Development and Characterization of New Energetic Composites Based on HNTO/AN Co-Crystal and Nitro-Cellulosic Materials
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Theoretical Design of the Energetic Composites
2.3. Preparation Procedure of the Optimal Composites
2.4. Characterization Methods
Kinetic Calculations
3. Results and Discussion
3.1. Determination of the Optimal Compositions of the Energetic Composites
3.2. Morphological and Chemical Structures
3.3. Assessment of the Thermal Behavior
3.4. Determination of the Kinetic Parameters
3.5. Sensitivity Features
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Li, B.; Zhang, D.; Xie, L. Preparation and characterization of a series of high-energy and low-sensitivity composites with different desensitizers. New J. Chem. 2022, 46, 5218–5233. [Google Scholar] [CrossRef]
- Lysien, K.; Stolarczyk, A.; Jarosz, T. Solid propellant formulations: A review of recent progress and utilized components. Materials 2021, 14, 6657. [Google Scholar] [CrossRef]
- Yan, Q.-L.; De Luca, L.T. Urgent Demand for high Energy Insensitive Propellants with Controllable Burn Rates; Elsevier: Amsterdam, The Netherlands, 2021; Volume 2, pp. 1–2. [Google Scholar]
- Agrawal, J.P.; Dodke, V.S. Some novel high energy materials for improved performance. Z. Anorg. Und Allg. Chem. 2021, 647, 1856–1882. [Google Scholar] [CrossRef]
- Sabatini, J.J.; Johnson, E.C. A short review of nitric esters and their role in energetic materials. ACS Omega 2021, 6, 11813–11821. [Google Scholar] [CrossRef] [PubMed]
- Trache, D.; Khimeche, K.; Mezroua, A.; Benziane, M. Calorimetry, Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J. Therm. Anal. 2016, 124, 1485–1496. [Google Scholar] [CrossRef]
- Betzler, F.M.; Klapötke, T.M.; Sproll, S. Energetic nitrogen-rich polymers based on cellulose. Cent. Eur. J. Energetic Mater. 2011, 8, 157–171. [Google Scholar]
- Yang, F.-F.; Shao, Z.; Li, N.-K.; Wang, F.-J.; Zhang, Y. A novel cellulose-based azide energetic material: 1-azido-2-hydroxypropyl cellulose ether. J. Energetic Mater. 2011, 29, 241–260. [Google Scholar] [CrossRef]
- Pourmortazavi, S.M.; Sadri, M.; Rahimi-Nasrabadi, M.; Shamsipur, M.; Jabbarzade, Y.; Khalaki, M.S.; Abdollahi, M.; Shariatinia, Z.; Kohsari, I.; Atifeh, S.M. Thermal decomposition kinetics of electrospun azidodeoxy cellulose nitrate and polyurethane nanofibers. J. Therm. Anal. Calorim. 2015, 119, 281–290. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Abdelaziz, A.; Bekhouche, S.; Boukeciat, H. Exploration of palm fronds as a prominent alternative resource for the production of energetic cellulose-rich biopolymers. Mater. Today Proc. 2022, 53, 31–35. [Google Scholar] [CrossRef]
- Pourmortazavi, S.M.; Kohsari, I.; Zandavar, H.; Foroutan Koudehi, M.; Mirsadeghi, S. Electrospinning and thermal characterization of nitrocellulose nanofibers containing a composite of diaminofurazan, aluminum nano-powder and iron oxide nanoparticles. Cellulose 2019, 26, 4405–4415. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Klapötke, T.M.; Selmani, A.; Saada, M.; Chelouche, S.; Mezroua, A.; Abdelaziz, A. New insensitive high-energy dense biopolymers from giant reed cellulosic fibers: Their synthesis, characterization, and non-isothermal decomposition kinetics. New J. Chem. 2021, 45, 5099–5113. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Sayah, Z.B.D.; Trache, D.; Klapötke, T.M.; Belmerabt, M.; Abdelaziz, A.; Bekhouche, S. Towards investigating the characteristics and thermal kinetic behavior of emergent nanostructured nitrocellulose prepared using various sulfonitric media. J. Nanostruct. Chem. 2022, 12, 963–977. [Google Scholar] [CrossRef]
- Santos, D.; Iop, G.D.; Bizzi, C.A.; Mello, P.A.; Mesko, M.F.; Balbinot, F.P.; Flores, E.M. A single step ultrasound-assisted nitrocellulose synthesis from microcrystalline cellulose. Ultrason. Sonochem. 2021, 72, 105453. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.-L.; Zhao, F.-Q.; Kuo, K.K.; Zhang, X.-H.; Zeman, S.; De Luca, L.T. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog. Energy Combust. Sci. 2016, 57, 75–136. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Abdelaziz, A.; Harrat, A.; Boukecha, W.O.; Hamouche, M.A.; Boukeciat, H.; Dourari, M. Elaboration, Characterization and Thermal Decomposition Kinetics of New Nanoenergetic Composite Based on Hydrazine 3-Nitro-1,2,4-triazol-5-one and Nanostructured Cellulose Nitrate. Molecules 2022, 27, 6945. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Lv, P.; Fei, T.; Liu, Y.; Sun, C.; Pang, S. Crystal structure and explosive performance of a new CL-20/benzaldehyde cocrystal. J. Mol. Struct. 2020, 1215, 128267. [Google Scholar] [CrossRef]
- Yang, J.; Yin, L.; Gong, X.-D.; Sinditskii, V.P.; Zhang, J.-G. Origins of salt formation and cocrystallization: A combined experimental and theoretical study. Cryst. Growth Des. 2020, 20, 5834–5842. [Google Scholar] [CrossRef]
- Hanafi, S.; Trache, D.; Meziani, R.; Boukeciat, H.; Tarchoun, A.F.; Abdelaziz, A.; Mezroua, A. Thermal decomposition and kinetic modeling of HNTO/AN-based composite solid propellant in the presence of GO-based nanocatalyst. FirePhysChem 2022, 2, 315–322. [Google Scholar] [CrossRef]
- Elbasuney, S.; Ismael, S.; Yehia, M. Ammonium Percholorate/HMX Co-crystal: Bespoke Energetic Materials with Tailored Decomposition Kinetics via Dual Catalytic Effect. J. Energetic Mater. 2021, 1–20. [Google Scholar] [CrossRef]
- Hanafi, S.; Trache, D.; Meziani, R.; Boukciat, H.; Mezroua, A.; Tarchoun, A.F.; Derradji, M. Synthesis, characterization and thermal decomposition behavior of a novel HNTO/AN co-crystal as a promising rocket propellant oxidizer. Chem. Eng. J. 2021, 417, 128010. [Google Scholar] [CrossRef]
- Liang, X.; Jiang, H.; Pan, X.; Hua, M.; Jiang, J. Analysis and characterization of nitrocellulose as binder optimized by 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide. J. Therm. Anal. Calorim. 2021, 143, 113–126. [Google Scholar] [CrossRef]
- Klapötke, T.M.; Krumm, B.; Widera, A.J.C. Synthesis and Properties of Tetranitro-Substituted Adamantane Derivatives. ChemPlusChem 2018, 83, 61–69. [Google Scholar] [CrossRef]
- Yang, H.; Xie, W.; Wang, H.; Li, Y.; Zhang, W.; Liu, Y.; Song, K.; Fan, X. Preparation and characteristic of NC/RDX nanofibers by electrospinning. Sci. Technol. Energetic Mater. 2020, 81, 142–147. [Google Scholar]
- Wang, Y.; Song, X.; Song, D.; Liang, L.; An, C.; Wang, J. Synthesis, thermolysis, and sensitivities of HMX/NC energetic nanocomposites. J. Hazard. Mater. 2016, 312, 73–83. [Google Scholar] [CrossRef]
- Trache, D.; Abdelaziz, A.; Siouani, B. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J. Therm. Anal. Calorim. 2017, 128, 335–348. [Google Scholar] [CrossRef]
- Trache, D.; Maggi, F.; Palmucci, I.; DeLuca, L.T. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J. Therm. Anal. Calorim. 2018, 132, 1601–1615. [Google Scholar] [CrossRef]
- Sbirrazzuoli, N. Determination of pre-exponential factors and of the mathematical functions f (α) or G (α) that describe the reaction mechanism in a model-free way. Thermochim. Acta 2013, 564, 59–69. [Google Scholar] [CrossRef]
- Hanafi, S.; Trache, D.; Mezroua, A.; Boukeciat, H.; Meziani, R.; Tarchoun, A.F.; Abdelaziz, A. Optimized energetic HNTO/AN co-crystal and its thermal decomposition kinetics in the presence of energetic coordination nanomaterials based on functionalized graphene oxide and cobalt. RSC Adv. 2021, 11, 35287–35299. [Google Scholar] [CrossRef]
- Chalghoum, F.; Trache, D.; Maggi, F.; Benziane, M. Effect of Complex Metal Hydrides on the Elimination of Hydrochloric Acid Exhaust Products from High-Performance Composite Solid Propellants: A Theoretical Analysis. Propellants Explos. Pyrotech. 2020, 45, 1204–1215. [Google Scholar] [CrossRef]
- Rothstein, L.; Petersen, R. Predicting high explosive detonation velocities from their composition and structure. Propellants Explos. Pyrotech. 1979, 4, 56–60. [Google Scholar] [CrossRef]
- Rothstein, L.R. Predicting high explosive detonation velocities from their composition and structure (II). Propellants Explos. Pyrotech. 1981, 6, 91–93. [Google Scholar] [CrossRef]
- Keshavarz, M.H. New method for predicting detonation velocities of aluminized explosives. Combust. Flame 2005, 142, 303–307. [Google Scholar] [CrossRef]
- Abdel-Ghani, N.; Elbeih, A.; Helal, F. The effect of different copper salts on the mechanical and ballistic characteristics of double base rocket propellants. Cent. Eur. J. Energetic Mater. 2016, 13, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Elbasuney, S.; Fahd, A.; Mostafa, H.E. Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminum binary mixture. Fuel 2017, 208, 296–304. [Google Scholar] [CrossRef]
- Luo, T.; Wang, Y.; Huang, H.; Shang, F.; Song, X. An electrospun preparation of the NC/GAP/nano-LLM-105 nanofiber and its properties. Nanomaterials 2019, 9, 854. [Google Scholar] [CrossRef] [Green Version]
- Trache, D.; Hussin, M.H.; Chuin, C.T.H.; Sabar, S.; Fazita, M.N.; Taiwo, O.F.; Hassan, T.; Haafiz, M.M. Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. Int. J. Biol. Macromol. 2016, 93, 789–804. [Google Scholar] [CrossRef] [PubMed]
- Trache, D.; Maggi, F.; Palmucci, I.; DeLuca, L.T.; Khimeche, K.; Fassina, M.; Dossi, S.; Colombo, G. Effect of amide-based compounds on the combustion characteristics of composite solid rocket propellants. Arab. J. Chem. 2019, 12, 3639–3651. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Zhang, W.; Zhang, Z.; Gu, Y.; Fu, X.; Ge, Z.; Luo, Y. Study on Properties of Energetic Plasticizer Modified Double-Base Propellant. Propellants Explos. Pyrotech. 2021, 46, 1662–1671. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, N.; Zheng, W.; Chen, J.; Song, X.; Wang, J.; Cui, C.; Zhang, D.; Zhao, F. Application and Properties of CL-20/HMX Cocrystal in Composite Modified Double Base Propellants. Propellants Explos. Pyrotech. 2020, 45, 92–100. [Google Scholar] [CrossRef]
- Yi, J.-H.; Zhao, F.-Q.; Gao, H.-X.; Xu, S.-Y.; Wang, M.-C. Preparation, characterization, non-isothermal reaction kinetics, thermodynamic properties, and safety performances of high nitrogen compound: Hydrazine 3-nitro-1, 2, 4-triazol-5-one complex. J. Hazard. Mater. 2008, 153, 261–268. [Google Scholar] [CrossRef]
- Lin, C.-P.; Chang, Y.-M.; Gupta, J.P.; Shu, C.-M. Comparisons of TGA and DSC approaches to evaluate nitrocellulose thermal degradation energy and stabilizer efficiencies. Process Saf. Environ. Prot. 2010, 88, 413–419. [Google Scholar] [CrossRef]
- Abdelaziz, A.; Tarchoun, A.F.; Boukeciat, H.; Trache, D. Insight into the Thermodynamic Properties of Promising Energetic HNTO· AN Co-Crystal: Heat Capacity, Combustion Energy, and Formation Enthalpy. Energies 2022, 15, 6722. [Google Scholar] [CrossRef]
- Sovizi, M.; Hajimirsadeghi, S.; Naderizadeh, B. Effect of particle size on thermal decomposition of nitrocellulose. J. Hazard. Mater. 2009, 168, 1134–1139. [Google Scholar] [CrossRef] [PubMed]
- Dobrynin, O.S.; Zharkov, M.N.; Kuchurov, I.V.; Fomenkov, I.V.; Zlotin, S.G.; Monogarov, K.A.; Meerov, D.B.; Pivkina, A.N.; Muravyev, N.V. Supercritical antisolvent processing of nitrocellulose: Downscaling to nanosize, reducing friction sensitivity and introducing burning rate catalyst. Nanomaterials 2019, 9, 1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Cao, X.; Gao, J.; He, W.; Liu, J.; Wang, Y.; Zhou, X.; Shen, J.; Wang, B.; He, Y. Nitrated bacterial cellulose-based energetic nanocomposites as propellants and explosives for military applications. ACS Appl. Nano Mater. 2021, 4, 1906–1915. [Google Scholar] [CrossRef]
- Benhammada, A.; Trache, D.; Kesraoui, M.; Chelouche, S. Hydrothermal synthesis of hematite nanoparticles decorated on carbon mesospheres and their synergetic action on the thermal decomposition of nitrocellulose. Nanomaterials 2020, 10, 968. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Klapötke, T.M.; Slimani, K.; Belouettar, B.E.; Abdelaziz, A.; Bekhouche, S.; Bessa, W. Valorization of esparto grass cellulosic derivatives for the development of promising energetic azidodeoxy biopolymers: Synthesis, characterization and isoconversional thermal kinetic analysis. Propellants Explos. Pyrotech. 2022, 47, e202100293. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Fu, Y.; Liu, J.; He, W.D. Safe Fabrication and Characterization of NC/CL-20/CnMs Nanoenergetic Composite Materials via Modified Sol-Gel. ChemistrySelect 2020, 5, 15121–15129. [Google Scholar] [CrossRef]
- Abd-Elghany, M.; Klapötke, T.M.; Elbeih, A. Investigation of 2, 2, 2-trinitroethyl-nitrocarbamate as a high energy dense oxidizer and its mixture with Nitrocellulose (thermal behavior and decomposition kinetics). J. Anal. Appl. Pyrolysis 2017, 128, 397–404. [Google Scholar] [CrossRef]
- Muravyev, N.V.; Pivkina, A.N.; Koga, N. Critical appraisal of kinetic calculation methods applied to overlapping multistep reactions. Molecules 2019, 24, 2298. [Google Scholar] [CrossRef] [Green Version]
- Vyazovkin, S. Isoconversional Kinetics of Thermally Stimulated Processes; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Vyazovkin, S. How much is the accuracy of activation energy affected by ignoring thermal inertia? Int. J. Chem. Kinet. 2020, 52, 23–28. [Google Scholar] [CrossRef]
- Neves, R.M.; Ornaghi, H.L., Jr.; Zattera, A.J.; Amico, S.C. The influence of silane surface modification on microcrystalline cellulose characteristics. Carbohydr. Polym. 2020, 230, 115595. [Google Scholar] [CrossRef]
- Pourmortazavi, S.; Hosseini, S.; Rahimi-Nasrabadi, M.; Hajimirsadeghi, S.; Momenian, H. Effect of nitrate content on thermal decomposition of nitrocellulose. J. Hazard. Mater. 2009, 162, 1141–1144. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Chakraborty, S.; Qiao, L. Flame, Burn rate enhancement of ammonium perchlorate–nitrocellulose composite solid propellant using copper oxide–graphene foam micro-structures. Combust. Explos. 2019, 206, 282–291. [Google Scholar]
- Li, X.; Liu, X.; Cheng, Y.; Li, Y.; Mei, X. Calorimetry, Thermal decomposition properties of double-base propellant and ammonium perchlorate. J. Therm. Anal. 2014, 115, 887–894. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Li, Y.; Li, Z.; Song, T.; Liu, X.; Hao, J. Thermal stability and mechanical properties of hybrid materials based on nitrocellulose grafted by aminopropylisobutyl polyhedral oligomeric silsesquioxane. Polimery 2017, 62, 576–587. [Google Scholar] [CrossRef]
Samples | 1st Decomposition | 2nd Decomposition | |||||||
---|---|---|---|---|---|---|---|---|---|
Tonset (°C) | Tpic (°C) | ∆T * (°C) | ∆H (J g−1) | Tonset (°C) | Tpic (°C) | ∆T * (°C) | ∆H (J g−1) | ∆HT (J g−1) | |
NMCC@ HNTO-AN | 167.2 | 172.8 | 5.6 | 315.66 | 171.6 | 176.4 | 4.8 | 1381.31 | 1697.1 |
NC@ HNTO-AN | 160.1 | 173.5 | 13.49 | 379.85 | 175.1 | 186.8 | 11.7 | 1035.89 | 1415.8 |
HNTO/AN | / | / | / | / | 235.1 | 239.3 | 241.5 | 1272.7 | 1272.7 [29] |
Sample | Isoconversional Method | Eα (kJ/mol) | Log(A(s−1)) | g(α) | |
---|---|---|---|---|---|
NC@HNTO/AN 1st step | TAS | 121.10 ± 11.30 | 11.81 ± 1.75 | A4 = [−ln(1 − α)]1/4 | |
it-KAS | 121.01 ± 11.25 | 11.22 ± 1.74 | P1/4 = α 1/4 | ||
VYA/CE | β = 10 °C/min | 121.62 ± 11.65 | 11.72 ± 1.20 | / | |
β = 15 °C/min | 11.77. ± 1.20 | / | |||
β = 20 °C/min | 11.75 ± 1.20 | / | |||
β = 25 °C/min | 11.71 ± 1.20 | / | |||
NC@HNTO/AN 2nd step | TAS | 129.20 ± 8.70 | 12.91 ± 1.56 | P1/4 = α 1/4 | |
it-KAS | 128.91 ± 8.60 | 12.90 ± 1.57 | G7 = [1 − (1 − α)1/2]1/2 | ||
VYA/CE | β = 10 °C/min | 128.62 ± 8.30 | 12.88 ± 1.31 | / | |
β = 15 °C/min | 12.89 ± 1.32 | / | |||
β = 20 °C/min | 12.88 ± 1.34 | / | |||
β = 25 °C/min | 12.88 ± 1.32 | / | |||
NMCC@HNTO/AN 1st step | TAS | 101.14 ± 8.85 | 9.67 ± 1.25 | A4 = [−ln(1 − α)]1/4 | |
it-KAS | 101.08 ± 8.90 | 9.61 ± 1.24 | G8 = [1 − (1 − α)1/2]1/2 | ||
VYA/CE | β = 10 °C/min | 100.83 ± 8.75 | 9.67 ± 1.05 | / | |
β = 15 °C/min | 9.65 ± 1.04 | / | |||
β = 20 °C/min | 9.70 ± 1.07 | / | |||
β = 25 °C/min | 9.64 ± 1.08 | / | |||
NMCC@HNTO/AN 2nd step | TAS | 125.1 ± 7.95 | 11.86 ± 1.64 | A4 = [−ln(1 − α)]1/4 | |
it-KAS | 125.05 ± 7.95 | 12.01 ± 1.65 | G8 = [1 − (1 − α)1/2]1/2 | ||
VYA/CE | β = 10 °C/min | 124.85 ± 7.73 | 11.97 ± 0.98 | / | |
β = 15 °C/min | 12.01 ± 0.97 | / | |||
β = 20 °C/min | 12.03 ± 0.96 | / | |||
β = 25 °C/min | 12.01 ± 0.97 | / |
Sample | IS (J) | FS (N) | |||
---|---|---|---|---|---|
HNTO/AN | 1.831 ± 0.003 | / | / | 24 | >360 |
NC | 1.671 ± 0.004 | / | / | 3 | 350 |
NMCC | 1.694 ± 0.004 | / | / | 2 | 350 |
NC@HNTO/AN | 1.790 ± 0.003 | 1.767 | 1.3 | 11 | 360 |
NMCC@HNTO/AN | 1.801 ± 0.003 | 1.776 | 1.4 | 11 | 360 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukeciat, H.; Tarchoun, A.F.; Trache, D.; Abdelaziz, A.; Meziani, R.; Klapötke, T.M. Development and Characterization of New Energetic Composites Based on HNTO/AN Co-Crystal and Nitro-Cellulosic Materials. Polymers 2023, 15, 1799. https://doi.org/10.3390/polym15071799
Boukeciat H, Tarchoun AF, Trache D, Abdelaziz A, Meziani R, Klapötke TM. Development and Characterization of New Energetic Composites Based on HNTO/AN Co-Crystal and Nitro-Cellulosic Materials. Polymers. 2023; 15(7):1799. https://doi.org/10.3390/polym15071799
Chicago/Turabian StyleBoukeciat, Hani, Ahmed Fouzi Tarchoun, Djalal Trache, Amir Abdelaziz, Redha Meziani, and Thomas M. Klapötke. 2023. "Development and Characterization of New Energetic Composites Based on HNTO/AN Co-Crystal and Nitro-Cellulosic Materials" Polymers 15, no. 7: 1799. https://doi.org/10.3390/polym15071799
APA StyleBoukeciat, H., Tarchoun, A. F., Trache, D., Abdelaziz, A., Meziani, R., & Klapötke, T. M. (2023). Development and Characterization of New Energetic Composites Based on HNTO/AN Co-Crystal and Nitro-Cellulosic Materials. Polymers, 15(7), 1799. https://doi.org/10.3390/polym15071799