Employing Cationic Kraft Lignin as Additive to Enhance Enzymatic Hydrolysis of Corn Stalk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Synthesis of JLQKL50
2.3. Enzymatic Hydrolysis of Corn Stalk
2.4. Analysis and Characterizations
3. Results and Discussion
3.1. Structural Characterizations of KL and JLQKL50
3.1.1. FT-IR Spectra and Elemental Analyses of KL and JLQKL50
3.1.2. 1H NMR and 13C NMR Analyses of KL and JLQKL50
3.1.3. Zeta Potential versus pH of KL and JLQKL50
3.2. Effects of Different Concentrations of Additive on Enzymatic Hydrolysis
3.3. Environmental Applicability of JLQKL50-Enhanced Enzymatic Hydrolysis
3.4. Effect of Stirring on Cellulase Activity
3.5. Effect of JLQKL50 on the Aggregation and Dispersion of Cellulase
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Liu, Z. Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Eng. Life Sci. 2017, 17, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, Y.; Guan, M.; Tang, H.; Wang, Z.; Lin, L.; Pang, H. Production of butanol from lignocellulosic biomass: Recent advances, challenges, and prospects. RSC Adv. 2022, 12, 18848–18863. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.S.; Espinheira, R.P.; Teixeira, R.S.S.; De Souza, M.F.; Ferreira-Leitão, V.; Bon, E.P. Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: A critical review. Biotechnol. Biofuels 2020, 13, 58. [Google Scholar] [CrossRef]
- Huang, C.; Jiang, X.; Shen, X.; Hu, J.; Tang, W.; Wu, X.; Ragauskas, A.; Jameel, H.; Meng, X.; Yong, Q. Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renew. Sustain. Energy Rev. 2022, 154, 111822. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, Y.; Gao, H.; Zhang, W.; Jiang, Y.; Xin, F.; Jiang, M. Challenges and Future Perspectives of Promising Biotechnologies for Lignocellulosic Biorefinery. Molecules 2021, 26, 5411. [Google Scholar] [CrossRef]
- Robak, K.; Balcerek, M. Review of Second Generation Bioethanol Production from Residual Biomass. Food Technol. Biotech. 2018, 56, 174–187. [Google Scholar]
- Toor, M.; Kumar, S.S.; Malyan, S.K.; Bishnoi, N.R.; Pugazhendhi, A. An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere 2020, 242, 125080. [Google Scholar] [CrossRef]
- Sidiras, D.; Politi, D.; Giakoumakis, G.; Salapa, I. Simulation and optimization of organosolv based lignocellulosic biomass refinery: A review. Bioresour. Technol. 2022, 343, 126158. [Google Scholar] [CrossRef]
- Guo, H.; Chang, Y.; Lee, D.J. Enzymatic saccharification of lignocellulosic biorefinery: Research focuses. Bioresour. Technol. 2018, 252, 198–215. [Google Scholar] [CrossRef]
- Liu, Y.; Li, B.; Feng, Y.; Cui, Q. Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world. Biotechnol. Adv. 2020, 40, 107535. [Google Scholar] [CrossRef]
- Putro, J.N.; Soetaredjo, F.E.; Lin, S.Y.; Ju, Y.H.; Ismadji, S. Pretreatment and conversion of lignocellulose biomass into valuable chemicals. RSC Adv. 2016, 6, 46834–46852. [Google Scholar] [CrossRef]
- Agrawal, R.; Verma, A.; Singhania, R.R.; Varjani, S.; Patel, A.K. Current Understanding of the Inhibition Factors and their Mechanism of Action for the Lignocellulosic Biomass Hydrolysis. Bioresour. Technol. 2021, 332, 125042. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Muñoz, S.; Balbino, T.R.; de Oliveira, F.; Rocha, T.M.; Barbosa, F.G.; Vélez-Mercado, M.I.; Marcelino, P.R.F.; Antunes, F.A.F.; Moraes, E.J.C.; dos Santos, J.C.; et al. Surfactants, Biosurfactants, and Non-Catalytic Proteins as Key Molecules to Enhance Enzymatic Hydrolysis of Lignocellulosic Biomass. Molecules 2022, 27, 8180. [Google Scholar] [CrossRef] [PubMed]
- Shan, W.; Lv, M.; Jian, Y.; Zhou, Y.; Xu, B. Effects and Mechanism of Metal Ions on Enzymatic Hydrolysis of Wheat Straw after Pretreatment. BioResources 2018, 13, 2617–2631. [Google Scholar]
- Florencio, C.; Badino, A.C.; Farinas, C.S. Soybean protein as a cost-effective lignin-blocking additive for the saccharification of sugarcane bagasse. Bioresour. Technol. 2016, 221, 172–180. [Google Scholar] [CrossRef]
- Noori, M.S.; Karimi, K. Chemical and structural analysis of alkali pretreated pinewood for efficient ethanol production. RSC Adv. 2016, 6, 65683–65690. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Xiao, W.; Yang, Y.; Hu, P.; Dai, Y.; Jiang, Z. Dissecting the effect of polyethylene glycol on the enzymatic hydrolysis of diverse lignocellulose. Int. J. Biol. Macromol. 2019, 131, 676–681. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, M.; Li, X.; Zhang, A.; Xie, J. Enhancing enzymatic hydrolysis of sugarcane bagasse by ferric chloride catalyzed organosolv pretreatment and Tween 80. Bioresour. Technol. 2018, 258, 295–301. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Y.; Du, J.; Yang, Y.; Jin, Y. Influence of lignin addition on the enzymatic digestibility of pretreated lignocellulosic biomasses. Bioresour. Technol. 2015, 181, 7–12. [Google Scholar] [CrossRef]
- Li, M.; Jiang, B.; Wu, W.; Wu, S.; Yang, Y.; Song, J.; Ahmad, M.; Jin, Y. Current understanding and optimization strategies for efficient lignin-enzyme interaction: A review. Int. J. Biol. Macromol. 2022, 195, 274–286. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, J.; Fu, Y.; Qin, M.; Shao, Z.; Jiang, J.; Yang, F. Lignosulfonate-mediated cellulase adsorption: Enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin. Biotechnol. Biofuels 2013, 6, 156. [Google Scholar] [CrossRef]
- Lin, X.; Yang, Y.; Wu, L.; Wu, L.; Qin, Y. Improved enzymatic hydrolysis of hardwood and cellulase stability by biomass kraft lignin-based polyoxyethylene ether. Int. J. Biol. Macromol. 2019, 136, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.; Jia, Y.; Yang, C.; Chen, L.; Shi, H.; Yong, Q. Incorporating Lignin into Polyethylene Glycol Enhanced Its Performance for Promoting Enzymatic Hydrolysis of Hardwood. ACS Sustain. Chem. Eng. 2020, 8, 1797–1804. [Google Scholar] [CrossRef]
- Shen, L.; Wang, C.; Chen, J. Photometric determination of the activity of cellulase and xylanase via measurement of formation of gold nanoparticles. Microchim. Acta 2017, 184, 163–168. [Google Scholar] [CrossRef]
- Li, Y.; Yang, D.; Lu, S.; Lao, S.; Qiu, X. Modified Lignin with Anionic Surfactant and Its Application in Controlled Release of Avermectin. J. Agr. Food Chem. 2018, 66, 3457–3464. [Google Scholar] [CrossRef]
- Xu, J.; Wang, M.; Alam, M.A.; Muhammad, G.; Lv, Y.; Zhu, C.; Zhang, H.; Xiong, W. Fabricating a Gel Electrolyte Based on Lignin-Coated Nanosilica to Enhance the Reversibility of Zinc Anodes for Rechargeable Aqueous Zn/MnO2 Batteries. ACS Sustain. Chem. Eng. 2022, 10, 2063–2071. [Google Scholar] [CrossRef]
- Xu, J.; Wang, M.; Alam, M.A.; Hoang, T.K.; Zhang, Y.; Li, H.; Lv, Y.; Zhao, A.; Xiong, W. Employing cationic kraft lignin as electrolyte additive to enhance the electrochemical performance of rechargeable aqueous zinc-ion battery. Fuel 2023, 333, 126450. [Google Scholar] [CrossRef]
- Bernier-Oviedo, D.J.; Rincón-Moreno, J.A.; Solanilla-Duqué, J.F.; Muñoz-Hernández, J.A.; Váquiro-Herrera, H.A. Comparison of two pretreatments methods to produce second-generation bioethanol resulting from sugarcane bagasse. Ind. Crops Prod. 2018, 122, 414–421. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedure (LAP). Golden, CO: National Renewable Energy Laboratory (NREL); Revised Version 2012. 2012. Available online: https://www.nrel.gov/docs/gen/fy13/42618.pdf (accessed on 9 April 2023).
- Xiong, W.; Yang, D.; Alam, M.A.; Xu, J.; Li, Y.; Wang, H.; Qiu, X. Structural regulation of lignin/silica nanocomposites by altering the content of quaternary ammonium groups grafted into softwood kraft lignin. Ind. Crops Prod. 2020, 144, 112039. [Google Scholar] [CrossRef]
- Liu, T.; Ren, X.; Zhang, J.; Liu, J.; Ou, R.; Guo, C.; Yu, X.; Wang, Q.; Liu, Z. Highly compressible lignin hydrogel electrolytes via double-crosslinked strategy for superior foldable supercapacitors. J. Power Sources 2020, 449, 227532. [Google Scholar] [CrossRef]
- Teng, X.; Xu, H.; Song, W.; Shi, J.; Xin, J.; Hiscox, W.C.; Zhang, J. Preparation and Properties of Hydrogels Based on PEGylated Lignosulfonate Amine. ACS Omega 2017, 2, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qiu, X.; Qian, Y.; Xiong, W.; Yang, D. pH-responsive lignin-based complex micelles: Preparation, characterization and application in oral drug delivery. Chem. Eng. J. 2017, 327, 1176–1183. [Google Scholar] [CrossRef]
- Chin, D.; Lim, S.; Pang, Y.L.; Lim, C.H.; Chong, C.T. Effects of Organic Solvents on the Organosolv Pretreatment of Degraded Empty Fruit Bunch for Fractionation and Lignin Removal. Sustainability 2021, 13, 6757. [Google Scholar] [CrossRef]
- Huang, D.; Li, R.; Xu, P.; Li, T.; Deng, R.; Chen, S.; Zhang, Q. The cornerstone of realizing lignin value-addition: Exploiting the native structure and properties of lignin by extraction methods. Chem. Eng. J. 2020, 402, 126237. [Google Scholar] [CrossRef]
- Ye, X.; Luo, W.; Lin, L.; Zhang, Y.; Liu, M. Quaternized lignin-based dye dispersant: Characterization and performance research. J. Dispers. Sci. Technol. 2017, 38, 852–859. [Google Scholar] [CrossRef]
- Park, J.H.; Rana, H.H.; Lee, J.Y.; Park, H.S. Renewable flexible supercapacitors based on all-lignin-based hydrogel electrolytes and nanofiber electrodes. J. Mater. Chem. A 2019, 7, 16962–16968. [Google Scholar] [CrossRef]
- Zheng, T.; Zhen, D.; Li, X.; Cai, C.; Lo, H.; Liu, W.; Qi, X. Synthesis of Quaternized Lignin and Its Clay-Tolerance Properties in Montmorillonite-Containing Cement Paste. ACS Sustain. Chem. Eng. 2017, 5, 7743–7750. [Google Scholar] [CrossRef]
- Yang, D.; Guo, W.; Zeng, W.; Qiu, X. Influence of pH on the Adsorption Characteristics of Sulfonated Alkali Lignin-based Polymers. Acta Polym. Sin. 2014, 3, 333–340. [Google Scholar]
- Yuan, Y.; Jiang, B.; Chen, H.; Wu, W.; Wu, S.; Jin, Y.; Xiao, H. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. Biotechnol. Biofuels 2021, 14, 205. [Google Scholar] [CrossRef]
- Lin, X.; Qiu, X.; Zhu, D.; Li, Z.; Zhan, N.; Zheng, J.; Lou, H.; Zhou, M.; Yang, D. Effect of the molecular structure of lignin-based polyoxyethylene ether on enzymatic hydrolysis efficiency and kinetics of lignocelluloses. Bioresour. Technol. 2015, 193, 266–273. [Google Scholar] [CrossRef]
- Mukasekuru, M.R.; Hu, J.; Zhao, X.; Sun, F.; Pascal, K.; Ren, H.; Zhang, J. Enhanced High-Solids Fed-Batch Enzymatic Hydrolysis of Sugar Cane Bagasse with Accessory Enzymes and Additives at Low Cellulase Loading. ACS Sustain. Chem. Eng. 2018, 6, 12787–12796. [Google Scholar] [CrossRef]
- Du, J.; Song, W.; Zhang, X.; Zhao, J.; Liu, G.; Qu, Y. Differential reinforcement of enzymatic hydrolysis by adding chemicals and accessory proteins to high solid loading substrates with different pretreatments. Bioprocess Biosyst. Eng. 2018, 41, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.; Wang, M.; Lai, H.; Lin, X.; Zhou, M.; Yang, D.; Qiu, X. Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate. Bioresour. Technol. 2013, 146, 478–484. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Li, H.; Alam, M.A.; Muhammad, G.; Lv, Y.; Zhao, A.; Zhang, S.; Xiong, W. Employing Cationic Kraft Lignin as Additive to Enhance Enzymatic Hydrolysis of Corn Stalk. Polymers 2023, 15, 1991. https://doi.org/10.3390/polym15091991
Xu J, Li H, Alam MA, Muhammad G, Lv Y, Zhao A, Zhang S, Xiong W. Employing Cationic Kraft Lignin as Additive to Enhance Enzymatic Hydrolysis of Corn Stalk. Polymers. 2023; 15(9):1991. https://doi.org/10.3390/polym15091991
Chicago/Turabian StyleXu, Jingliang, Huihua Li, Md. Asraful Alam, Gul Muhammad, Yongkun Lv, Anqi Zhao, Shen Zhang, and Wenlong Xiong. 2023. "Employing Cationic Kraft Lignin as Additive to Enhance Enzymatic Hydrolysis of Corn Stalk" Polymers 15, no. 9: 1991. https://doi.org/10.3390/polym15091991
APA StyleXu, J., Li, H., Alam, M. A., Muhammad, G., Lv, Y., Zhao, A., Zhang, S., & Xiong, W. (2023). Employing Cationic Kraft Lignin as Additive to Enhance Enzymatic Hydrolysis of Corn Stalk. Polymers, 15(9), 1991. https://doi.org/10.3390/polym15091991