Design and Construction of an Azo-Functionalized POP for Reversibly Stimuli-Responsive CO2 Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and General Methods
2.2. Synthesis of JJU-2
3. Results
3.1. Structural Description
3.2. Gas Sorption Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Wang, T.; Blunt, M.J.; Anthony, E.J.; Park, A.A.; Hughes, R.W.; Webley, P.A.; Yan, J. Advances in carbon capture, utilization and storage. Appl. Energy 2020, 278, 115627. [Google Scholar] [CrossRef]
- Ding, M.; Liu, X.; Ma, P.; Yao, J. Porous materials for capture and catalytic conversion of CO2 at low concentration. Coordin. Chem. Rev. 2022, 465, 214576. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Jiang, Y.; Jiang, X.; He, N.; Yan, S.; Guo, P.; Xiong, G.; Su, J.; Vile, G. Influence of the zeolite surface properties and potassium modification on the Zn-catalyzed CO2-assisted oxidative dehydrogenation of ethane. Appl. Catal. B-Environ. 2022, 304, 120947. [Google Scholar] [CrossRef]
- Bikbaeva, V.; Nesterenko, N.; Konnov, S.; Nguyen, T.S.; Gilson, J.P.; Valtchev, V. A low carbon route to ethylene: Ethane oxidative dehydrogenation with CO2 on embryonic zeolite supported Mo-carbide catalyst. Appl. Catal. B-Environ. 2023, 320, 122011. [Google Scholar] [CrossRef]
- Shen, Y. Preparation of renewable porous carbons for CO2 capture–A review. Fuel Process. Technol. 2022, 236, 107437. [Google Scholar] [CrossRef]
- Yu, A.; Ma, G.; Zhu, L.; Zhang, R.; Li, Y.; Yang, S.; Hsu, H.Y.; Peng, P.; Li, F.F. Conversion of CO2 to defective porous carbons in one electro-redox cycle for boosting electrocatalytic H2O2 production. Appl. Catal. B-Environ. 2022, 307, 121161. [Google Scholar] [CrossRef]
- He, H.; Sun, Q.; Gao, W.; Perman, J.A.; Sun, F.; Zhu, G.; Aguila, B.; Forrest, K.; Space, B.; Ma, S. A stable metal-organic framework featuring a local buffer environment for carbon dioxide fixation. Angew. Chem. Int. Edit. 2018, 57, 4657–4662. [Google Scholar] [CrossRef]
- Gulati, S.; Vijayan, S.; Kumar, S.; Harikumar, B.; Trivedi, M.; Varma, R.S.; Varma, R.S. Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals. Coordin. Chem. Rev. 2023, 474, 214853. [Google Scholar] [CrossRef]
- Mallakpour, S.; Nikkhoo, E.; Hussain, C.M. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coordin. Chem. Rev. 2022, 451, 214262. [Google Scholar] [CrossRef]
- Panić, B.; Frey, T.; Borovina, M.; Konopka, K.; Sambolec, M.; Kodrin, I.; Biljan, I. Synthesis and characterization of benzene- and triazine-based azo-bridged porous organic polymers. Polymers 2023, 15, 229. [Google Scholar] [CrossRef]
- Zhou, H.; Rayer, C.; Antonangelo, A.R.; Hawkins, N.; Carta, M. Adjustable functionalization of hyper-cross-linked polymers of intrinsic microporosity for enhanced CO2 adsorption and selectivity over N2 and CH4. ACS Appl. Mater. Interfaces 2022, 14, 20997–21006. [Google Scholar] [CrossRef]
- Zhao, X.; Qi, Y.; Li, J.; Ma, Q. Porous organic polymers derived from ferrocene and tetrahedral silicon-centered monomers for carbon dioxide sorption. Polymers 2022, 14, 370. [Google Scholar] [CrossRef] [PubMed]
- Henrion, M.; Mohr, Y.; Janssens, K.; Smolders, S.; Bugaev, A.L.; Usoltsev, O.A.; Quadrelli, E.A.; Wisser, F.M.; De Vos, D.E.; Canivet, J. Reusable copper catechol-based porous polymers for the highly efficient heterogeneous catalytic oxidation of secondary alcohols. ChemCatChem 2022, 14, e202200649. [Google Scholar] [CrossRef]
- Saber, A.F.; Elewa, A.M.; Chou, H.H.; EL-Mahdy, A.F.M. Donor-acceptor carbazole-based conjugated microporous polymers as photocatalysts for visible-light-driven H2 and O2 evolution from water splitting. Appl. Catal. B-Environ. 2022, 316, 121624. [Google Scholar] [CrossRef]
- Dong, X.; Hao, H.; Zhang, F.; Lang, X. Blue light photocatalysis of carbazole-based conjugated microporous polymers: Aerobic hydroxylation of phenylboronic acids to phenols. Appl. Catal. B-Environ. 2022, 309, 121210. [Google Scholar] [CrossRef]
- Yuan, R.; Yan, Z.; Shaga, A.; He, H. Design and fabrication of an electrochemical sensing platform based on a porous organic polymer for ultrasensitive ampicillin detection. Sens. Actuat. B Chem. 2021, 327, 128949. [Google Scholar] [CrossRef]
- Zhang, Y.X. The preparation of 2,2′-bithiophene-based conjugated microporous polymers by direct arylation polymerization and their application in fluorescence sensing 2,4-dinitrophenol. Anal. Chim. Acta 2023, 1240, 340779. [Google Scholar] [CrossRef]
- Han, Z.Y.; Li, H.K.; Zhu, Q.Q.; Yuan, R.R.; He, H. An intriguing electrochemical impedance aptasensor based on a porous organic framework supported silver nanoparticles for ultrasensitively detecting theophylline. Chin. Chem. Lett. 2021, 32, 2865–2868. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Q.; Liu, Y.; Fu, X.; Luo, Y.; Lyu, Y. A nanoscale porous glucose-based polymer for gas adsorption and drug delivery. New J. Chem. 2018, 42, 15692–15697. [Google Scholar] [CrossRef]
- Zhang, H.; Li, G.; Liao, C.; Cai, Y.; Jiang, G. Bio-related applications of porous organic frameworks (POFs). J. Mater. Chem. B 2019, 7, 2398–2420. [Google Scholar] [CrossRef]
- Singh, N.; Son, S.; An, J.; Kim, I.; Choi, M.; Kong, N.; Tao, W.; Kim, J.S. Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics. Chem. Soc. Rev. 2021, 50, 12883–12896. [Google Scholar] [CrossRef] [PubMed]
- Troschke, E.; Graetz, S.; Luebken, T.; Borchardt, L. Mechanochemical Friedel-Crafts alkylation-A sustainable pathway towards porous organic polymers. Angew. Chem. Int. Edit. 2017, 56, 6859–6863. [Google Scholar] [CrossRef]
- Hao, S.; Liu, Y.; Shang, C.; Liang, Z.; Yu, J. CO2 adsorption and catalytic application of imidazole ionic liquid functionalized porous organic polymers. Polym. Chem. 2017, 8, 1833–1839. [Google Scholar] [CrossRef]
- Guo, L.; Cao, D. Color tunable porous organic polymer luminescent probes for selective sensing of metal ions and nitroaromatic explosives. J. Mater. Chem. C 2015, 3, 8490–8494. [Google Scholar] [CrossRef]
- Fischer, S.; Schimanowitz, A.; Dawson, R.; Senkovska, I.; Kaskel, S.; Thomas, A. Cationic microporous polymer networks by polymerisation of weakly coordinating cations with CO2-storage ability. J. Mater. Chem. A 2014, 2, 11825–11829. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Qiao, Y.; Wang, J.; Xie, J.; Cui, B.; Fu, Y.; Lu, J.; Yang, Y.; Bu, N.; Yuan, Y.; et al. An azo-group-functionalized porous aromatic framework for achieving highly efficient capture of iodine. Molecules 2022, 27, 6297. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, J.; Miao, C.; Su, P.; Zheng, G.; Cui, B.; Geng, T.; Fan, J.; Yu, Z.; Bu, N.; et al. Pyrene-based fluorescent porous organic polymers for recognition and detection of pesticides. Molecules 2022, 27, 126. [Google Scholar] [CrossRef]
- Yuan, R.; Liu, Z.; Sun, H.; He, H. Porphyrin-based porous organic frameworks for the ultrasensitive electrochemical impedimetric aptasensing of oxytetracycline. Appl. Surf. Sci. 2021, 569, 151038. [Google Scholar] [CrossRef]
- Bildirir, H.; Paraknowitsch, J.P.; Thomas, A. A tetrathiafulvalene (TTF)-conjugated microporous polymer network. Chem.-Eur. J. 2014, 20, 9543–9548. [Google Scholar] [CrossRef]
- Yuan, R.; He, H. Construction of an electrochemical aptasensor based on a carbazole-bearing porous organic polymer for rapid and ultrasensitive detection of penicillin. Appl. Surf. Sci. 2021, 563, 150307. [Google Scholar] [CrossRef]
- Mohamed, M.G.; EL-Mahdy, A.F.M.; Meng, T.S.; Samy, M.M.; Kuo, S.W. Multifunctional hypercrosslinked porous organic polymers based on tetraphenylethene and triphenylamine derivatives for high-performance dye adsorption and supercapacitor. Polymers 2020, 12, 2426. [Google Scholar] [CrossRef]
- Wang, D.G.; Song, F.; Tang, H.; Jia, X.R.; Song, M.; Kuang, G.C. A facile route to prepare dimeric BODIPY-based porous organic polymers using FeCl3. New J. Chem. 2017, 41, 5263–5266. [Google Scholar] [CrossRef]
- Schute, K.; Rose, M. Metal-free and scalable synthesis of porous hyper-cross-linked polymers: Towards applications in liquid-phase adsorption. ChemSusChem 2015, 8, 3419–3423. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, H.; Shi, B.; Gao, S.; Zhang, L.; Li, X.; Liao, X.; Huang, K. Room-temperature synthesis of hollow carbazole-based covalent triazine polymers with multiactive sites for efficient iodine capture-catalysis cascade application. ACS Appl. Polym. Mater. 2020, 2, 3704–3713. [Google Scholar] [CrossRef]
- Qian, L.; Hong, H.; Han, M.; Xu, C.; Wang, S.; Guo, Z.; Yan, D. A ketone-functionalized carbazolic porous organic framework for sensitive fluorometric determination of p-nitroaniline. Microhim. Acta 2019, 186, 457. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, Y.; Zhang, M.; Yuan, K.; Liang, S.; Yu, G.; Weng, Z.; Jian, X. Hierarchical porous organic hyper-cross-linked polymers containing phthalazinone and carbazole moieties for gas uptake and fluorescence properties. Eur. Polym. J. 2020, 130, 109674. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, W.; Liu, J.; Dong, Z.; Liu, Z. pH-Responsive nanoscale covalent organic polymers as a biodegradable drug carrier for combined photodynamic chemotherapy of cancer. ACS Appl. Mater. Interfaces 2018, 10, 14475–14482. [Google Scholar] [CrossRef]
- Comotti, A.; Bracco, S.; Ben, T.; Qiu, S.; Sozzani, P. Molecular rotors in porous organic frameworks. Angew. Chem. Int. Edit. 2014, 53, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.M.; Zhang, W.J.; Liu, X.Q.; Qi, S.C.; Sun, L.B. Fabrication of azobenzene-functionalized porous polymers for selective CO2 capture. Chin. J. Chem. Eng. 2022, 43, 24–30. [Google Scholar] [CrossRef]
- Danowski, W.; van Leeuwen, T.; Browne, W.R.; Feringa, B.L. Photoresponsive porous materials. Nanoscale Adv. 2021, 3, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.A.; Li, Y.; Wang, J. The progress of electrochromic materials based on metal-organic frameworks. Coordin. Chem. Rev. 2023, 475, 214891. [Google Scholar] [CrossRef]
- He, H.; Wen, H.-M.; Li, H.-K.; Zhang, H.-W. Recent advances in metal-organic frameworks and their derivatives for electrocatalytic nitrogen reduction to ammonia. Coordin. Chem. Rev. 2022, 471, 214761. [Google Scholar] [CrossRef]
- Adegoke, K.A.; Adegoke, O.R.; Adigun, R.A.; Maxakata, N.W.; Bello, O.S. Two-dimensional metal-organic frameworks: From synthesis to biomedical, environmental, and energy conversion applications. Coordin. Chem. Rev. 2022, 473, 214817. [Google Scholar] [CrossRef]
- Huang, Q.; Mu, J.; Zhan, Z.; Wang, F.; Jin, S.; Tan, B.; Wu, C. A steric hindrance alleviation strategy to enhance the photo-switching efficiency of azobenzene functionalized metal-organic frameworks toward tailorable carbon dioxide capture. J. Mater. Chem. A 2022, 10, 8303–8308. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, T.; Au, V.K.M. Photoresponsive metal-organic frameworks: Tailorable platforms of photoswitches for advanced functions. ChemNanoMat 2022, 8, e202100486. [Google Scholar] [CrossRef]
- Baroncini, M.; d’Agostino, S.; Bergamini, G.; Ceroni, P.; Comotti, A.; Sozzani, P.; Bassanetti, I.; Grepioni, F.; Hernandez, T.M.; Silvi, S.; et al. Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers. Nat. Chem. 2015, 7, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, W. Reversible tuning of pore size and CO2 adsorption in azobenzene functionalized porous organic polymers. Chem. Sci. 2014, 5, 4957–4961. [Google Scholar] [CrossRef]
- Yuan, R.; Sun, H.; He, H. Rational construction of a responsive azo-functionalized porous organic framework for CO2 sorption. Molecules 2021, 26, 4993. [Google Scholar] [CrossRef]
- Yuan, R.; Sun, H.; Yan, Z.; He, H. Rational design and synthesis of a task-specific porous organic framework featured azobenzene as a photoresponsive low-energy CO2 adsorbent. J. Solid State Chem. 2021, 297, 122049. [Google Scholar] [CrossRef]
- Li, S.; Prasetya, N.; Ladewig, B.P. Investigation of azo-COP-2 as a photoresponsive low-energy CO2 adsorbent and porous filler in mixed matrix membranes for CO2/N2 separation. Ind. Eng. Chem. Res. 2019, 58, 9959–9969. [Google Scholar] [CrossRef]
- Yuan, R.; Yan, Z.; Shaga, A.; He, H. Solvent-free mechanochemical synthesis of a carbazole-based porous organic polymer with high CO2 capture and separation. J. Solid State Chem. 2020, 287, 121327. [Google Scholar] [CrossRef]
- Nie, W.; Liu, J.; Bai, X.; Xing, Z.; Gao, Y. Designing phenyl porous organic polymers with high-efficiency tetracycline adsorption capacity and wide pH adaptability. Polymers. 2022, 14, 203. [Google Scholar] [CrossRef] [PubMed]
- Geng, T.; Zhang, W.; Zhu, Z.; Chen, G.; Ma, L.; Ye, S.; Niu, Q. A covalent triazine-based framework from tetraphenylthiophene and 2,4,6-trichloro-1,3,5-triazine motifs for sensing o-nitrophenol and effective I2 uptake. Polym. Chem. 2018, 9, 777–784. [Google Scholar] [CrossRef]
- Ruidas, S.; Das, A.; Kumar, S.; Dalapati, S.; Manna, U.; Bhaumik, A. Non-fluorinated and robust superhydrophobic modification on covalent organic framework for crud-oil-in-water emulsion separation. Angew. Chem. Int. Ed. 2022, 61, e202210507. [Google Scholar] [CrossRef] [PubMed]
- Kanj, A.B.; Mueller, K.; Heinke, L. Stimuli-responsive metal–organic frameworks with photoswitchable azobenzene side groups. Macromol. Rapid Commun. 2018, 39, 1700239. [Google Scholar] [CrossRef] [PubMed]
- Bujak, K.; Nocon, K.; Jankowski, A.; Wolinska-Grabczyk, A.; Schab-Balcerzak, E.; Janeczek, H.; Konieczkowska, J. Azopolymers with imide structures as light-switchable membranes in controlled gas separation. Eur. Polym. J. 2019, 118, 186–194. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.D.; Praveen, V.K.; Ajayaghosh, A. Photoresponsive metal–organic materials: Exploiting the azobenzene switch. Mater. Horiz. 2014, 1, 572–576. [Google Scholar] [CrossRef]
- Song, K.S.; Fritz, P.W.; Coskun, A. Porous organic polymers for CO2 capture, separation and conversion. Chem. Soc. Rev. 2022, 51, 9831–9852. [Google Scholar] [CrossRef] [PubMed]
- Bhanja, P.; Modak, A.; Bhaumik, A. Porous organic polymers for CO2 storage and conversion reactions. ChemCatChem 2019, 11, 244–257. [Google Scholar] [CrossRef]
- Dai, Z.; Long, Y.; Liu, J.; Bao, Y.; Zheng, L.; Ma, J.; Liu, J.; Zhang, F.; Xiong, Y.; Lu, J.Q. Functional porous ionic polymers as efficient heterogeneous catalysts for the chemical fixation of CO2 under mild conditions. Polymers 2022, 14, 2658. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, H.; Yu, B.; Zhao, Y.; Ma, Z.; Ji, G.; Han, B.; Liu, Z. Azo-functionalized microporous organic polymers: Synthesis and applications in CO2 capture and conversion. Chem. Commun. 2015, 51, 11576–11579. [Google Scholar] [CrossRef]
- Yuan, R.; Ren, H.; He, H.; Jiang, L.; Zhu, G. Targeted synthesis of porous aromatic frameworks with stimuli-responsive adsorption properties. Sci. China Mater. 2015, 58, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Bera, R.; Ansari, M.; Alam, A.; Das, N. Triptycene, phenolic-OH and azo-functionalized porous organic polymers: Efficient and selective CO2 capture. ACS Appl. Polym. Mater. 2019, 1, 959–968. [Google Scholar] [CrossRef]
- Patel, H.A.; Je, S.H.; Park, J.; Chen, D.P.; Jung, Y.; Yavuz, C.T.; Coskun, A. Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. Nat. Commun. 2013, 4, 1357. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Zhang, J. Facile synthesis of azo-linked porous organic frameworks via reductive homocoupling for selective CO2 capture. J. Mater. Chem. A 2014, 2, 13831–13834. [Google Scholar] [CrossRef]
- Arab, P.; Rabbani, M.G.; Sekizkardes, A.K.; İslamoğlu, T.; El-Kaderi, H.M. Copper(I)-catalyzed synthesis of nanoporous azo-linked polymers: Impact of textural properties on gas storage and selective carbon dioxide capture. Chem. Mater. 2014, 26, 1385–1392. [Google Scholar] [CrossRef]
- Drake, H.F.; Xiao, Z.; Day, G.S.; Vali, S.W.; Daemen, L.L.; Cheng, Y.; Cai, P.; Kuszynski, J.E.; Lin, H.; Zhou, H.C.; et al. Influence of metal identity on light-induced switchable adsorption in azobenzene-based metal-organic frameworks. ACS Appl. Mater. Interfaces 2022, 14, 11192–11199. [Google Scholar] [CrossRef]
- Tan, P.; Jiang, Y.; Wu, Q.; Gu, C.; Qi, S.; Zhang, Q.; Liu, X.; Sun, L. Light-responsive adsorbents with tunable adsorbent–adsorbate interactions for selective CO2 capture. Chin. J. Chem. Eng. 2022, 42, 104–111. [Google Scholar] [CrossRef]
- Mondal, S.; Kundu, S.K.; Bhaumik, A.A. Facile approach for the synthesis of hydroxyl-rich microporous organic networks for efficient CO2 capture and H2 storage. Chem. Commun. 2017, 53, 2752–2755. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.K.; Bhaumik, A. Novel nitrogen and sulfur rich hyper-cross-linked microporous poly-triazine-thiophene copolymer for superior CO2 capture. ACS Sustain. Chem. Eng. 2016, 4, 3697–3703. [Google Scholar] [CrossRef]
POP Materials | SABET a [m2 g−1] | SALangmuir b [m2 g−1] | Peak Pore Sizes [nm] | VTotal c [cm3 g−1] | CO2 Uptake [cm3 g−1] | Qst CO2 [kJ mol−1] | |
---|---|---|---|---|---|---|---|
273 K | 298 K | ||||||
Initial | 888.1 | 1002.7 | 0.27, 1.5 | 0.60 | 68.7 | 37.1 | 29.0 |
UV 5 h | 864.6 | 976.3 | 0.27, 1.5 | 0.59 | 63.2 | 34.4 | 26.5 |
POP Materials | BET [m2 g−1] | Slope [g cm−3] | Y-Intercept [g cm−3] | C | Qm [cm3 g−1] | Correlation Coefficient |
---|---|---|---|---|---|---|
Initial | 888.1 | 0.004890 | 0.000011 | 450.072216 | 204.0409 | 0.999997 |
UV 5 h | 864.6 | 0.005023 | 0.000011 | 439.286920 | 198.6445 | 0.999998 |
Materials | BET [m2 g−1] | VTotal [cm3 g−1] | CO2 Uptake (cm3 g−1) (273 K, 1 Bar) | Qst CO2 (kJ mol−1) | Ref. |
---|---|---|---|---|---|
JJU-1 | 467 | 0.31 | 45.3 | 27.1 | [48] |
JJU-1-UV | 469 | 0.34 | 40.1 | 33.1 | [48] |
POF-Initial | 571 | 0.49 | 46.2 | 26.7 | [49] |
POF-1stUV | 549 | 0.48 | 41.6 | 29.7 | [49] |
Azo-MOP-1 | 456 | 0.48 | 49.6 | - | [61] |
PAF-36 | 325 | 0.25 | 28.6 | 27.0 | [62] |
PAF-36-UV | 385 | 0.27 | 31.2 | 28.4 | [62] |
PAF-37 | 443 | 0.27 | 26.3 | 36.8 | [62] |
PAF-37-UV | 456 | 0.28 | 29.6 | 40.7 | [62] |
TAP-1 | 474 | 0.74 | 48.4 | 35.6 | [63] |
azo-COP-1 | 608 | 0.39 | 54.7 | 29.3 | [64] |
azo-COP-2 | 703 | 0.42 | 56.2 | 24.8 | [64] |
Azo-POF-1 | 712 | - | 66.7 | 27.5 | [65] |
Azo-POF-2 | 439 | - | 43.0 | 26.6 | [65] |
ALP-4 | 862 | 0.50 | 41.2 | 28.2 | [66] |
PCN-250-Fe3 (II/III) | 1619 | - | 133.66 | - | [67] |
PCN-250-Fe3 (III) | 1598 | - | 50.81 | - | [67] |
PCN-250-Al3 | 1874 | - | 170.48 | - | [67] |
PCN-250-Sc3 | 1321 | - | 101.31 | - | [67] |
PCN-250-In3 | 1224 | - | 108.15 | - | [67] |
MS | 1015 | 0.96 | - | - | [68] |
DAL(1)@MS | 627 | 0.46 | - | - | [68] |
DAL(2)@MS | 589 | 0.40 | 50 | - | [68] |
DAL(2)@MS UV | - | - | 33 | - | [68] |
DAL(3)@MS | 512 | 0.31 | - | - | [68] |
BCzMB@PON | 865 | - | 90.048 | 31.96 | [69] |
TPA@PON | 829 | - | 86.24 | 37.98 | [69] |
CZ@PON | 592 | - | 96.544 | 42.01 | [69] |
HMC-1 | 855 | 0.2968 | 235.2 (273 K, 3 bar) | - | [70] |
HMC-2 | 425 | 0.1920 | 306.88 (273 K, 3 bar) | - | [70] |
HMC-3 | 526 | 0.1618 | 318.08 (273 K, 3 bar) | - | [70] |
JJU-2 | 888.1 | 0.60 | 68.7 | 29.0 | This Work |
JJU-2-UV | 864.6 | 0.59 | 63.2 | 26.5 | This Work |
JJU-2 | CO2 Uptake [cm3 g−1] |
---|---|
Initial | 68.7 |
1st UV | 63.2 |
1st Heat | 64.8 |
2nd UV | 59.3 |
2nd Heat | 64.1 |
3rd UV | 60.8 |
3rd Heat | 63.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, R.; Zhang, M.; Sun, H. Design and Construction of an Azo-Functionalized POP for Reversibly Stimuli-Responsive CO2 Adsorption. Polymers 2023, 15, 1709. https://doi.org/10.3390/polym15071709
Yuan R, Zhang M, Sun H. Design and Construction of an Azo-Functionalized POP for Reversibly Stimuli-Responsive CO2 Adsorption. Polymers. 2023; 15(7):1709. https://doi.org/10.3390/polym15071709
Chicago/Turabian StyleYuan, Rongrong, Meiyu Zhang, and Hao Sun. 2023. "Design and Construction of an Azo-Functionalized POP for Reversibly Stimuli-Responsive CO2 Adsorption" Polymers 15, no. 7: 1709. https://doi.org/10.3390/polym15071709
APA StyleYuan, R., Zhang, M., & Sun, H. (2023). Design and Construction of an Azo-Functionalized POP for Reversibly Stimuli-Responsive CO2 Adsorption. Polymers, 15(7), 1709. https://doi.org/10.3390/polym15071709