Ligand Installation to Polymeric Micelles for Pediatric Brain Tumor Targeting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. IgG Preparation as Recombinant Proteins
2.3. Estimation of Number of DBCO Conjugated to CD276Ab by Fluorescamine
2.4. Fabrication of DBCO-CD276Ab and DBCO-CD276Ab-Cy5
2.5. Purification of DBCO-CD276Ab and DBCO-CD276Ab-Cy5
2.6. Immunocytochemical Evaluation of DBCO-CD276Ab Functionality
2.6.1. DAOY Cell Culture
2.6.2. CD276 Detection by Flow Cytometry
2.6.3. Immunocytochemical Evaluation
2.7. Fabrication of N3-PIC/m
2.8. Fabrication of CD276Ab-PIC/m and DyLight 488-Labeled CD276Ab-PIC/m
2.9. Cytotoxicity of CD276Ab-PIC/m
2.10. Cell Internalization Efficiency of CD276Ab-PIC/m
3. Results and Discussion
3.1. Characterization of DBCO-CD276Ab
3.2. In Vitro Functionality Evaluation of DBCO-CD276Ab
3.3. Preparation and Characterization of CD276Ab Conjugated Micelles
3.4. Evaluation of Cell Internalization Efficiency of CD276Ab Decorated PIC/m
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015. Neuro-Oncol. 2018, 20 (Suppl. 4), iv1–iv86. [Google Scholar] [CrossRef] [Green Version]
- Shaik, S.; Maegawa, S.; Gopalakrishnan, V. Medulloblastoma: Novel insights into emerging therapeutic targets. Expert Opin. Ther. Targets 2021, 25, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Rudà, R.; Reifenberger, G.; Frappaz, D.; Pfister, M.S.; Laprie, A.; Santarius, T.; Roth, P.; Tonn, C.J.; Soffietti, R.; Weller, M.; et al. EANO guidelines for the diagnosis and treatment of ependymal tumors. Neuro-Oncol. 2018, 20, 445–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollack, F.I.; Agnihotri, S.; Broniscer, A. Childhood brain tumors: Current management, biological insights, and future directions. J. Neurosurg. Pediatr. 2019, 23, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Tait, M.D.; Thornton-Jones, H.; Bloom, J.H.; Lemerle, J.; Morris-Jones, P. Adjuvant chemotherapy for medulloblastoma: The first multi-centre control trial of the International Society of Paediatric Oncology (SIOP I). Eur. J. Cancer 1990, 26, 464–469. [Google Scholar] [CrossRef]
- Rutkowski, S.; Bode, U.; Deinlein, F.; Ottensmeier, H. Treatment of Early Childhood Medulloblastoma by Postoperative Chemotherapy Alone. N. Engl. J. Med. 2005, 352, 978–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, K.; Yamasaki, K.; Tanaka, C.; Fujisaki, H.; Osugi, Y.; Hara, H. Phase I Study of Bevacizumab Plus Irinotecan in Pediatric Patients with Recurrent/Refractory Solid Tumors. Jpn. J. Clin. Oncol. 2013, 43, 1073–1079. [Google Scholar] [CrossRef] [Green Version]
- Hudson, M.M.; Ness, K.K.; Gurney, G.J.; Chemaitilly, W.; Krull, R.K.; Green, M.D.; Armstrong, T.G.; Nottage, F.K.; Sklar, A.C.; Srivastava, K.D.; et al. Clinical Ascertainment of Health Outcomes Among Adults Treated for Childhood Cancer. JAMA 2013, 309, 2371–2381. [Google Scholar] [CrossRef] [Green Version]
- Petel, P.J.; Spiller, E.S.; Barker, D.E. Drug penetration in pediatric brain tumors: Challenges and opportunities. Pediatr. Blood Cancer 2021, 68, e28983. [Google Scholar] [CrossRef]
- Zucker, D.; Andriyanov, V.A.; Steiner, A.; Raviv, U.; Barenholz, Y. Characterization of PEGylated nanoliposomes co-remotely loaded with topotecan and vincristine: Relating structure and pharmacokinetics to therapeutic efficacy. J. Control. Release 2012, 160, 281–289. [Google Scholar] [CrossRef]
- Sabina, Q.; Kataoka, K.; Cabral, H. Nanomedicine for brain cancer. Adv. Drug Deliv. Rev. 2022, 182, 114115. [Google Scholar]
- Majzner, G.R.; Therucath, L.J.; Nellan, A.; Heitzeneder, S.; Cui, Y.; Mount, W.C.; Rietberg, P.S.; Linde, H.M.; Xu, P.; Rota, C.; et al. CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors. Clin. Cancer Res. 2019, 25, 2560–2574. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Poolen, G.C.; van Vliet, L.C.; Schipper, J.G.; Broekhuizen, R.; Monnikhof, M.; Van Hecke, W.; Vermeulen, J.F.; Bovenschen, N. Pediatric medulloblastoma express immune checkpoint B7-H3. Clin. Transl. Oncol. 2022, 24, 1204–1208. [Google Scholar] [CrossRef] [PubMed]
- Bao, R.; Wang, Y.; Lai, J.; Zhu, H.; Zhao, Y.; Li, S.; Li, N.; Huang, J.; Yang, Z.; Wang, F.; et al. Enhancing Anti-PD-1/PD-L1 Immune Checkpoint Inhibitory Cancer Therapy by CD276-Targeted Photodynamic Ablation of Tumor Cells and Tumor Vasculature. Mol. Pharm. 2019, 16, 339–348. [Google Scholar] [CrossRef]
- Wilson, E.K.; Bachwal, V.S.; Abou-Elkacem, L.; Jensen, K.; Machtaler, S.; Tian, L.; Willmann, K.J. Spectroscopic Photoacoustic Molecular Imaging of Breast Cancer using a B7-H3-targeted ICG Contrast Agent. Theranostics 2017, 7, 1463–1476. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Kumar, V.; Lin, F.; Sethi, B.; Coulter, W.D.; McGuire, R.T.; Mahoto, I.R. ApoE mimetic peptide targeted nanoparticles carrying a BRD4 inhibitor for treating Medulloblastoma in mice. J. Control. Release 2020, 323, 463–474. [Google Scholar] [CrossRef]
- Ruan, S.; Qin, L.; Xiao, W.; Hu, C.; Zhou, Y.; Wnag, R.; Sun, X.; Yu, W.; He, Q.; Gao, H. Acid-Responsive Transferrin Dissociation and GLUT Mediated Exocytosis for Increased Blood–Brain Barrier Transcytosis and Programmed Glioma Targeting Delivery. Adv. Funct. Mater. 2018, 28, 1802227. [Google Scholar] [CrossRef]
- Ruan, S.; Yuan, M.; Zhang, L.; Hu, G.; Chen, J.; Cun, X.; Zhang, Q.; Yang, Y.; He, Q.; Gao, H. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 2015, 37, 425–435. [Google Scholar] [CrossRef]
- Miura, Y.; Takenaka, T.; Toh, K.; Wu, S.; Nishihara, H.; Kano, M.R.; Ino, Y.; Nomoto, T.; Matsumoto, Y.; Koyama, H.; et al. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood-brain tumor barrier. ACS Nano 2013, 7, 8583–8592. [Google Scholar] [CrossRef]
- McQuigg, D.W.; Kaplan, J.I.; Dubin, P.L. Critical conditions for the binding of polyelectrolytes to small oppositely charged micelles. J. Phys. Chem. 1992, 96, 1973–1978. [Google Scholar] [CrossRef]
- Wang, Y.; Kimura, K.; Huang, Q.; Dubin, P.L.; Jaeger, W. Effects of Salt on Polyelectrolyte-Micelle Coacervation. Macromolecules 1999, 32, 7128–7134. [Google Scholar] [CrossRef]
- Chen, J.-X.; Wang, M.; Tian, H.-H.; Chen, J.-H. Hyaluronic acid and polyethylenimine self-assembled polyion complexes as pH-sensitive drug carrier for cancer therapy. Coll. Surf. B Biointerfaces 2015, 134, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Bell, B.J.; Rink, S.J.; Eckerdt, F.; Clymer, J.; Goldman, S.; Shad Thaxton, C.; Platanias, C.L. HDL nanoparticles targeting sonic hedgehog subtype medulloblastoma. Sci. Rep. 2018, 8, 1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, M.; Nakakido, M.; Caaveiro, J.; Kuroda, D.; Okumura, C.; Maruyama, T.; Entzminger, K.; Tsumoto, K. Structural basis for antigen recognition by methylated lysine–specific antibodies. J. Biol. Chem. 2021, 296, 100176. [Google Scholar] [CrossRef] [PubMed]
- Tao, A.; Huang, G.; Igarashi, K.; Hong, T.; Liao, S.; Stellacci, F.; Matsumoto, Y.; Yamasoba, T.; Kataoka, K. Polymeric Micelles Loading Proteins through Concurrent Ion Complexation and pH-Cleavable Covalent Bonding for In Vivo Delivery. Macromol. Biosci. 2019, 20, 1900161. [Google Scholar] [CrossRef]
- Xu, P.; Kelly, M.; Vann, F.W.; Qadri, F.; Ryan, T.E.; Kováč, P. Conjugate Vaccines from Bacterial Antigens by Squaric Acid Chemistry: A Closer Look. ChemBioChem 2017, 18, 799–815. [Google Scholar] [CrossRef]
- Dasari, R.; La Clair, J.J.; Kornienko, A. Irreversible Protein Labeling by Paal–Knorr Conjugation. ChemBioChem 2018, 18, 1792–1796. [Google Scholar] [CrossRef]
- Manukyan, G.; Kriegova, E.; Slavik, L.; Mikulkova, Z.; Ulehlova, J.; Martiosyan, A.; Papajik, T. Antiphospholipid antibody-mediated NK cell cytotoxicity. J. Reprod. Immunol. 2023, 155, 103791. [Google Scholar] [CrossRef]
- Ahn, J.; Miura, Y.; Yamada, N.; Chida, T.; Liu, Z.; Kim, A.; Sato, R.; Tsumura, R.; Koga, Y.; Yasunaga, M.; et al. Antibody fragment-conjugated polymeric micelles incorporating platinum drugs for targeted therapy of pancreatic cancer. Biomaterials 2015, 39, 23–30. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Carter, G.; Liu, X.; Tochary, A.T.; Dirisala, A.; Toh, K.; Anraku, Y.; Kataoka, K. Targeting nanoparticles to the brain by exploiting the blood–brain barrier impermeability to selectively label the brain endothelium. Proc. Natl. Acad. Sci. USA 2020, 117, 19141–19150. [Google Scholar] [CrossRef]
- Gai, M.; Simon, J.; Lieberwirth, I.; Mailänder, V.; Morsbach, S.; Landfester, K. A bio-orthogonal functionalization strategy for site-specific coupling of antibodies on vesicle surfaces after self-assembly. Polym. Chem. 2020, 11, 527–540. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Miyazaki, T.; Chen, P.; Hong, T.; Naio, M.; Miyahara, Y.; Matsumoto, A.; Kataoka, K.; Miyata, K.; Cabral, H. Block catiomer with flexible cationic segment enhances complexation with siRNA and the delivery performance in vitro. Sci. Technol. Adv. Mater. 2021, 22, 850–863. [Google Scholar] [CrossRef] [PubMed]
- Loman, A.; Dertinger, T.; Koverling, F.; Enderlein, J. Comparison of optical saturation effects in conventional and dual-focus fluorescence correlation spectroscopy. Chem. Phys. Lett. 2008, 459, 18–21. [Google Scholar] [CrossRef]
- Min, S.H.; Kim, J.H.; Ahn, J.; Naito, M.; Hayashi, K.; Toh, K.; Kim, S.B.; Matsumura, Y.; Kwon, C.I.; Miyata, K.; et al. Tuned Density of Anti-Tissue Factor Antibody Fragment onto siRNA-Loaded Polyion Complex Micelles for Optimizing Targetability into Pancreatic Cancer Cells. Biomacromolecules 2018, 19, 2320–2329. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.; Schulze, J.; Räder, H.; Holm, R.; Schinnerer, M.; Barz, M.; Koynov, K.; Zental, R. Site-Specific DBCO Modification of DEC205 Antibody for Polymer Conjugation. Polymers 2018, 10, 141. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.; Xu, K.; Liu, L.; Raab, H.; Bhakta, S.; Kenrick, M.; Parsons-Reponte, K.L.; Tien, J.; Yu, S.; Mai, E.; et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol. 2012, 30, 184–189. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Li, C.; Xu, H.; Dong, R.; Chen, C.C.; Hua, W. Survival Association and Cell Cycle Effects of B7H3 in Neuroblastoma. J. Korean Neurosurg. Soc. 2020, 63, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Kuom, L.; Wang, J.; He, B.; Fenf, R.; Xian, N.; Zhang, Q.; Chen, L.; Huan, G. B7-H3 specific T cells with chimeric antigen receptor and decoy PD-1 receptors eradicate established solid human tumors in mouse models. OncoImmunology 2020, 9, e684127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florinas, S.; Liu, M.; Fleming, R.; Vlerken-Ysla, V.L.; Ayriss, J.; Glibreth, R.; Dimasi, N.; Gao, C.; Wu, H.; Xu, Z.; et al. A Nanoparticle Platform to Evaluate Bioconjugation and Receptor-Mediated Cell Uptake Using Cross-Linked Polyion Complex Micelles Bearing Antibody Fragments. Biomacromolecules 2016, 17, 1818–1833. [Google Scholar] [CrossRef]
- Chen, S.; Florinas, S.; Teitgen, A.; Xu, Z.; Gao, C.; Wu, H.; Kataoka, K.; Cabral, H.; Christie, J.R. Controlled Fab installation onto polymeric micelle nanoparticles for tuned bioactivity. Sci. Technol. Adv. Mater. 2017, 18, 666–680. [Google Scholar] [CrossRef] [Green Version]
- Stetefeld, J.; Mckenna, A.S.; Pated, R.T. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophys. Rev. 2016, 8, 409–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, M.; Wagner, S.C.; Harnau, L.; Wittemann, A. 3D Brownian Diffusion of Submicron-Sized Particle Clusters. ACS Nano 2009, 3, 3326–3334. [Google Scholar] [CrossRef] [PubMed]
- Filoti, D.I.; Shire, S.J.; Yadav, S.; Laue, T.M. Comparative study of analytical techniques for determining protein charge. J. Pharm. Sci. 2015, 104, 2123–2131. [Google Scholar] [CrossRef] [PubMed]
- Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Unnderstanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Gilbreth, N.R.; Novarra, S.; Wetzel, L.; Florinas, S.; Cabral, H.; Kataoka, K.; Rios-Doria, J.; Christie, R.; Baca, M. Lipid- and polyion complex-based micelles as agonist platforms for TNFR superfamily receptors. J. Control. Release 2016, 234, 104–114. [Google Scholar] [CrossRef]
- Miyazaki, T.; Chen, S.; Florinas, S.; Igarashi, K.; Matsumoto, Y.; Yamasoba, T.; Xu, Z.; Wu, H.; Gao, C.; Kataoka, K.; et al. A Hoechst Reporter Enables Visualization of Drug Engagement In Vitro and In Vivo: Toward Safe and Effective Nanodrug Delivery. ACS Nano 2022, 16, 12290–12304. [Google Scholar] [CrossRef]
- Wang, J.; Tian, S.; Petros, A.R.; Napier, E.M.; DeSimone, M.J. The Complex Role of Multivalency in Nanoparticles Targeting the Transferrin Receptor for Cancer Therapies. J. Am. Chem. Soc. 2010, 132, 11306–11313. [Google Scholar] [CrossRef] [Green Version]
- Phoenix, T.N.; Patmore, D.M.; Boop, S.; Boulos, N.; Jacus, M.O.; Patel, Y.T.; Roussel, M.F.; Finkelstein, D.; Goumnerova, L.; Perreault, S.; et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 2016, 29, 508–522. [Google Scholar] [CrossRef] [Green Version]
CD276Ab | N3-PIC/m | CD276Ab(1)-PIC/m | CD276Ab(2)-PIC/m | |
---|---|---|---|---|
Diameter a, b/nm (DLS) | - | 30 ± 0.1 | 36 ± 0.9 | 45 ± 1.8 |
Polydispersity index a | - | 0.09 ± 0.02 | 0.20 ± 0.03 | 0.30 ± 0.03 |
Zeta potential c/mV | −1.04 ± 0.40 | −7.44 ± 1.53 | −8.01 ± 0.53 | −8.50 ± 2.09 |
Diameter a, d/nm (FCS) | - | 23 ± 0.6 | 34 ± 2.2 | 37 ± 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, T.; Mizuno, H.L.; Norimatsu, J.; Obara, T.; Cabral, H.; Tsumoto, K.; Nakakido, M.; Kawauchi, D.; Anraku, Y. Ligand Installation to Polymeric Micelles for Pediatric Brain Tumor Targeting. Polymers 2023, 15, 1808. https://doi.org/10.3390/polym15071808
Watanabe T, Mizuno HL, Norimatsu J, Obara T, Cabral H, Tsumoto K, Nakakido M, Kawauchi D, Anraku Y. Ligand Installation to Polymeric Micelles for Pediatric Brain Tumor Targeting. Polymers. 2023; 15(7):1808. https://doi.org/10.3390/polym15071808
Chicago/Turabian StyleWatanabe, Takayoshi, Hayato Laurence Mizuno, Jumpei Norimatsu, Takumi Obara, Horacio Cabral, Kouhei Tsumoto, Makoto Nakakido, Daisuke Kawauchi, and Yasutaka Anraku. 2023. "Ligand Installation to Polymeric Micelles for Pediatric Brain Tumor Targeting" Polymers 15, no. 7: 1808. https://doi.org/10.3390/polym15071808
APA StyleWatanabe, T., Mizuno, H. L., Norimatsu, J., Obara, T., Cabral, H., Tsumoto, K., Nakakido, M., Kawauchi, D., & Anraku, Y. (2023). Ligand Installation to Polymeric Micelles for Pediatric Brain Tumor Targeting. Polymers, 15(7), 1808. https://doi.org/10.3390/polym15071808