Understanding the Effect of Triazole on Crosslinked PPO–SEBS-Based Anion Exchange Membranes for Water Electrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Bromobenzylated PPO (Br-PPO) 3
2.3. Synthesis of Azidobenzylated PPO (N3-PPO) 4
2.4. Synthesis of Dimethyl Amine-Triazole-Functionalized PPO (DMA-Tri-PPO) 1
2.5. Synthesis of Dimethylamine-Functionalized PPO (DMA-PPO) 2
2.6. Synthesis of Bromohexanoyl SEBS(Br-Hex-CO-SEBS) 6
2.7. Bromohexyl SEBS (Br-Hex-SEBS) 5 Is Created through the Reduction of Br-Hex-CO-SEBS 6
2.8. Fabrication of Crosslinked x-TriPPO-50SEBS A and x-PPO-50SEBS B Membranes
2.9. Fabrication of Membrane Electrode Assemblies (MEAs) and Single-Cell Measurements
3. Results and Discussion
3.1. Characterization and Production of DMA-Tri-PPO 1 and DMA-PPO 2
3.2. Synthesis and Characterization of Br-Hex-SEBS 5
3.3. Fabrication of Crosslinked x-TriPPO-50SEBS A and x-PPO-50SEBS B Membranes
3.4. IEC, Ion Conductivity, WU, SR, and Density
3.5. Mechanical and Thermal Properties
3.6. Analysis of the Water Retention Capacity
3.7. Morphological Analysis
3.8. Alkaline Stability
3.9. Water Electrolysis (WE) Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Noh, H.; Kang, K.; Seo, Y. Environmental and energy efficiency assessments of offshore hydrogen supply chains utilizing compressed gaseous hydrogen, liquefied hydrogen, liquid organic hydrogen carriers and ammonia. Int. J. Hydrog. Energy 2023, 48, 7515–7532. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Qin, Y.; Wang, Y.; Dong, H.; Ma, Z.; Lin, Y. Synergistic planning of an integrated energy system containing hydrogen storage with the coupled use of electric-thermal energy. Int. J. Hydrog. Energy, 2023; in press. [Google Scholar] [CrossRef]
- Bauer, A.; Mayer, T.; Semmel, M.; Guerrero Morales, M.A.; Wind, J. Energetic evaluation of hydrogen refueling stations with liquid or gaseous stored hydrogen. Int. J. Hydrog. Energy 2019, 44, 6795–6812. [Google Scholar] [CrossRef]
- Moradpoor, I.; Syri, S.; Santasalo-Aarnio, A. Green hydrogen production for oil refining—Finnish case. Renew. Sustain. Energy Rev. 2023, 175, 113159. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen production for energy: An overview. Int. J. Hydrog. Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Cardona, P.; Costa-Castelló, R.; Roda, V.; Carroquino, J.; Valiño, L.; Serra, M. Model predictive control of an on-site green hydrogen production and refuelling station. Int. J. Hydrog. Energy, 2023; in press. [Google Scholar] [CrossRef]
- Vilbergsson, K.V.; Dillman, K.; Emami, N.; Ásbjörnsson, E.J.; Heinonen, J.; Finger, D.C. Can remote green hydrogen production play a key role in decarbonizing Europe in the future? A cradle-to-gate LCA of hydrogen production in Austria, Belgium, and Iceland. Int. J. Hydrog. Energy, 2023; in press. [Google Scholar] [CrossRef]
- Hua, D.; Huang, J.; Fabbri, E.; Rafique, M.; Song, B. Development of Anion Exchange Membrane Water Electrolysis and the Associated Challenges: A Review. ChemElectroChem 2023, 10, e202200999. [Google Scholar] [CrossRef]
- Hoang, A.L.; Balakrishnan, S.; Hodges, A.; Tsekouras, G.; Al-Musawi, A.; Wagner, K.; Lee, C.-Y.; Swiegers, G.F.; Wallace, G.G. High-performing catalysts for energy-efficient commercial alkaline water electrolysis. Sustain. Energy Fuels 2023, 7, 31–60. [Google Scholar] [CrossRef]
- Li, L.; Laan, P.C.M.; Yan, X.; Cao, X.; Mekkering, M.J.; Zhao, K.; Ke, L.; Jiang, X.; Wu, X.; Li, L.; et al. High-Rate Alkaline Water Electrolysis at Industrially Relevant Conditions Enabled by Superaerophobic Electrode Assembly. Adv. Sci. 2023, 10, 2206180. [Google Scholar] [CrossRef]
- Rakhshani, S.; Araneo, R.; Pucci, A.; Rinaldi, A.; Giuliani, C.; Pozio, A. Synthesis and Characterization of a Composite Anion Exchange Membrane for Water Electrolyzers (AEMWE). Membranes 2023, 13, 109. [Google Scholar] [CrossRef]
- Lim, H.; Jeong, I.; Choi, J.; Shin, G.; Kim, J.; Kim, T.-H.; Park, T. Anion exchange membranes and ionomer properties of a polyfluorene-based polymer with alkyl spacers for water electrolysis. Appl. Surf. Sci. 2023, 610, 155601. [Google Scholar] [CrossRef]
- Abdellatif, M.; Hashemi, M.; Azizmohammadi, S. Large-scale underground hydrogen storage: Integrated modeling of reservoir-wellbore system. Int. J. Hydrog. Energy, 2023; in press. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Liang, X.; Shehzad, M.A.; Xiao, X.; Zhu, Y.; Ge, X.; Zhang, J.; Ge, Z.; Wu, L.; et al. Improving fuel cell performance of an anion exchange membrane by terminal pending bis-cations on a flexible side chain. J. Membr. Sci. 2020, 595, 117483. [Google Scholar] [CrossRef]
- Pushkarev, A.S.; Pushkareva, I.V.; du Preez, S.P.; Bessarabov, D.G. PGM-Free Electrocatalytic Layer Characterization by Electrochemical Impedance Spectroscopy of an Anion Exchange Membrane Water Electrolyzer with Nafion Ionomer as the Bonding Agent. Catalysts 2023, 13, 554. [Google Scholar] [CrossRef]
- Wu, Z.-Y.; Chen, F.-Y.; Li, B.; Yu, S.-W.; Finfrock, Y.Z.; Meira, D.M.; Yan, Q.-Q.; Zhu, P.; Chen, M.-X.; Song, T.-W.; et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 2023, 22, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Falcão, D.S. Green Hydrogen Production by Anion Exchange Membrane Water Electrolysis: Status and Future Perspectives. Energies 2023, 16, 943. [Google Scholar] [CrossRef]
- Kozmai, A.; Porozhnyy, M.; Ruleva, V.; Gorobchenko, A.; Pismenskaya, N.; Nikonenko, V. Is It Possible to Prepare a Super Anion-Exchange Membrane by a Polypyrrole-Based Modification? Membranes 2023, 13, 103. [Google Scholar] [CrossRef]
- Li, J.; Liu, C.; Ge, J.; Xing, W.; Zhu, J. Challenges and Strategies of Anion Exchange Membranes in Hydrogen-electricity Energy Conversion. Chem. A Eur. J. 2023, e202203173. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, X.; Wang, Y.; Zhang, Y.; Zhang, W.; You, W. Alkaline-Stable Anion-Exchange Membranes with Barium [2.2.2]Cryptate Cations: The Importance of High Binding Constants. Angew. Chem. Int. Ed. 2023, 135, e202217742. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, Y.; Wang, S.; Cheng, S.; Yang, S.; Wei, H.; Ding, Y. Towards high alkaline stability and fuel cell performance in anion exchange membranes via backbone−cation alkylene spacer tuning for quaternized poly(biphenylene alkylene)s. J. Power Sources 2023, 557, 232590. [Google Scholar] [CrossRef]
- Chen, J.H.; Gao, W.T.; Choo, Y.S.L.; Gao, X.L.; Liu, Y.J.; Bin Yue, X.; Wang, X.H.; Zhu, A.M.; Zhang, Q.G.; Liu, Q.L. Semi-interpenetrating anion exchange membranes using hydrophobic microporous linear poly(ether ketone). J. Colloid Interface Sci. 2023, 634, 110–120. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, C.; Huang, S.; Gan, Y.; Xiong, L.; Zhou, J.; Liang, H. Bis-pyridinium crosslinked poly(ether ether ketone) anion exchange membranes with enhancement of hydroxide conductivity and alkaline stability. Int. J. Hydrog. Energy 2022, 47, 6097–6110. [Google Scholar] [CrossRef]
- Xu, J.; Ju, M.; Chen, X.; Meng, L.; Ren, J.; Lei, J.; Zhao, P.; Wang, Z. High alkaline stability and long-term durability of imidazole functionalized poly(ether ether ketone) by incorporating graphene oxide/metal-organic framework complex. Int. J. Hydrog. Energy 2022, 47, 25755–25768. [Google Scholar] [CrossRef]
- Patil, S.S.; Madhura, V.; Kammakakam, I.; Swamy, M.H.; Patil, K.S.; Lai, Z.; Rao H N, A. Quinuclidinium-piperidinium based dual hydroxide anion exchange membranes as highly conductive and stable electrolyte materials for alkaline fuel cell applications. Electrochim. Acta 2022, 426, 140826. [Google Scholar] [CrossRef]
- Xie, Y.; Li, S.; Pang, J.; Jiang, Z. Micro-block poly(arylene ether sulfone)s with densely quaternized units for anion exchange membranes: Effects of benzyl N-methylpiperidinium and benzyl trimethyl ammonium cations. J. Membr. Sci. 2023, 669, 121333. [Google Scholar] [CrossRef]
- Sung, S.; Chae, J.E.; Min, K.; Kim, H.-J.; Nam, S.Y.; Kim, T.-H. Preparation of crosslinker-free anion exchange membranes with excellent physicochemical and electrochemical properties based on crosslinked PPO-SEBS. J. Mater. Chem. A 2021, 9, 1062–1079. [Google Scholar] [CrossRef]
- Chu, X.; Miao, S.; Zhou, A.; Liu, S.; Liu, L.; Li, N. A strategy to design quaternized poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes by atom transfer radical coupling. J. Membr. Sci. 2022, 649, 120397. [Google Scholar] [CrossRef]
- Liang, M.; Peng, J.; Cao, K.; Shan, C.; Liu, Z.; Wang, P.; Hu, W.; Liu, B. Multiply quaternized poly(phenylene oxide)s bearing β-cyclodextrin pendants as “assisting moiety” for high-performance anion exchange membranes. J. Membr. Sci. 2022, 660, 120881. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, S.; Wan, R.; Yang, Y.; He, R. Functionalized graphene oxide cross-linked poly(2,6-dimethyl-1,4-phenylene oxide)-based anion exchange membranes with superior ionic conductivity. J. Power Sources 2022, 517, 230720. [Google Scholar] [CrossRef]
- Sang, J.; Yang, L.; Li, Z.; Wang, F.; Wang, Z.; Zhu, H. Comb-shaped SEBS-based anion exchange membranes with obvious microphase separation morphology. Electrochimica Acta 2022, 403, 139500. [Google Scholar] [CrossRef]
- Min, K.; Lee, Y.; Choi, Y.; Kwon, O.J.; Kim, T.-H. High-performance anion exchange membranes achieved by crosslinking two aryl ether-free polymers: Poly(bibenzyl N-methyl piperidine) and SEBS. J. Membr. Sci. 2022, 664, 121071. [Google Scholar] [CrossRef]
- Min, K.; Chae, J.E.; Lee, Y.; Kim, H.-J.; Kim, T.-H. Crosslinked poly(m-terphenyl N-methyl piperidinium)-SEBS membranes with aryl-ether free and kinked backbones as highly stable and conductive anion exchange membranes. J. Membr. Sci. 2022, 653, 120487. [Google Scholar] [CrossRef]
- Hao, X.; Chen, N.; Chen, Y.; Chen, D. Accelerated degradation of quaternary ammonium functionalized anion exchange membrane in catholyte of vanadium redox flow battery. Polym. Degrad. Stab. 2022, 197, 109864. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, H.; Sang, J.; Cui, Y.; Zhu, H. Anion Exchange Membranes Based on Styrene–Ethylene/Butene–Styrene Consist of Two Grafting Forms: N Heterocyclic Cations with Alkyl Intervals and Flexible Long Hydrophobic Side Chains. ACS Appl. Energy Mater. 2023, 6, 2219–2229. [Google Scholar] [CrossRef]
- Wu, X.; Chen, N.; Hu, C.; Klok, H.-A.; Lee, Y.M.; Hu, X. Fluorinated poly(Aryl Piperidinium) Membranes for Anion Exchange Membrane Fuel Cells. Adv. Mater. 2023, 2210432. [Google Scholar] [CrossRef]
- Wu, X.; Chen, N.; Klok, H.-A.; Lee, Y.M.; Hu, X. Branched poly(Aryl Piperidinium) Membranes for Anion-Exchange Membrane Fuel Cells. Angew. Chem. Int. Ed. 2022, 61, e202114892. [Google Scholar] [CrossRef]
- Barbosa, A.S.; Biancolli, A.L.G.; Lanfredi, A.J.C.; Rodrigues, O.; Fonseca, F.C.; Santiago, E.I. Enhancing the durability and performance of radiation-induced grafted low-density polyethylene-based anion-exchange membranes by controlling irradiation conditions. J. Membr. Sci. 2022, 659, 120804. [Google Scholar] [CrossRef]
- Wu, I.; Park, R.J.; Ghosh, R.; Kuo, M.-C.; Seifert, S.; Coughlin, E.B.; Herring, A.M. Enhancing desalination performance by manipulating block ratios in a polyethylene-based triblock copolymer anion exchange membrane for electrodialysis. J. Membr. Sci. 2022, 647, 120295. [Google Scholar] [CrossRef]
- Buggy, N.C.; Du, Y.; Kuo, M.-C.; Ahrens, K.A.; Wilkinson, J.S.; Seifert, S.; Coughlin, E.B.; Herring, A.M. A Polyethylene-Based Triblock Copolymer Anion Exchange Membrane with High Conductivity and Practical Mechanical Properties. ACS Appl. Polym. Mater. 2020, 2, 1294–1303. [Google Scholar] [CrossRef]
- Biancolli, A.L.G.; Barbosa, A.S.; Kodama, Y.; de Sousa, R.R.; Lanfredi, A.J.C.; Fonseca, F.C.; Rey, J.F.Q.; Santiago, E.I. Unveiling the influence of radiation-induced grafting methods on the properties of polyethylene-based anion-exchange membranes for alkaline fuel cells. J. Power Sources 2021, 512, 230484. [Google Scholar] [CrossRef]
- Kwon, S.; Rao, A.H.N.; Kim, T.-H. Anion exchange membranes based on terminally crosslinked methyl morpholinium-functionalized poly(arylene ether sulfone)s. J. Power Sources 2018, 375, 421–432. [Google Scholar] [CrossRef]
- Bonizzoni, S.; Stucchi, D.; Caielli, T.; Sediva, E.; Mauri, M.; Mustarelli, P. Morpholinium-Modified, Polyketone-Based Anion Exchange Membranes for Water Electrolysis. ChemElectroChem 2023, 10, e202201077. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Q.; Afsar, N.U.; Ge, L.; Xu, T. Poly(alkyl-biphenyl pyridinium)-Based Anion Exchange Membranes with Alkyl Side Chains Enable High Anion Permselectivity and Monovalent Ion Flux. Membranes 2023, 13, 188. [Google Scholar] [CrossRef]
- Wang, N.; Zuo, T.; Liu, K.; Wei, X.; Hu, S.; Che, Q. Enhancing hydroxide conductivity at subzero temperature of anion exchange membranes based on imidazolium modified metal organic frameworks. J. Mol. Liq. 2023, 370, 120943. [Google Scholar] [CrossRef]
- Mothupi, M.L.; Msomi, P.F. Quaternized Polyethersulfone (QPES) Membrane with Imidazole Functionalized Graphene Oxide (ImGO) for Alkaline Anion Exchange Fuel Cell Application. Sustainability 2023, 15, 2209. [Google Scholar] [CrossRef]
- Tang, H.; Li, D.; Li, N.; Zhang, Z.; Zhang, Z. Anion conductive poly(2,6-dimethyl phenylene oxide)s with clicked bulky quaternary phosphonium groups. J. Membr. Sci. 2018, 558, 9–16. [Google Scholar] [CrossRef]
- Noonan, K.J.T.; Hugar, K.M.; Kostalik, H.A.I.V.; Lobkovsky, E.B.; Abruña, H.D.; Coates, G.W. Phosphonium-Functionalized Polyethylene: A New Class of Base-Stable Alkaline Anion Exchange Membranes. J. Am. Chem. Soc. 2012, 134, 18161–18164. [Google Scholar] [CrossRef]
- Zhu, T.; Sha, Y.; Firouzjaie, H.A.; Peng, X.; Cha, Y.; Dissanayake, D.M.M.M.; Smith, M.D.; Vannucci, A.K.; Mustain, W.E.; Tang, C. Rational Synthesis of Metallo-Cations toward Redox- and Alkaline-Stable Metallo-Polyelectrolytes. J. Am. Chem. Soc. 2020, 142, 1083–1089. [Google Scholar] [CrossRef]
- Cha, M.S.; Park, J.E.; Kim, S.; Han, S.-H.; Shin, S.-H.; Yang, S.H.; Kim, T.-H.; Yu, D.M.; So, S.; Hong, Y.T.; et al. Poly(carbazole)-based anion-conducting materials with high performance and durability for energy conversion devices. Energy Environ. Sci. 2020, 13, 3633–3645. [Google Scholar] [CrossRef]
- Chen, N.; Paek, S.Y.; Lee, J.Y.; Park, J.H.; Lee, S.Y.; Lee, Y.M. High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A cm−2 and a durability of 1000 hours. Energy Environ. Sci. 2021, 14, 6338–6348. [Google Scholar] [CrossRef]
- Olsson, J.S.; Pham, T.H.; Jannasch, P. Tuning poly(arylene piperidinium) anion-exchange membranes by copolymerization, partial quaternization and crosslinking. J. Membr. Sci. 2019, 578, 183–195. [Google Scholar] [CrossRef]
- Mustain, W.E.; Chatenet, M.; Page, M.; Kim, Y.S. Durability challenges of anion exchange membrane fuel cells. Energy Environ. Sci. 2020, 13, 2805–2838. [Google Scholar] [CrossRef]
- Chu, X.; Shi, Y.; Liu, L.; Huang, Y.; Li, N. Piperidinium-functionalized anion exchange membranes and their application in alkaline fuel cells and water electrolysis. J. Mater. Chem. A 2019, 7, 7717–7727. [Google Scholar] [CrossRef]
- He, S.; Liu, L.; Wang, X.; Zhang, S.; Guiver, M.D.; Li, N. Azide-assisted self-crosslinking of highly ion conductive anion exchange membranes. J. Membr. Sci. 2016, 509, 48–56. [Google Scholar] [CrossRef]
- Li, N.; Guiver, M.D.; Binder, W.H. Towards High Conductivity in Anion-Exchange Membranes for Alkaline Fuel Cells. ChemSusChem 2013, 6, 1376–1383. [Google Scholar] [CrossRef] [Green Version]
- Chu, X.; Liu, J.; Miao, S.; Liu, L.; Huang, Y.; Tang, E.; Liu, S.; Xing, X.; Li, N. Crucial role of side-chain functionality in anion exchange membranes: Properties and alkaline fuel cell performance. J. Membr. Sci. 2021, 625, 119172. [Google Scholar] [CrossRef]
- Ge, Q.; Ran, J.; Miao, J.; Yang, Z.; Xu, T. Click Chemistry Finds Its Way in Constructing an Ionic Highway in Anion-Exchange Membrane. ACS Appl. Mater. Interfaces 2015, 7, 28545–28553. [Google Scholar] [CrossRef]
- Ma, L.; Xu, J.; Han, S.; Yang, M.; Wang, Z.; Ni, H.; Gui, Y. Synthesis and characterization of sulfonated polymers containing triazoles as low-humidity proton exchange membranes. J. Polym. Res. 2014, 21, 551. [Google Scholar] [CrossRef]
- Dang, H.-S.; Jannasch, P. Anion-exchange membranes with polycationic alkyl side chains attached via spacer units. J. Mater. Chem. A 2016, 4, 17138–17153. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Shen, H.; Gong, Y.; Li, P.; Cheng, C. Anion exchange membranes with efficient acid recovery obtained by quaternized poly epichlorohydrin and polyvinyl alcohol during diffusion dialysis. J. Membr. Sci. 2023, 674, 121514. [Google Scholar] [CrossRef]
- Yun, D.; Yim, T.; Kwon, O.J.; Kim, T.-H. Click Chemistry-Induced Terminally Crosslinked Poly(ether sulfone) as a Highly Conductive Anion Exchange Membrane under Humidity Condition. Macromol. Res. 2019, 27, 1050–1059. [Google Scholar] [CrossRef]
- Hatakeyama, T.; Nakamura, K.; Hatakeyama, H. Determination of bound water content in polymers by DTA, DSC and TG. Thermochim. Acta 1988, 123, 153–161. [Google Scholar] [CrossRef]
- Fan, Y.; Zhou, J.; Chen, J.; Shen, C.; Gao, S. Polyaryl piperidine anion exchange membranes with hydrophilic side chain. Int. J. Hydrog. Energy, 2023; in press. [Google Scholar] [CrossRef]
- Weiber, E.A.; Meis, D.; Jannasch, P. Anion conducting multiblock poly(arylene ether sulfone)s containing hydrophilic segments densely functionalized with quaternary ammonium groups. Polym. Chem. 2015, 6, 1986–1996. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; He, Y.; Ge, X.; Liang, X.; Shehzad, M.A.; Hu, M.; Liu, Y.; Wu, L.; Xu, T. A benzyltetramethylimidazolium-based membrane with exceptional alkaline stability in fuel cells: Role of its structure in alkaline stability. J. Mater. Chem. A 2018, 6, 527–534. [Google Scholar] [CrossRef]
- Al Munsur, A.Z.; Lee, J.; Chae, J.E.; Kim, H.-J.; Park, C.H.; Nam, S.Y.; Kim, T.-H. Hexyl quaternary ammonium- and fluorobenzoyl-grafted SEBS as hydrophilic–hydrophobic comb-type anion exchange membranes. J. Membr. Sci. 2022, 643, 120029. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, Y.; Zhang, M.; Wang, Y.; Tang, H.; Li, N. Olefin metathesis-crosslinked, bulky imidazolium-based anion exchange membranes with excellent base stability and mechanical properties. J. Membr. Sci. 2020, 598, 117793. [Google Scholar] [CrossRef]
- Liu, J.; Kang, Z.; Li, D.; Pak, M.; Alia, S.M.; Fujimoto, C.; Bender, G.; Kim, Y.S.; Weber, A.Z. Elucidating the Role of Hydroxide Electrolyte on Anion-Exchange-Membrane Water Electrolyzer Performance. J. Electrochem. Soc. 2021, 168, 054522. [Google Scholar] [CrossRef]
- Chen, P.; Hu, X. High-Efficiency Anion Exchange Membrane Water Electrolysis Employing Non-Noble Metal Catalysts. Adv. Energy Mater. 2020, 10, 2002285. [Google Scholar] [CrossRef]
- Hu, X.; Huang, Y.; Liu, L.; Ju, Q.; Zhou, X.; Qiao, X.; Zheng, Z.; Li, N. Piperidinium functionalized aryl ether-free polyaromatics as anion exchange membrane for water electrolysers: Performance and durability. J. Membr. Sci. 2021, 621, 118964. [Google Scholar] [CrossRef]
- Li, D.; Park, E.J.; Zhu, W.; Shi, Q.; Zhou, Y.; Tian, H.; Lin, Y.; Serov, A.; Zulevi, B.; Baca, E.D.; et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat. Energy 2020, 5, 378–385. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, S.Y.; Lee, T.K.; Kim, H.-J.; Lee, Y.M. N3-butyl imidazolium-based anion exchange membranes blended with Poly(vinyl alcohol) for alkaline water electrolysis. J. Membr. Sci. 2020, 611, 118355. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, S.; Pan, J.; Yang, C.; He, M.; Zhuang, L.; Lu, J. First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy Environ. Sci. 2012, 5, 7869–7871. [Google Scholar] [CrossRef]
- Motealleh, B.; Liu, Z.; Masel, R.I.; Sculley, J.P.; Richard Ni, Z.; Meroueh, L. Next-generation anion exchange membrane water electrolyzers operating for commercially relevant lifetimes. Int. J. Hydrog. Energy 2021, 46, 3379–3386. [Google Scholar] [CrossRef]
- Faid, A.Y.; Barnett, A.O.; Seland, F.; Sunde, S. Ternary NiCoFe nanosheets for oxygen evolution in anion exchange membrane water electrolysis. Int. J. Hydrog. Energy 2022, 47, 23483–23497. [Google Scholar] [CrossRef]
Membrane | IEC (meq/g) | OH− Conductivity (mS/cm) | Water Uptake (%) | Swelling Ratio (%) | Tensile Strength (MPa) | Elongation at Break (%) | Gel Fraction (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
The. a | Exp. b | 20 °C | 80 °C | 20 °C | 20 °C | 20 °C (∆l) | 80 °C (∆l) | 20 °C (∆t) | 80 °C (∆t) | ||||
x-TriPPO-50SEBS | 1.30 | 1.17 ± 0.05 | 34.03 ± 0.02 | 77.35 ± 0.06 | 48.1 ± 0.03 | 76.3 ± 0.07 | 9.5 ± 0.16 | 14.5 ± 0.13 | 30.0 ± 0.01 | 36.7 ± 0.19 | 29.0 ± 0.06 | 106.2 ± 0.12 | 100 ± 0.11 |
x-PPO-50SEBS | 1.37 | 1.25 ± 0.02 | 32.44 ± 0.06 | 66.05 ± 0.06 | 38.8 ± 0.10 | 64.9 ± 0.04 | 9.1 ± 0.04 | 13.6 ± 0.09 | 23.7 ± 0.02 | 32.4 ± 0.11 | 20.6 ± 0.14 | 63.1 ± 0.05 | 99.1 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Min, K.; Mo, Y.-H.; Han, S.-B.; Kim, T.-H. Understanding the Effect of Triazole on Crosslinked PPO–SEBS-Based Anion Exchange Membranes for Water Electrolysis. Polymers 2023, 15, 1736. https://doi.org/10.3390/polym15071736
Choi J, Min K, Mo Y-H, Han S-B, Kim T-H. Understanding the Effect of Triazole on Crosslinked PPO–SEBS-Based Anion Exchange Membranes for Water Electrolysis. Polymers. 2023; 15(7):1736. https://doi.org/10.3390/polym15071736
Chicago/Turabian StyleChoi, Jiyong, Kyungwhan Min, Yong-Hwan Mo, Sang-Beom Han, and Tae-Hyun Kim. 2023. "Understanding the Effect of Triazole on Crosslinked PPO–SEBS-Based Anion Exchange Membranes for Water Electrolysis" Polymers 15, no. 7: 1736. https://doi.org/10.3390/polym15071736
APA StyleChoi, J., Min, K., Mo, Y. -H., Han, S. -B., & Kim, T. -H. (2023). Understanding the Effect of Triazole on Crosslinked PPO–SEBS-Based Anion Exchange Membranes for Water Electrolysis. Polymers, 15(7), 1736. https://doi.org/10.3390/polym15071736