The Formation of Volume Transmission Gratings in Acrylamide-Based Photopolymers Using Curcumin as a Long-Wavelength Photosensitizer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gul, S.-E.; Cassidy, J.; Naydenova, I. Water resistant cellulose acetate based photopolymer for recording of volume phase holograms. Photonics 2021, 8, 329. [Google Scholar] [CrossRef]
- Nakamura, K. Photopolymers: Photoresist Materials, Processes, and Applications; CRC Press: Boca Raton, FL, USA, 2015; p. 189. [Google Scholar] [CrossRef]
- Kim, W.S.; Jeong, Y.-C.; Park, J.-K.; Shin, C.-W. Diffraction efficiency behavior of photopolymer based on P (MMA-co-MAA) copolymer matrix. Opt. Mater. 2007, 29, 1736–1740. [Google Scholar] [CrossRef]
- Blaya, S.; Carretero, L.; Mallavia, R.; Fimia, A.; Madrigal, R.F.; Ulibarrena, M.; Levy, D. Optimization of an acrylamide-based dry film used for holographic recording. Appl. Opt. 1998, 37, 7604–7610. [Google Scholar] [CrossRef] [PubMed]
- Markovitsi, D.; Ecoffet, C.; Millié, P.; Charra, F.; Fiorini, C.; Nunzi, J.-M.; Strzelecka, H.; Veber, M.; Jallabert, C. Charge transfer in triaryl pyrylium cations. Theoretical and experimental study. Chem. Phys. 1994, 182, 69–80. [Google Scholar] [CrossRef]
- del Monte, F.; Martínez, O.; Rodrigo, J.A.; Calvo, M.L.; Cheben, P. A Volume Holographic Sol-Gel Material with Large Enhancement of Dynamic Range by Incorporation of High Refractive Index Species. Adv. Mater. 2006, 18, 2014–2017. [Google Scholar] [CrossRef]
- Pacheco, K.; Aldea, G.; Cassagne, C.; Nunzi, J.-M. Reflection holographic gratings in acrylamide-based photopolymer. Photonics North 2006, 6343, 958–965. [Google Scholar]
- Lestari, M.L.; Indrayanto, G. Curcumin. Profiles Drug Subst. Excip. Relat. Methodol. 2014, 39, 113–204. [Google Scholar] [CrossRef]
- Crivello, J.V.; Bulut, U. Curcumin: A naturally occurring long-wavelength photosensitizer for diaryliodonium salts. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 5217–5231. [Google Scholar] [CrossRef]
- Noirbent, G.; Dumur, F. Photoinitiators of polymerization with reduced environmental impact: Nature as an unlimited and renewable source of dyes. Eur. Polym. J. 2021, 142, 110109. [Google Scholar] [CrossRef]
- Condat, M.; Mazeran, P.-E.; Malval, J.-P.; Lalevée, J.; Morlet-Savary, F.; Renard, E.; Langlois, V.; Andalloussi, S.A.; Versace, D.-L. Photoinduced curcumin derivative-coatings with antibacterial properties. RSC Adv. 2015, 5, 85214–85224. [Google Scholar] [CrossRef]
- Sun, K.; Xiao, P.; Dumur, F.; Lalevée, J. Organic dye-based photoinitiating systems for visible-light-induced photopolymerization. J. Polym. Sci. 2021, 59, 1338–1389. [Google Scholar] [CrossRef]
- Anderson, A.M.; Mitchell, M.S.; Mohan, R.S. Isolation of curcumin from turmeric. J. Chem. Educ. 2000, 77, 359. [Google Scholar] [CrossRef]
- Payton, F.; Sandusky, P.; Alworth, W.L. NMR study of the solution structure of curcumin. J. Nat. Prod. 2007, 70, 143–146. [Google Scholar] [CrossRef]
- Tewari, D.; Stankiewicz, A.M.; Mocan, A.; Sah, A.N.; Tzvetkov, N.T.; Huminiecki, L.; Horbańczuk, J.O.; Atanasov, A.G. Ethnopharmacological approaches for dementia therapy and significance of natural products and herbal drugs. Front. Aging Neurosci. 2018, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.; Shahab-Uddin, A.A.; Usmanghani, K.; Hannan, A.; Mohiuddin, E.; Asif, M. Curcuma longa and curcumin: A review article. Rom. J. Biol. Plant Biol. 2010, 55, 65–70. [Google Scholar]
- Martin, Y.C. Let’s not forget tautomers. J. Comput. Aided Mol. Des. 2009, 23, 693–704. [Google Scholar] [CrossRef] [Green Version]
- Benfenati, E.; Casalegno, M.; Cotterin, J.; Price, N.; Spreafico, M.; Toropov, A. Tautomers. In Quantitative Structure-Activity Relationships (QSAR) for Pesticide Regulatory Purposes; Benfenati, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; p. 88. [Google Scholar]
- Prasad, D.; Praveen, A.; Mahapatra, S.; Mogurampelly, S.; Chaudhari, S.R. Existence of β-diketone form of curcuminoids revealed by NMR spectroscopy. Food Chem. 2021, 360, 130000. [Google Scholar] [CrossRef]
- Sueth-Santiago, V.; Mendes-Silva, G.P.; Decoté-Ricardo, D.; Lima, M.E.F.d. Curcumin, the golden powder from turmeric: Insights into chemical and biological activities. Quím. Nova 2015, 38, 538–552. [Google Scholar] [CrossRef]
- Singh, A.K.; Yadav, S.; Sharma, K.; Firdaus, Z.; Aditi, P.; Neogi, K.; Bansal, M.; Gupta, M.K.; Shanker, A.; Singh, R.K. Quantum curcumin mediated inhibition of gingipains and mixed-biofilm of Porphyromonas gingivalis causing chronic periodontitis. RSC Adv. 2018, 8, 40426–40445. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Lalevée, J.; Lu, H.; MacQueen, R.; Kable, S.H.; Schmidt, T.W.; Stenzel, M.H.; Xiao, P. A new role of curcumin: As a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polym. Chem. 2015, 6, 5053–5061. [Google Scholar] [CrossRef]
- Ortuño, M.; Gallego, S.; García, C.; Neipp, C.; Beléndez, A.; Pascual, I. Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: Method of preparation and holographic properties. Appl. Phys. B 2003, 76, 851–857. [Google Scholar] [CrossRef] [Green Version]
- Kogelnik, H. Coupled Wave Theory for Thick Holography Grating. Bell Labs Tech. J. 1969, 48, 2909. [Google Scholar] [CrossRef]
- Hariharan, P.; Hariharan, P. Optical Holography: Principles, Techniques and Applications; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Fiorini, C.; Charra, F.; Raimond, P.; Lorin, A.; Nunzi, J.-M. All-optical induction of noncentrosymmetry in a transparent nonlinear polymer rod. Opt. Lett. 1997, 22, 1846–1848. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zou, L.-Q.; Niu, J.; Liu, W.; Peng, S.-F.; Liu, C.-M. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 2015, 20, 14293–14311. [Google Scholar] [CrossRef] [Green Version]
- Gunathilake, S.U.T.M.; Ching, Y.C.; Uyama, H.; Hai, N.D.; Chuah, C.H. Enhanced curcumin loaded nanocellulose: A possible inhalable nanotherapeutic to treat COVID-19. Cellulose 2022, 29, 1821–1840. [Google Scholar] [CrossRef] [PubMed]
Sample | AA (mol·L−1) | MBA (mol·L−1) | TEA (mol·L−1) | Curcumin (mol·L−1) |
---|---|---|---|---|
Cur1 | 0.45 | 0.05 | 0.6 | 1.54 × 10−4 |
Cur2 | 0.45 | 0.05 | 0.6 | 4.86 × 10−4 |
Cur3 | 0.45 | 0.05 | 0.6 | 1.01 × 10−3 |
η (%) | d (μm) | Δ n | S (cm·J−1) | |
---|---|---|---|---|
Cur1 | 7.8 | 50 | 7.8 × 10−4 | 7.0 |
Cur2 | 11 | 50 | 7.98 × 10−4 | 8.2 |
Cur3 | 16 | 50 | 1.11 × 10−3 | 9.8 |
Basis Content [NaOH] (mol·L−1) | η (%) |
---|---|
0.290 | 4.7 |
0.200 | 2.9 |
0.083 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacheco, K.; Aldea-Nunzi, G.; Pawlicka, A.; Nunzi, J.-M. The Formation of Volume Transmission Gratings in Acrylamide-Based Photopolymers Using Curcumin as a Long-Wavelength Photosensitizer. Polymers 2023, 15, 1782. https://doi.org/10.3390/polym15071782
Pacheco K, Aldea-Nunzi G, Pawlicka A, Nunzi J-M. The Formation of Volume Transmission Gratings in Acrylamide-Based Photopolymers Using Curcumin as a Long-Wavelength Photosensitizer. Polymers. 2023; 15(7):1782. https://doi.org/10.3390/polym15071782
Chicago/Turabian StylePacheco, Katherine, Gabriela Aldea-Nunzi, Agnieszka Pawlicka, and Jean-Michel Nunzi. 2023. "The Formation of Volume Transmission Gratings in Acrylamide-Based Photopolymers Using Curcumin as a Long-Wavelength Photosensitizer" Polymers 15, no. 7: 1782. https://doi.org/10.3390/polym15071782
APA StylePacheco, K., Aldea-Nunzi, G., Pawlicka, A., & Nunzi, J. -M. (2023). The Formation of Volume Transmission Gratings in Acrylamide-Based Photopolymers Using Curcumin as a Long-Wavelength Photosensitizer. Polymers, 15(7), 1782. https://doi.org/10.3390/polym15071782