Enhancing Natural Rubber Tearing Strength by Mixing Ultra-High Molecular Weight Polyethylene Short Fibers
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of NR/UHMWPE Short Fiber Composites
2.3. Measurements and Characterization
2.3.1. Thermal Property of the UHMWPE Short Fiber
2.3.2. Curing Characteristics of the Fiber/NR Composite
2.3.3. Mechanical Properties of the Fiber/NR Composite
2.3.4. Micromorphology Analysis
3. Results and Discussion
3.1. DSC of UHMWPE Short Fiber
3.2. Curing Characteristics of the NR and the UHMWPE Fiber/NR
3.3. Mechanical Properties of the UHMWPE Fiber/NR Composites
3.4. Dispersement of the UHMWPE Short Fibers in the NR Matrix
3.5. NR/UHMWPE Resin Powder Composite
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrejiova, M.; Grincova, A.; Marasova, D. Failure analysis of the rubber-textile conveyor belts using classification models. Eng. Fail. Anal. 2019, 101, 407–417. [Google Scholar] [CrossRef]
- Andrejiova, M.; Grincova, A.; Marasova, D. Measurement and simulation of impact wear damage to industrial conveyor belts. Wear 2016, 368, 400–407. [Google Scholar] [CrossRef]
- Fedorko, G.; Molnar, V.; Grincova, A.; Dovica, M.; Toth, T.; Husakova, N.; Taraba, V.; Kelemen, M. Failure analysis of irreversible changes in the construction of rubber-textile conveyor belt damaged by sharp-edge material impact. Eng. Fail. Anal. 2014, 39, 135–148. [Google Scholar] [CrossRef]
- Roy, K.; Debnath, S.C.; Potiyaraj, P. A critical review on the utilization of various reinforcement modifiers in filled rubber composites. J. Elastomers Plast. 2020, 52, 167–193. [Google Scholar] [CrossRef]
- Hashemi, S.J.; Sadooghi, A.; Rahmani, K.; Nokbehrosta, S. Experimental determining the mechanical and stiffness properties of natural rubber FRT triangle elastic joint composite reinforcement by glass fibers and micro/nano particles. Polym. Test. 2020, 85, 106461. [Google Scholar] [CrossRef]
- Tian, X.L.; Han, S.; Zhuang, Q.X.; Bian, H.G.; Li, S.M.; Zhang, C.Q.; Wang, C.S.; Han, W.W. Surface Modification of Staple Carbon Fiber by Dopamine to Reinforce Natural Latex Composite. Polymers 2020, 12, 988. [Google Scholar] [CrossRef]
- Dong, C.L.; Shi, L.C.; Li, L.Z.; Bai, X.Q.; Yuan, C.Q.; Tian, Y. Stick-slip behaviours of water lubrication polymer materials under low speed conditions. Tribol. Int. 2017, 106, 55–61. [Google Scholar] [CrossRef]
- Pittayavinai, P.; Thanawan, S.; Amornsakchai, T. Comparative study of natural rubber and acrylonitrile rubber reinforced with aligned short aramid fiber. Polym. Test. 2017, 64, 109–116. [Google Scholar] [CrossRef]
- Roy, K.; Debnath, S.C.; Tzounis, L.; Pongwisuthiruchte, A.; Potiyaraj, P. Effect of Various Surface Treatments on the Performance of Jute Fibers Filled Natural Rubber (NR) Composites. Polymers 2020, 12, 369. [Google Scholar] [CrossRef] [Green Version]
- Moonart, U.; Utara, S. Effect of surface treatments and filler loading on the properties of hemp fiber/natural rubber composites. Cellulose 2019, 26, 7271–7295. [Google Scholar] [CrossRef]
- Shen, Z.; Song, W.H.; Li, X.L.; Yang, L.; Wang, C.Y.; Hao, Z.; Luo, Z. Enhancing performances of hemp fiber/natural rubber composites via polyhydric hyperbranched polyester. J. Polym. Eng. 2021, 41, 404–412. [Google Scholar] [CrossRef]
- Sathi, S.G.; Jeon, J.; Kim, H.H.; Nah, C. Mechanical, morphological and thermal properties of short carbon and aramid fibres-filled bromo-isobutylene-isoprene rubber vulcanised with 4, 4′ bis(maleimido)diphenylmethane. Plast. Rubber Compos. 2019, 48, 115–126. [Google Scholar] [CrossRef]
- Lin, G.Y.; Wang, H.; Yu, B.Q.; Qu, G.K.; Chen, S.W.; Kuang, T.R.; Yu, K.B.; Liang, Z.N. Combined treatments of fiber surface etching/silane-coupling for enhanced mechanical strength of aramid fiber-reinforced rubber blends. Mater. Chem. Phys. 2020, 255, 123486. [Google Scholar] [CrossRef]
- Chhetri, S.; Bougherara, H. A comprehensive review on surface modification of UHMWPE fiber and interfacial properties. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106146. [Google Scholar] [CrossRef]
- Li, W.W.; Li, R.P.; Li, C.Y.; Chen, Z.R.; Zhang, L. Mechanical Properties of Surface-Modified Ultra-High Molecular Weight Polyethylene Fiber Reinforced Natural Rubber Composites. Polym. Compos. 2017, 38, 1215–1220. [Google Scholar] [CrossRef]
- Wang, L.; Gao, S.B.; Wang, J.J.; Wang, W.C.; Zhang, L.Q.; Tian, M. Surface modification of UHMWPE fibers by ozone treatment and UV grafting for adhesion improvement. J. Adhes. 2018, 94, 30–45. [Google Scholar] [CrossRef]
- Fang, Z.H.; Tu, Q.Z.; Shen, X.M.; Yang, X.; Liang, K.; Pan, M.; Chen, Z.Y. Biomimetic surface modification of UHMWPE fibers to enhance interfacial adhesion with rubber matrix via constructing polydopamine functionalization platform and then depositing zinc oxide nanoparticles. Surf. Interfaces 2022, 29, 101728. [Google Scholar] [CrossRef]
- Fang, Z.H.; Tu, Q.Z.; Chen, Z.Y.; Shen, X.M.; Pan, M.; Liang, K.; Yang, X. Study on catechol/tetraethylenepentamine and nano zinc oxide co-modifying ultrahigh molecular weight polyethylene fiber surface to improve interfacial adhesion. Polym. Adv. Technol. 2022, 33, 4072–4083. [Google Scholar] [CrossRef]
- Li, W.W.; Meng, L.; Ma, R.L. Effect of surface treatment with potassium permanganate on ultra-high molecular weight polyethylene fiber reinforced natural rubber composites. Polym. Test. 2016, 55, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Sa, R.N.; Wei, Z.H.; Yan, Y.; Wang, L.; Wang, W.C.; Zhang, L.Q.; Ning, N.Y.; Tian, M. Catechol and epoxy functionalized ultrahigh molecular weight polyethylene (UHMWPE) fibers with improved surface activity and interfacial adhesion. Compos. Sci. Technol. 2015, 113, 54–62. [Google Scholar] [CrossRef]
- Andideh, M.; Ghoreishy, M.H.R.; Soltani, S.; Sourki, F.A. Surface modification of oxidized carbon fibers by grafting bis (triethoxysilylpropyl) tetrasulfide (TESPT) and rubber sizing agent: Application to short carbon fibers/SBR composites. Compos. Part A Appl. Sci. Manuf. 2021, 141, 106201. [Google Scholar] [CrossRef]
- Zhong, F.; Schwabe, J.; Hofmann, D.; Meier, J.; Thomann, R.; Enders, M.; Mulhaupt, R. All-polyethylene composites reinforced via extended-chain UHMWPE nanostructure formation during melt processing. Polymer 2018, 140, 107–116. [Google Scholar] [CrossRef]
- Roy, K.; Debnath, S.C.; Das, A.; Heinrich, G.; Potiyaraj, P. Exploring the synergistic effect of short jute fiber and nanoclay on the mechanical, dynamic mechanical and thermal properties of natural rubber composites. Polym. Test. 2018, 67, 487–493. [Google Scholar] [CrossRef]
- Wang, D.L.; Chen, S.; Chen, L.; Chen, B.Y.; Ren, F.J.; Zhu, C.X.; Feng, J. Investigation and improvement of the scorch behavior of silica-filled solution styrene-butadiene rubber compound. J. Appl. Polym. Sci. 2019, 136, 47918. [Google Scholar] [CrossRef]
- Wang, D.L.; Ren, F.J.; Zhu, C.X.; Feng, J.; Chen, S.; Shen, G.L.; Wang, F.F. Hybrid silane technology in silica-reinforced tread compound. Rubber Chem. Technol. 2019, 92, 310–325. [Google Scholar] [CrossRef]
- Meng, L.; Li, W.W.; Ma, R.L.; Huang, M.M.; Cao, Y.B.; Wang, J.W. Mechanical properties of rigid polyurethane composites reinforced with surface treated ultrahigh molecular weight polyethylene fibers. Polym. Adv. Technol. 2018, 29, 843–851. [Google Scholar] [CrossRef]
Sample | NR | CB | Oil | ZnO | SA | Sulfur | TBBS | UHMWPE Short Fiber/Phr |
---|---|---|---|---|---|---|---|---|
1 | 100 | 0 | 6 | 5 | 3 | 2.2 | 0.8 | 0 |
2 | 100 | 0 | 6 | 5 | 3 | 2.2 | 0.8 | 2 |
3 | 100 | 0 | 6 | 5 | 3 | 2.2 | 0.8 | 4 |
1 * | 100 | 50 | 6 | 5 | 3 | 2.2 | 0.8 | 0 |
2 * | 100 | 50 | 6 | 5 | 3 | 2.2 | 0.8 | 2 |
3 * | 100 | 50 | 6 | 5 | 3 | 2.2 | 0.8 | 4 |
Sample | ML/N·m | MH/N·m | Ts1/min | T90/min |
---|---|---|---|---|
1 | 0.97 | 6.41 | 25.68 | 44.26 |
2 | 0.64 | 6.84 | 24.10 | 42.27 |
3 | 0.52 | 5.98 | 25.67 | 45.99 |
1 * | 2.75 | 20.38 | 10.61 | 27.95 |
2 * | 2.50 | 22.05 | 9.66 | 26.20 |
3 * | 2.26 | 18.45 | 10.39 | 33.64 |
Sample | Vulcanization | Tensile Stress at 300% (MPa) | Elongation at Break (%) | Tensile Stress at Break (MPa) | Tear Strength (kN/m) |
---|---|---|---|---|---|
1 * | 140 °C, 40 min | 4.97 ± 0.30 | 1035 ± 31 | 25.38 ± 0.30 | 13.05 ± 0.74 |
2 * | 140 °C, 40 min | 9.70 ± 0.76 | 628 ± 23 | 18.77 ± 0.46 | 32.41 ± 1.21 |
3 * | 140 °C, 40 min | 12.27 ± 1.8 | 412 ± 71 | 15.19 ± 0.45 | 50.36 ± 2.99 |
Sample | Vulcanization | Tensile Stress at 300% (MPa) | Elongation at Break (%) | Tensile Stress at Break (MPa) | Tear Strength (kN/m) |
---|---|---|---|---|---|
2 * | 140 °C, 40 min | 9.70 ± 0.76 | 628 ± 23 | 18.77 ± 0.46 | 32.41 ± 1.21 |
2 * | 143 °C, 40 min (closed mixing) | 10.65 ± 2.2 | 652 ± 24 | 18.85 ± 0.83 | 40.92 ± 2.30 |
2 * | 150 °C, 30 min | 9.26 ± 1.2 | 625 ± 36 | 20.20 ± 0.55 | 31.86 ± 2.68 |
Sample | Hardness (HA) | Tensile Stress at 300% (MPa) | Elongation at Break (%) | Tear Strength (kN/m) |
---|---|---|---|---|
1 | 39 ± 0.7 | 0.82 ± 0.03 | 1680 ± 95 | 9.5 ± 1.2 |
2 | 44 ± 1.2 | 3.15 ± 0.28 | 1239 ± 41 | 14.7 ± 3.5 |
3 | 46 ± 1.0 | 5.25 ± 0.50 | 891 ± 73 | 18.6 ± 2.6 |
1 * | 63 ± 0.6 | 6.49 ± 0.13 | 912 ± 53 | 17.1 ± 0.9 |
2 * | 75 ± 0.9 | 11.42 ± 1.5 | 576 ± 41 | 42.8 ± 3.0 |
3 * | 77 ± 0.8 | 14.64 ± 1.9 | 484 ± 66 | 64.9 ± 4.1 |
Sample | Hardness (HA) | Tensile Stress at 300% (MPa) | Elongation at Break (%) | Tensile Stress at Break (MPa) | Tear Strength (kN/m) |
---|---|---|---|---|---|
0 | 63 ± 0.6 | 6.41 ± 0.9 | 886 ± 13 | 25.06 ± 1.2 | 16.9 ± 1.5 |
2 | 67 ± 0.7 | 7.47 ± 1.3 | 793 ± 21 | 24.03 ± 0.5 | 17.5 ± 0.8 |
4 | 69 ± 0.3 | 8.22 ± 1.9 | 710 ± 19 | 23.28 ± 0.7 | 18.8 ± 1.0 |
6 | 70 ± 0.5 | 8.68 ± 1.1 | 659 ± 14 | 22.50 ± 1.3 | 20.5 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Huang, B.; Wang, L.; Cai, Z.; Zhang, J.; Feng, J. Enhancing Natural Rubber Tearing Strength by Mixing Ultra-High Molecular Weight Polyethylene Short Fibers. Polymers 2023, 15, 1768. https://doi.org/10.3390/polym15071768
He J, Huang B, Wang L, Cai Z, Zhang J, Feng J. Enhancing Natural Rubber Tearing Strength by Mixing Ultra-High Molecular Weight Polyethylene Short Fibers. Polymers. 2023; 15(7):1768. https://doi.org/10.3390/polym15071768
Chicago/Turabian StyleHe, Jun, Baoyuan Huang, Liang Wang, Zunling Cai, Jing Zhang, and Jie Feng. 2023. "Enhancing Natural Rubber Tearing Strength by Mixing Ultra-High Molecular Weight Polyethylene Short Fibers" Polymers 15, no. 7: 1768. https://doi.org/10.3390/polym15071768
APA StyleHe, J., Huang, B., Wang, L., Cai, Z., Zhang, J., & Feng, J. (2023). Enhancing Natural Rubber Tearing Strength by Mixing Ultra-High Molecular Weight Polyethylene Short Fibers. Polymers, 15(7), 1768. https://doi.org/10.3390/polym15071768