
- de Abreu, R.A.; Pereira, M.D.; Furtado, F.; Prado, G.P.; Mestriner, W., Jr.; Ferreira, L.M. Masticatory efficiency and bite force in individuals with normal occlusion. Arch. Oral Biol. 2014, 59, 1065–1074. [Google Scholar] [CrossRef]
- Gönder, H.Y.; Demirel, M.G.; Mohammadi, R.; Alkurt, S.; Fidancioğlu, Y.D.; Yüksel, I.B. The Effects of Using Cements of Different Thicknesses and Amalgam Restorations with Different Young’s Modulus Values on Stress on Dental Tissue: An Investigation Using Finite Element Analysis. Coatings 2023, 13, 6. [Google Scholar] [CrossRef]
- Allen, C.; Meyer, C.A.; Yoo, E.; Vargas, J.A.; Liu, Y.; Jalali, P. Stress distribution in a tooth treated through minimally invasive access compared to one treated through traditional access: A finite element analysis study. J. Conserv. Dent. 2018, 21, 505. [Google Scholar] [CrossRef]
- Mutluay, M.M.; Yahyazadehfar, M.; Ryou, H.; Majd, H.; Do, D.; Arola, D. Fatigue of the resin–dentin interface: A new approach for evaluating the durability of dentin bonds. Dent. Mater. 2013, 29, 437–449. [Google Scholar] [CrossRef] [Green Version]
- Ausiello, P.; Franciosa, P.; Martorelli, M.; Watts, D.C. Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth. Dental Materials. 2011, 27, 423–430. [Google Scholar] [CrossRef]
- Nalla, R.K.; Kinney, J.H.; Marshall, S.J.; Ritchie, R.O. On the in vitro fatigue behavior of human dentin: Effect of mean stress. J. Dent. Res. 2004, 83, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Beitzel, D.; Mutluay, M.; Tay, F.R.; Pashley, D.H.; Arola, D. On the durability of resin–dentin bonds: Identifying the weakest links. Dent. Mater. 2015, 31, 1109–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, S.F.; Chang, C.H.; Chen, T.Y. Contraction behaviors of dental composite restorations—Finite element investigation with DIC validation. J. Mech. Behav. Biomed. Mater. 2011, 4, 2138–2149. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Rong, Q.; Luan, Q.; Yu, X. Effect of partial restorative treatment on stress distributions in non-carious cervical lesions: A three-dimensional finite element analysis. BMC Oral Health 2022, 22, 607. [Google Scholar] [CrossRef]
- Pałka, K.; Bieniaś, J.; Dębski, H.; Niewczas, A. Finite element analysis of thermo-mechanical loaded teeth. Comput. Mater. Sci. 2012, 64, 289–294. [Google Scholar] [CrossRef]
- Rodrigues, M.D.; Soares, P.B.; Gomes, M.A.; Pereira, R.A.; Tantbirojn, D.; Versluis, A.; Soares, C.J. Direct resin composite restoration of endodontically-treated permanent molars in adolescents: Bite force and patient-specific finite element analysis. J. Appl. Oral Sci. 2020, 28, e20190544. [Google Scholar] [CrossRef]
- Jiang, W.; Bo, H.; Yongchun, G.; LongXing, N. Stress distribution in molars restored with inlays or onlays with or without endodontic treatment: A three-dimensional finite element analysis. J. Prosthet. Dent. 2010, 103, 6–12. [Google Scholar] [CrossRef]
- Ausiello, P.; Ciaramella, S.; Fabianelli, A.; Gloria, A.; Martorelli, M.; Lanzotti, A.; Watts, D.C. Mechanical behavior of bulk direct composite versus block composite and lithium disilicate indirect Class II restorations by CAD-FEM modeling. Dent. Mater. 2017, 33, 690–701. [Google Scholar] [CrossRef] [Green Version]
- Juloski, J.; Apicella, D.; Ferrari, M. The effect of ferrule height on stress distribution within a tooth restored with fibre posts and ceramic crown: A finite element analysis. Dent. Mater. 2014, 30, 1304–1315. [Google Scholar] [CrossRef]
- Ulusoy, M.; Aydın, K. Diş Hekimliğinde Hareketli Bölümlü Protezler Cilt 1-2, 3.; Baskı, Ankara Üniversitesi Diş Hekimliği Yayınları: Ankara, Turkey, 2010. [Google Scholar]
- Ausiello, P.; Rengo, S.; Davidson, C.L.; Watts, D.C. Stress distributions in adhesively cemented ceramic and resin-composite Class II inlay restorations: A 3D-FEA study. Dent. Mater. 2004, 20, 862–872. [Google Scholar] [CrossRef] [PubMed]
- Roberson, T.M.; Heymann, H.O.; Swift, E.J. Sturdevant’s Art & Science of Operative Dentistry, 2nd ed.; Mosby: Copenhagen, Denmark, 2002; Volume 65. [Google Scholar]
- Henry, P.J.; Bower, R.C. Post core systems in crown and bridgework. Aust. Dent. J. 1977, 22, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Pierrisnard, L.; Bohin, F.; Renault, P.; Barquins, M. Corono-radicular reconstruction of pulpless teeth: A mechanical study using finite element analysis. J. Prosthet. Dent. 2002, 88, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Hatzikyriakos, A.H.; Reisis, G.I.; Tsingos, N. A 3-year postoperative clinical evaluation of posts and cores beneath existing crowns. J. Prosthet. Dent. 1992, 67, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.V.; Yang, B.; Yue, Y.; Bowron, D.T.; Mayers, J.; Donnan, R.S.; Dobó-Nagy, C.; Nicholson, J.W.; Fang, D.C.; Greer, A.L.; et al. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting. Nat. Commun. 2015, 6, 8631. [Google Scholar] [CrossRef] [Green Version]
- Perez, C.R. Alternative technique for class V resin composite restorations with minimum finishing/polishing procedures. Oper. Dent. 2010, 35, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Bicalho, A.A.; Pereira, R.D.; Zanatta, R.F.; Franco, S.D.; Tantbirojn, D.; Versluis, A.; Soares, C.J. Incremental filling technique and composite material—Part I: Cuspal deformation, bond strength, and physical properties. Oper. Dent. 2014, 39, e71–e82. [Google Scholar] [CrossRef] [Green Version]
- Bicalho, A.A.; Valdívia, A.D.; Barreto, B.D.; Tantbirojn, D.; Versluis, A.; Soares, C.J. Incremental filling technique and composite material—Part II: Shrinkage and shrinkage stresses. Oper. Dent. 2014, 39, e83–e92. [Google Scholar] [CrossRef]
- Wilson, E.G.; Mandradjieff, M.; Brindock, T. Controversies in posterior composite resin restorations. Dent. Clin. North Am. 1990, 34, 27–44. [Google Scholar] [CrossRef]
- Kwon, Y.; Ferracane, J.; Lee, I.B. Effect of layering methods, composite type, and flowable liner on the polymerization shrinkage stress of light cured composites. Dent. Mater. 2012, 28, 801–809. [Google Scholar] [CrossRef]
- Park, J.; Chang, J.; Ferracane, J.; Lee, I.B. How should composite be layered to reduce shrinkage stress: Incremental or bulk filling? Dent. Mater. 2008, 24, 1501–1505. [Google Scholar] [CrossRef]
- Scolavino, S.; Paolone, G.; Orsini, G.; Devoto, W.; Putignano, A. The Simultaneous Modeling Technique: Closing gaps in posteriors. Int. J. Esthet. Dent. 2016, 11, 58–81. [Google Scholar] [PubMed]
- Ausiello, P.; Apicella, A.; Davidson, C.L.; Rengo, S. 3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites. J. Biomech. 2001, 34, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Sagsen, B.; Aslan, B. Effect of bonded restorations on the fracture resistance of root filled teeth. Int. Endod. J. 2006, 39, 900–904. [Google Scholar] [CrossRef] [PubMed]
- McCabe, J.F.; Wang, Y.; Braem, M.J. Surface contact fatigue and flexural fatigue of dental restorative materials. J. Biomed. Mater. Res. 2000, 50, 375–380. [Google Scholar] [CrossRef]
- Gladys, S.; Van Meerbeek, B.; Braem, M.; Lambrechts, P.; Vanherle, G. Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials. J. Dent. Res. 1997, 76, 883–894. [Google Scholar] [CrossRef]
- Kuijs, R.H.; Fennis, W.M.; Kreulen, C.M.; Roeters, F.J.; Verdonschot, N.; Creugers, N.H. A comparison of fatigue resistance of three materials for cusp-replacing adhesive restorations. J. Dent. 2006, 34, 19–25. [Google Scholar] [CrossRef]
- de Kok, P.; Kanters, G.F.; Kleverlaan, C.J. Fatigue resistance of composite resins and glass-ceramics on dentin and enamel. J. Prosthet. Dent. 2022, 127, 593–598. [Google Scholar] [CrossRef]
- Boschian Pest, L.; Guidotti, S.; Pietrabissa, R.; Gagliani, M. Stress distribution in a post-restored tooth using the three-dimensional finite element method. J. Oral Rehabil. 2006, 33, 690–697. [Google Scholar] [CrossRef]
- Htang, A.; Ohsawa, M.; Matsumoto, H. Fatigue resistance of composite restorations: Effect of filler content. Dent. Mater. 1995, 11, 7–13. [Google Scholar] [CrossRef]
- Drummond, J.L. Degradation, fatigue, and failure of resin dental composite materials. J. Dent. Res. 2008, 87, 710–719. [Google Scholar] [CrossRef] [Green Version]
- Shembish, F.A.; Tong, H.; Kaizer, M.; Janal, M.N.; Thompson, V.P.; Opdam, N.J.; Zhang, Y. Fatigue resistance of CAD/CAM resin composite molar crowns. Dent. Mater. 2016, 32, 499–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batalha-Silva, S.; de Andrada, M.A.; Maia, H.P.; Magne, P. Fatigue resistance and crack propensity of large MOD composite resin restorations: Direct versus CAD/CAM inlays. Dent. Mater. 2013, 29, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Thaungwilai, K.; Tantilertanant, Y.; Singhatanadgit, W.; Singhatanadgid, P. Finite Element Analysis of the Mechanical Performance of Non-Restorable Crownless Primary Molars Restored with Intracoronal Core-Supported Crowns: A Proposed Treatment Alternative to Extraction for Severe Early Childhood Caries. J. Clin. Med. 2023, 12, 1872. [Google Scholar] [CrossRef] [PubMed]
- Magne, P.; Schlichting, L.H.; Maia, H.P.; Baratieri, L.N. In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior occlusal veneers. J. Prosthet. Dent. 2010, 104, 149–157. [Google Scholar] [CrossRef]
- Garcia-Godoy, F.; Frankenberger, R.; Lohbauer, U.; Feilzer, A.J.; Krämer, N. Fatigue behavior of dental resin composites: Flexural fatigue in vitro versus 6 years in vivo. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 903–910. [Google Scholar] [CrossRef]
Material | A (MPa) | B | b | |
---|---|---|---|---|
Enamel | 310 | −0.111 | ||
Dentin | 247 | −0.111 | ||
Bulk–fill composite | 54 | −0.020 | ||
Resin composite | 84 | −0.035 |
Material | Young’s Modulus (GPa) | Poisson’s Ratio | Compressive Strength (MPa) | Flexural Strength (MPa) | Shear Strength (MPa) | Fracture Toughness (Mpa m1/2) | Microhardness (HV) |
---|---|---|---|---|---|---|---|
Enamel | 84.1 | 0.33 | 384 | 11.5 | 60 | 0.8 | 3–6 |
Dentin | 18.6 | 0.31 | 297 | 105.5 | 12–138 | 3.08 | 0.13–0.51 |
Adhesive | 1 | 0,24 | |||||
Pulp | 0.002 | 0.45 | |||||
Bulk–fill composite | 12 | 0.25 | 169 | 42 | |||
Resin composite | 16.6 | 0.24 | 294 | 77 |
Total Elements | Total Nodes | Mesh Type |
---|---|---|
7,428,602 | 1,368,958 | Linear tetrahedral elements of C3D4 |
Restoration Material | Restoration | Enamel | Dentin | Adhesive |
---|---|---|---|---|
Bulk–fill composite | 22.15 | 51.92 | 27.76 | 0.5365 |
Resin composite | 24.13 | 51.06 | 26.76 | 0.5169 |
Material Group | Restoration | Enamel | Dentin |
---|---|---|---|
Bulk–fill composite | 1.583 × 1032 | 45.047 × 106 | 7.252 × 108 |
Resin composite | 8.067 × 1034 | 54.369 × 106 | 6.103 × 109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gönder, H.Y.; Mohammadi, R.; Harmankaya, A.; Yüksel, İ.B.; Fidancıoğlu, Y.D.; Karabekiroğlu, S. Teeth Restored with Bulk–Fill Composites and Conventional Resin Composites; Investigation of Stress Distribution and Fracture Lifespan on Enamel, Dentin, and Restorative Materials via Three-Dimensional Finite Element Analysis. Polymers 2023, 15, 1637. https://doi.org/10.3390/polym15071637
Gönder HY, Mohammadi R, Harmankaya A, Yüksel İB, Fidancıoğlu YD, Karabekiroğlu S. Teeth Restored with Bulk–Fill Composites and Conventional Resin Composites; Investigation of Stress Distribution and Fracture Lifespan on Enamel, Dentin, and Restorative Materials via Three-Dimensional Finite Element Analysis. Polymers. 2023; 15(7):1637. https://doi.org/10.3390/polym15071637
Chicago/Turabian StyleGönder, Hakan Yasin, Reza Mohammadi, Abdulkadir Harmankaya, İbrahim Burak Yüksel, Yasemin Derya Fidancıoğlu, and Said Karabekiroğlu. 2023. "Teeth Restored with Bulk–Fill Composites and Conventional Resin Composites; Investigation of Stress Distribution and Fracture Lifespan on Enamel, Dentin, and Restorative Materials via Three-Dimensional Finite Element Analysis" Polymers 15, no. 7: 1637. https://doi.org/10.3390/polym15071637
APA StyleGönder, H. Y., Mohammadi, R., Harmankaya, A., Yüksel, İ. B., Fidancıoğlu, Y. D., & Karabekiroğlu, S. (2023). Teeth Restored with Bulk–Fill Composites and Conventional Resin Composites; Investigation of Stress Distribution and Fracture Lifespan on Enamel, Dentin, and Restorative Materials via Three-Dimensional Finite Element Analysis. Polymers, 15(7), 1637. https://doi.org/10.3390/polym15071637