Synthesis, Characterization, Conformation in Solution, and Thermoresponsiveness of Polymer Brushes of methoxy[oligo (propylene glycol)-block-oligo(ethylene glycol)]methacrylate and N-[3-(dimethylamino)propyl]methacrylamide Obtained via RAFT Polymerization
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods of Synthesis
2.2. The Determination of CMC
2.3. Methods of Molecular Hydrodynamics and Optics
2.4. Investigation of Self-Assembly of polyOPG8OEG8MA-DMAPMA in Aqueous Solutions
3. Results and Discussion
3.1. Synthesis, Structure, Molar Masses, and Hydrodynamic Characteristics of polyOPG8OEG8MA-DMAPMA
3.2. Characteristics of polyOPG8OEG8MA-DMAPMA in Aqueous Solutions at Room Temperatures
3.3. Characteristics of Aqueous Solutions of polyOPG8OEG8MA-DMAPMA on Heating
3.4. The Dependence of Phase Separation Temperatures on the Concentration of polyOPG8OEG8MA-DMAPMA 90:10 Solution
3.5. The Influence of Composition of Copolymers on Phase Separation Temperatures at Fixed Concentration and pH Solutions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kanno, R.; Tanaka, K.; Takaya, I.; Ouchi, M.; Terashima, T. Reversible Co-Self-Assembly and Self-Sorting Systems of Polymer Micelles in Water: Polymers Switch Association Partners in Response to Salts. Macromolecules 2022, 55, 5213–5221. [Google Scholar] [CrossRef]
- Hogan, K.J.; Mikos, A.G. Biodegradable thermoresponsive polymers: Applications in drug delivery and tissue engineering. Polymer 2020, 211, 123063. [Google Scholar] [CrossRef]
- Varlas, S.; Lawrenson, S.B.; Arkinstall, L.A.; O’Reilly, R.K.; Foster, J.C. Self-assembled nanostructures from amphiphilic block copolymersprepared via ring-opening metathesis polymerization (ROMP). Prog. Polym. Sci. 2020, 107, 101278. [Google Scholar] [CrossRef]
- da Silva, J.B.; Haddow, P.; Bruschi, M.L.; Cook, M.T. Thermoresponsive poly(di(ethylene glycol) methyl ether methacrylate)-ran-(polyethylene glycol methacrylate) graft copolymers exhibiting temperature-dependent rheology and self-assembly. J. Mol. Liquids. 2022, 346, 117906. [Google Scholar] [CrossRef]
- Zhang, B.-Y.; He, W.-D.; Li, W.-T.; Li, L.-Y.; Zhang, K.-R.; Zhang, H. Preparation of block-brush PEG-b-P(NIPAM-g-DMAEMA) and its dual stimulus-response. Polymer 2010, 51, 3039–3046. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, Y. Recent development of brush polymers via polymerization of poly(ethylene glycol)-based macromonomers. Polym. Chem. 2019, 10, 2212–2222. [Google Scholar] [CrossRef]
- Xiao, L.; Li, J.; Peng, G.; Huang, G. The effect of grafting density and side chain length on the conformation of PEG grafted bottlebrush polymers. React. Funct. Polym. 2020, 156, 104736. [Google Scholar] [CrossRef]
- Johnson, E.C.; Gresham, I.J.; Prescott, S.W.; Nelson, A.; Wanless, E.J.; Webber, G.B. The direction of influence of specific ion effects on a pH and temperature responsive copolymer brush is dependent on polymer charge. Polymer 2021, 214, 123287. [Google Scholar] [CrossRef]
- Goseki, R.; Miyao, S.; Uchida, S.; Yokoyama, H.; Ito, K.; Ishizone, T. Surface characterization of amphiphilic block copolymers possessing polyisoprene and poly[tri(ethylene glycol) methacrylate] segments and the effect of side chain ω-function on surface energy. Polymer 2020, 190, 122257. [Google Scholar] [CrossRef]
- Yang, S.; Li, Q.; Li, S.; Dan, M.; Huo, F.; Zhang, W. Doubly thermo-responsive brush-linear diblock copolymers and formation of core-shell-corona micelles. Polymer 2014, 55, 1955e1963. [Google Scholar] [CrossRef]
- Li, Z.; Tang, M.; Liang, S.; Zhang, M.; Biesold, G.M.; Hao, Y.S.; Choi, W.; Liu, Y.; Peng, J.; Lin, Z. Bottlebrush polymers: From controlled synthesis, self-assembly, properties to applications. Prog. Polym. Sci. 2021, 116, 101387. [Google Scholar] [CrossRef]
- Srivastava, A.; Yadav, T.; Sharma, S.; Nayak, A.; Kumari, A.; Mishra, N. Polymers in Drug Delivery. J. Biosci. Medicines. 2016, 4, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Vittorio, O.; Curcio, M.; Cojoc, M.; Goy, G.F.; Hampel, S.; Iemma, F.; Dubrovska, A.; Cirillo, G. Polyphenols delivery by polymeric materials: Challenges in cancer treatment Cirillo. Drug Deliv. 2017, 24, 162–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elezaby, R.S.; Gad, H.A.; Metwally, A.A.; Geneidi, A.S.; Awad, G.A. Self-assembled amphiphilic core-shell nanocarriers in line with the modern strategies for brain delivery. J. Control Release 2017, 261, 43–61. [Google Scholar] [CrossRef]
- Hibino, M.; Tanaka, K.; Ouchi, M.; Terashima, T. Amphiphilic Random-Block Copolymer Micelles in Water: Precise and Dynamic Self-Assembly Controlled by Random Copolymer Association. Macromolecules 2022, 55, 178–189. [Google Scholar] [CrossRef]
- Kalaiarasi, S.; Arjun, P.; Nandhagopal, S.; Brijitta, J.; Iniyan, A.M.; Vincent, S.G.P.; Kannan, R.R. Development of biocompatible nanogel for sustained drug release by overcoming the blood brain barrier in zebrafish model. J. Appl. Biomed. 2016, 14, 157–169. [Google Scholar] [CrossRef]
- Stolnik, S.; Illum, L.; Davis, S.S. Long circulating microparticulate drug carriers. Adv.Drug Deliv. Rev. 1995, 16, 195–214. [Google Scholar] [CrossRef]
- Sun, C.; Ding, Y.; Zhou, L.; Shi, D.; Sun, L.; Webster, T.J.; Shen, Y. Noninvasive nanoparticle strategies for brain tumor targeting Nanomedicine. Nanotechnol. Biol. Med. 2017, 13, 2605–2621. [Google Scholar] [CrossRef]
- Peng, B.; Grishkewich, N.; Yao, Z.; Han, X.; Liu, H.; Tam, K.C. Self-Assembly Behavior of Thermoresponsive Oligo(ethylene glycol) Methacrylates Random Copolymer. Macromol. Res. 2013, 21, 1338–1348. [Google Scholar] [CrossRef]
- Remzi Becer, C.; Hahn, S.; Fijten, M.W.M.; Thijs, H.M.L.; Hoogenboom, R.; Schubert, U.S. Libraries of methacrylic acid and oligo(ethylene glycol) methacrylate copolymers with LCST behavior. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 7138–7147. [Google Scholar] [CrossRef]
- Shymborska, Y.; Stetsyshyn, Y.; Awsiuk, K.; Raczkowska, J.; Bernasik, A.; Janiszewska, N.; Da̧bczyński, P.; Kostruba, A.; Budkowski, A. Temperature- and pH-Responsive Schizophrenic Copolymer Brush Coatings with Enhanced Temperature Response in Pure Water. ACS Appl. Mater. Interfaces 2023, 15, 8676–8690. [Google Scholar] [CrossRef]
- Ahmed, M.; Narain, R. Progress of RAFT based polymers in gene delivery. Prog. Polym. Sci. 2013, 38, 767–790. [Google Scholar] [CrossRef]
- Simonova, M.; Kamorin, D.; Sadikov, A.; Filippov, A.; Kazantsev, O. The Influence of Synthesis Method on Characteristics of Buffer and Organic Solutions of Thermo- and pH-Responsive Poly(N-[3-(diethylamino)propyl] methacrylamide)s. Polymers. 2022, 14, 282. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Xu, X.; McCormick, C.L. Stimuli-responsive Amphiphilic (Co)polymers via RAFT Polymerization. Prog. Polym. Sci. 2010, 35, 45–93. [Google Scholar] [CrossRef]
- Neugebauer, D. Graft copolymers with poly(ethylene oxide) segments. Polym. Intern. 2007, 56, 1469–1498. [Google Scholar] [CrossRef]
- Qian, W.; Song, X.; Feng, C.; Xu, P.; Jiang, X.; Li, Y.; Huang, X. Construction of PEG-based amphiphilic brush polymers bearing hydrophobic poly(lactic acid) side chains via successive RAFT polymerization and ROP. Polym. Chem. 2016, 7, 3300–3310. [Google Scholar] [CrossRef]
- Xu, B.; Gu, G.; Feng, C.; Jiang, X.; Hu, J.; Zhanga, G.L.S.; Huang, X. (PAA-g-PS)-co-PPEGMEMA asymmetric polymer brushes: Synthesis, self-assembly, and encapsulating capacity for both hydrophobic and hydrophilic agents. Polym.Chem. 2016, 7, 613–624. [Google Scholar] [CrossRef]
- Shymborska, Y.; ·Stetsyshyn, Y.; Raczkowska, J.; Awsiuk, K.; Halyna, O.; Budkowski, A. Impact of the various buffer solutions on the temperature-responsive properties of POEGMA-grafted brush coatings. Colloid Polym. Sci. 2022, 300, 487–495. [Google Scholar] [CrossRef]
- Simonova, M.; Kamorin, D.; Kazantsev, O.; Nepomnyashaya, M.; Filippov, A. Conformation, self-organization and thermoresponsibility of polymethacrylate molecular brushes with oligo(ethylene glycol)-block-oligo(propylene glycol) side chains. Polymers 2021, 13, 2715. [Google Scholar] [CrossRef]
- Simonova, M.; Simagin, A.; Kamorin, D.; Orekhov, S.; Filippov, A.; Kazantsev, O. The Solution Properties of Polymethacrylate Molecular Brushes with Oligo(ethylene glycol) and Oligo(propylene glycol) Side Chains. Polymers 2022, 14, 5556. [Google Scholar] [CrossRef]
- Kamorin, D.M.; Simagin, A.S.; Orekhov, D.V.; Kazantsev, O.A.; Bolshakova, E.A.; Sivokhin, A.P.; Savinova, M.V.; Orekhov, S.V. Synthesis and thermoresponsive properties of polymethacrylate molecular brushes with oligo(ethylene glycol)-block- oligo(propylene glycol) side chains. Polym. Bull. 2022, 79, 8599–8616. [Google Scholar] [CrossRef]
- Simagin, A.S.; Savinova, M.V.; Kamorin, D.M.; Kazantsev, O.A.; Orekhov, D.V.; Simonova, M.A.; Orekhov, S.V. Amino- and Sulfo-Containing Molecular Brushes Based on Oligo(ethylene glycol) (Meth)Acrylates: Synthesis and Properties in Solutions. Polym. Sci. Ser. C 2022, 64, 232–244. [Google Scholar] [CrossRef]
- Zhao, C.L.; Winnik, M.A.; Riess, G.; Croucher, M.D. Fluorescence probe techniques used to study micelle formation in watersoluble block copolymers. Langmuir 1990, 6, 514–516. [Google Scholar] [CrossRef]
- Naksuriya, O.; Shi, Y.; van Nostrum, C.F.; Anuchapreeda, S.; Hennink, W.E.; Okonogi, S. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth. Europ. J. Pharm. Biopharm. 2015, 94, 501–512. [Google Scholar] [CrossRef]
- Tsvetkov, V.N. Rigid-Chain Polymers, 1st ed.; Plenum Press: New York, NY, USA, 1989. [Google Scholar]
- Kratochvil, P. Classical Light Scattering from Polymer Solution, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1987; pp. 1–346. [Google Scholar]
- Schärtl, W. Light Scattering from Polymer Solutions and Nanoparticle Dispersions, 1st ed.; Springer: Berlin, Germany, 2007; pp. 1–187. [Google Scholar]
- Tsvetkov, V.N.; Lavrenko, P.N.; Bushin, S.V. Hydrodynamic invariant of polymer molecules. J. Polym. Sci. 1984, 22, 3447–3486. [Google Scholar] [CrossRef]
- Tsvetkov, V.N.; Lavrenko, P.N.; Bushin, S.V. A hydrodynamic invariant of polymeric molecules. Russ. Chem. Rev. 1982, 51, 975–993. [Google Scholar] [CrossRef]
- Smirnova, A.; Kirila, T.; Blokhin, A.; Kozina, N.; Kurlykin, M.; Tenkovtsev, A.; Filippov, A. Linear and star-shaped poly(2-ethyl-2-oxazine)s. Synthesis, characterization and conformation in solution. Europ. Polym. J. 2021, 156, 110637. [Google Scholar] [CrossRef]
- Filippov, A.P.; Zamyshlyayeva, O.G.; Tarabukina, E.B.; Simonova, M.A.; Kozlov, A.V.; Semchikov, Y.D. Structural and conformational properties of hyperbranched copolymers based on perfluorinated germanium hydrides. Polym. Sci. Ser. A 2012, 54, 319–329. [Google Scholar] [CrossRef]
- Filippov, A.P.; Belyaeva, E.V.; Krasova, A.S.; Simonova, M.A.; Meleshko, T.K.; Ilgach, D.M.; Bogorad, N.N.; Yakimansky, A.V.; Larin, S.V.; Darinskii, A.A. Conformations of molecular brushes based on polyimide and poly(methylmethacrylate) in selective solvents: Experiment and computer simulation. Polym. Sci. Ser. A 2014, 56, 393–404. [Google Scholar] [CrossRef]
- Simonova, M.; Ivanov, I.; Meleshko, T.; Kopyshev, A.; Santer, S.; Yakimansky, A.; Filippov, A. Self-assembly of molecular brushes with polyimide backbone and amphiphilic block copolymer side chains in selective solvents. Polymers 2020, 12, 2922. [Google Scholar] [CrossRef] [PubMed]
- Simonova, M.; Ilgach, D.; Kaskevich, K.; Nepomnyashaya, M.; Litvinova, L.; Filippov, A.; Yakimansky, A. Novel Amphiphilic Polyfluorene-Graft-(Polymethacrylic Acid) Brushes: Synthesis, Conformation, and Self-Assembly. Polymers 2021, 13, 4429. [Google Scholar] [CrossRef] [PubMed]
Solvents | Mw × 10−3, g·mol−1 SLS | Rh-D, nm | [η], cm3·g−1 | A0 × 1010, erg·K−1mol−1/3 | Mw × 10−3, g·mol−1 SEC (in THF) | Đ (in THF) |
---|---|---|---|---|---|---|
polyOPG8OEG8MA-DMAPMA 80:20 | ||||||
acetonitrile | 55 | 4.2 | 8.7 | 3.20 | 16 | 1.4 |
DMFA | - | 2.7 | - | |||
water | 5.8 * | |||||
polyOPG8OEG8MA-DMAPMA 90:10 | ||||||
acetonitrile | 50 | 3.9 | 7.2 | 2.90 | 15 | 1.3 |
DMFA | - | 2.2 | - | |||
water | 5.4 * | |||||
polyOPG8OEG8MA-DMAPMA 95:5 | ||||||
acetonitrile | 40 | 3.9 | 8.8 | 2.85 | 16 | 1.3 |
DMFA | - | 3.0 | ||||
water | 5.2 * | |||||
polyOPG8OEG8MA | ||||||
acetonitrile | 50 | 4.2 | 5.4 | 2.40 | 17 | 1.2 |
DMFA | 3.5 | |||||
water | 4.9 * |
Sample | M0-cp, g∙mol−1 | Mw × 10−3, g∙mol−1 | Nb | Lb, nm | Lsc, nm | LDMAPMA, nm |
---|---|---|---|---|---|---|
polyOPG8OEG8MA-DMAPMA 80:20 | 757 | 55 | 73 | 18.4 | 6.4 | 0.9 |
polyOPG8OEG8MA-DMAPMA 90:10 | 831 | 50 | 60 | 15.1 | 6.4 | 0.9 |
polyOPG8OEG8MA-DMAPMA 95:5 | 867 | 40 | 46 | 11.6 | 6.4 | 0.9 |
polyOPG8OEG8MA | 904 | 50 | 55 | 13.9 | 6.4 | 0.9 |
Samples | pH | T1, °C | T2, °C | Rh-f Room, nm | Rh-s Room, nm | ΔT, °C | T ph °C | cf | CMC wt% |
---|---|---|---|---|---|---|---|---|---|
polyOPG8OEG8MA-DMAPMA 80:20 | 7 | 54 | 67 | 4.0 | 80.3 | 13 | 50 | 90 | 0.0013 |
polyOPG8OEG8MA-DMAPMA 90:10 | 7 | 46 | 56 | 4.2 | 83 | 10 | 50 | 96 | 0.0011 |
polyOPG8OEG8MA-DMAPMA 95:5 | 6 | 45 | 49 | 4.9 | 50 | 4 | 48 | 96 | 0.00057 |
polyOPG8OEG8MA | 6 | 44 | 47 | 5.4 | - | 3 | 46 | 96 | 0.00045 |
Concentration, g∙cm−3 | pH | T1, °C | T2, °C | Rh-F Room | Rh-s Room | ΔT, °C |
---|---|---|---|---|---|---|
polyOPG8OEG8MA 90:10 | ||||||
0.25 | 7 | 44 | 56 | 5.4 | 70 | 12 |
0.5 | 7 | 42 | 53 | 4.2 | 86 | 11 |
1 | 7 | 40 | 50 | 3.3 | 98 | 10 |
Samples | pH = 3.56 | pH = 6.86 | pH = 12.43 |
---|---|---|---|
polyOPG8OEG8MA-DMAPMA 80:20 | 56.0 | 49.0 | 46.8 |
polyOPG8OEG8MA-DMAPMA 90:10 | 50.1 | 46.5 | 46.8 |
polyOPG8OEG8MA-DMAPMA 95:5 | 47.4 | 45.1 | 47.0 |
polyOPG8OEG8MA | 45.4 | 44.1 | 47.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simonova, M.; Kamorin, D.; Filippov, A.; Kazantsev, O. Synthesis, Characterization, Conformation in Solution, and Thermoresponsiveness of Polymer Brushes of methoxy[oligo (propylene glycol)-block-oligo(ethylene glycol)]methacrylate and N-[3-(dimethylamino)propyl]methacrylamide Obtained via RAFT Polymerization. Polymers 2023, 15, 1641. https://doi.org/10.3390/polym15071641
Simonova M, Kamorin D, Filippov A, Kazantsev O. Synthesis, Characterization, Conformation in Solution, and Thermoresponsiveness of Polymer Brushes of methoxy[oligo (propylene glycol)-block-oligo(ethylene glycol)]methacrylate and N-[3-(dimethylamino)propyl]methacrylamide Obtained via RAFT Polymerization. Polymers. 2023; 15(7):1641. https://doi.org/10.3390/polym15071641
Chicago/Turabian StyleSimonova, Maria, Denis Kamorin, Alexander Filippov, and Oleg Kazantsev. 2023. "Synthesis, Characterization, Conformation in Solution, and Thermoresponsiveness of Polymer Brushes of methoxy[oligo (propylene glycol)-block-oligo(ethylene glycol)]methacrylate and N-[3-(dimethylamino)propyl]methacrylamide Obtained via RAFT Polymerization" Polymers 15, no. 7: 1641. https://doi.org/10.3390/polym15071641
APA StyleSimonova, M., Kamorin, D., Filippov, A., & Kazantsev, O. (2023). Synthesis, Characterization, Conformation in Solution, and Thermoresponsiveness of Polymer Brushes of methoxy[oligo (propylene glycol)-block-oligo(ethylene glycol)]methacrylate and N-[3-(dimethylamino)propyl]methacrylamide Obtained via RAFT Polymerization. Polymers, 15(7), 1641. https://doi.org/10.3390/polym15071641