Preparation and Evaluation of Caffeine Orodispersible Films: The Influence of Hydrotropic Substances and Film-Forming Agent Concentration on Film Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of ODFs
2.2. pH
2.3. CAF-ODFs’ Uniformity of Mass and Thickness
2.4. Mechanical Properties
- TS—thickness-normalized tensile strength (N·mm−2);
- M—the total weight at which the sample cracked/broke;
- g—(constant) gravitational acceleration (9.81 N·kg−1);
- W—sample width (mm);
- T—sample average thickness measured in five spots (mm).
2.5. Disintegration Behavior
2.5.1. Method 1: Slide Frame Method
2.5.2. Method 2 (met2)
2.6. Adhesivity Test
- m—the applied mass needed for detachment (kg);
- g—(constant) gravitational acceleration (9.81 N·kg−1);
- A—ODFs’ film surface area: 3.14 cm2.
2.7. CAF Content
2.8. Dissolution Test
2.9. Statistical Evaluation
- ns (p > 0.05), ns—not significant;
- * (p ≤ 0.05);
- ** (p ≤ 0.01);
- *** (p ≤ 0.001);
- **** (p ≤ 0.0001).
3. Results and Discussion
3.1. CAF-ODF Preparation
3.2. The pH of CAF-ODFs
3.3. CAF-ODFs’ Uniformity of Mass
3.4. CAF-ODF Thickness
3.5. CAF-ODFs’ Folding Endurance
3.6. CAF-ODFs’ Thickness-Normalized Tensile Strength
3.7. CAF-ODFs’ Disintegration Time
3.8. CAF-ODF Adhesivity
3.9. CAF Content
3.10. Dissolution for the CAF-ODFs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olechno, K.; Maciejewski, B.; Głowacz, K.; Lenik, J.; Ciosek-Skibińska, P.; Basa, A.; Winnicka, K. Orodispersible Films with Rupatadine Fumarate Enclosed in Ethylcellulose Microparticles as Drug Delivery Platform with Taste-Masking Effect. Materials 2022, 15, 2126. [Google Scholar] [CrossRef]
- Salawi, A. An Insight into Preparatory Methods and Characterization of Orodispersible Film—A Review. Pharmaceuticals 2022, 15, 844. [Google Scholar] [CrossRef]
- O’Reilly, C.S.; Elbadawi, M.; Desai, N.; Gaisford, S.; Basit, A.W.; Orlu, M. Machine Learning and Machine Vision Accelerate 3D Printed Orodispersible Film Development. Pharmaceutics 2021, 13, 2187. [Google Scholar] [CrossRef]
- European Pharmacopoeia. In Disintegration of Tablets and Capsules/Uniformity of Dosage Units, 10th ed.; European Commision: Strasbourg, France, 2020.
- Janigová, N.; Elbl, J.; Pavloková, S.; Gajdziok, J. Effects of Various Drying Times on the Properties of 3D Printed Orodispersible Films. Pharmaceutics 2022, 14, 250. [Google Scholar] [CrossRef]
- Brniak, W.; Maślak, E.; Jachowicz, R. Orodispersible films and tablets with prednisolone microparticles. Eur. J. Pharm. Sci. 2015, 75, 81–90. [Google Scholar] [CrossRef]
- Musazzi, U.M.; Khalid, G.M.; Selmin, F.; Minghetti, P.; Cilurzo, F. Trends in the production methods of orodispersible films. Int. J. Pharm. 2020, 576, 118963. [Google Scholar] [CrossRef]
- Chaiwarit, T.; Aodsab, N.; Promyos, P.; Panraksa, P.; Udomsom, S.; Jantrawut, P. Fabrication of Hydroxypropyl Methylcellulose Orodispersible Film Loaded Mirtazapine Using a Syringe Extrusion 3D Printer. Sci. Pharm. 2022, 90, 68. [Google Scholar] [CrossRef]
- Azad, M.A.; Olawuni, D.; Kimbell, G.; Badruddoza, A.Z.M.; Hossain, M.S.; Sultana, T. Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials–Process Perspective. Pharmaceutics 2020, 12, 124. [Google Scholar] [CrossRef]
- Panraksa, P.; Udomsom, S.; Rachtanapun, P.; Chittasupho, C.; Ruksiriwanich, W.; Jantrawut, P. Hydroxypropyl Methylcellulose E15: A Hydrophilic Polymer for Fabrication of Orodispersible Film Using Syringe Extrusion 3D Printer. Polymers 2020, 12, 2666. [Google Scholar] [CrossRef]
- Nagar, P.; Chauhan, I.; Mohd, Y. Insights into polymers: Film formers in mouth dissolving films. Drug Invent. Today 2011, 3, 280–289. [Google Scholar]
- Łyszczarz, E.; Brniak, W.; Szafraniec-Szczęsny, J.; Majka, T.M.; Majda, D.; Zych, M.; Pielichowski, K.; Jachowicz, R. The Impact of the Preparation Method on the Properties of Orodispersible Films with Aripiprazole: Electrospinning vs. Casting and 3D Printing Methods. Pharmaceutics 2021, 13, 1122. [Google Scholar] [CrossRef]
- Steiner, D.; Tidau, M.; Finke, J.H. Embedding of Poorly Water-Soluble Drugs in Orodispersible Films—Comparison of Five Formulation Strategies. Pharmaceutics 2023, 15, 17. [Google Scholar] [CrossRef]
- Kittipongpatana, O.S.; Trisopon, K.; Wattanaarsakit, P.; Kittipongpatana, N. Fabrication and Characterization of Orodispersible Composite Film from Hydroxypropylmethyl Cellulose-Crosslinked Carboxymethyl Rice Starch. Membranes 2022, 12, 594. [Google Scholar] [CrossRef]
- Adrover, A.; Varani, G.; Paolicelli, P.; Petralito, S.; Di Muzio, L.; Casadei, M.A.; Tho, I. Experimental and Modeling Study of Drug Release from HPMC-Based Erodible Oral Thin Films. Pharmaceutics 2018, 10, 222. [Google Scholar] [CrossRef]
- Isac-García, J.; Dobado, J.A.; Calvo-Flores, F.G.; Martínez-García, H. (Eds.) Basic Operation Experiments. In Experimental Organic Chemistry; Academic Press: Cambridge, MA, USA, 2016; Chapter 7, pp. 207–238. [Google Scholar]
- Zabot, G.L. Decaffeination using supercritical carbon dioxide. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 11, pp. 255–278. [Google Scholar]
- Institute of Medicine (US) Committee on Military Nutrition Research. Caffeine for the Sustainment of Mental Task Performance: Formulations for Military Operations; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Willson, C. The clinical toxicology of caffeine: A review and case study. Toxicol. Rep. 2018, 5, 1140–1152. [Google Scholar] [CrossRef]
- Grzegorzewski, J.; Bartsch, F.; Köller, A.; König, M. Pharmacokinetics of Caffeine: A Systematic Analysis of Reported Data for Application in Metabolic Phenotyping and Liver Function Testing. Front. Pharmacol. 2021, 12, 752826. [Google Scholar] [CrossRef]
- Martínez-López, S.; Sarriá, B.; Baeza, G.; Mateos, R.; Bravo-Clemente, L. Pharmacokinetics of caffeine and its metabolites in plasma and urine after consuming a soluble green/roasted coffee blend by healthy subjects. Food Res. Int. 2014, 64, 125–133. [Google Scholar] [CrossRef]
- Shrestha, B.; Jawa, G. Caffeine citrate—Is it a silver bullet in neonatology? Pediatr. Neonatol. 2017, 58, 391–397. [Google Scholar] [CrossRef]
- Rikitake, M.; Notake, S.; Kurokawa, K.; Hata, J.; Seki, F.; Komaki, Y.; Oshiro, H.; Kawaguchi, N.; Haga, Y.; Yoshimaru, D.; et al. Effects of chronic caffeine intake and withdrawal on neural activity assessed via resting-state functional magnetic resonance imaging in mice. Heliyon 2022, 8, e11714. [Google Scholar] [CrossRef]
- Daly, J.W.; Shi, D.; Nikodijevic, O.; Jacobson, K.A. The role of adenosine receptors in the central action of caffeine. Pharmacopsychoecologia 1994, 7, 201–213. [Google Scholar]
- Nehlig, A.; Daval, J.L.; Debry, G. Caffeine and the central nervous system: Mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res. Brain Res. Rev. 1992, 17, 139–170. [Google Scholar] [CrossRef]
- Choi, O.H.; Shamim, M.T.; Padgett, W.L.; Daly, J.W. Caffeine and theophylline analogues: Correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors. Life Sci. 1988, 43, 387–398. [Google Scholar] [CrossRef]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef]
- Cappelletti, S.; Piacentino, D.; Sani, G.; Aromatario, M. Caffeine: Cognitive and physical performance enhancer or psychoactive drug? Curr. Neuropharmacol. 2015, 13, 71–88. [Google Scholar] [CrossRef]
- Fiani, B.; Zhu, L.; Musch, B.L.; Briceno, S.; Andel, R.; Sadeq, N.; Ansari, A.Z. The Neurophysiology of Caffeine as a Central Nervous System Stimulant and the Resultant Effects on Cognitive Function. Cureus 2021, 13, 15032. [Google Scholar] [CrossRef]
- O’Callaghan, F.; Muurlink, O.; Reid, N. Effects of caffeine on sleep quality and daytime functioning. Risk Manag. Health Policy 2018, 11, 263–271. [Google Scholar] [CrossRef]
- Camargo, M.; Camargo, C. Effects of Caffeine on the Organism—Literature Review. Open Access Libr. J. 2019, 6, 1–7. [Google Scholar] [CrossRef]
- Tavares, C.; Sakata, R.K. Caffeine in the Treatment of Pain. Braz. J. Anesth. 2012, 62, 387–401. [Google Scholar] [CrossRef]
- Evans, J.; Richards, J.R.; Battisti, A.S. Caffeine; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Karki, S.; Kim, H.; Na, S.-J.; Shin, D.; Jo, K.; Lee, J. Thin films as an emerging platform for drug delivery. Asian J. Pharm. Sci. 2016, 11, 559–574. [Google Scholar] [CrossRef]
- Kathpalia, H.; Gupte, A. An introduction to fast dissolving oral thin film drug delivery systems: A review. Curr. Drug Deliv. 2013, 10, 667–684. [Google Scholar] [CrossRef]
- Krampe, R.; Visser, J.C.; Frijlink, H.W.; Breitkreutz, J.; Woerdenbag, H.J.; Preis, M. Oromucosal film preparations: Points to consider for patient centricity and manufacturing processes. Expert Opin. Drug Deliv. 2016, 13, 493–506. [Google Scholar] [CrossRef]
- Scarpa, M.; Paudel, A.; Kloprogge, F.; Hsiao, W.K.; Bresciani, M.; Gaisford, S.; Orlu, M. Key acceptability attributes of orodispersible films. Eur. J. Pharm. Biopharm. 2018, 125, 131–140. [Google Scholar] [CrossRef]
- Senta-Loys, Z.; Bourgeois, S.; Pailler-Mattei, C.; Agusti, G.; Briançon, S.; Fessi, H. Formulation of orodispersible films for paediatric therapy: Investigation of feasibility and stability for tetrabenazine as drug model. J. Pharm. Pharm. 2017, 69, 582–592. [Google Scholar] [CrossRef]
- NanoVeda®. Available online: https://nanovedaindia.com/product/nanoveda-energy-strips/ (accessed on 31 March 2023).
- Aavishkar Oral Strips. Available online: https://www.indiamart.com/company/8892315/other-products.html#5784654788 (accessed on 31 March 2023).
- BonAyu Life Sciences. Available online: https://bonayu.co.uk/products/caffeine-energy-strips (accessed on 31 March 2023).
- Revvies Energy. Available online: https://revviesenergy.co.nz/products/starter-pack (accessed on 31 March 2023).
- Draskovic, M.; Turkovic, E.; Vasiljevic, I.; Trifkovic, K.; Cvijic, S.; Vasiljevic, D.; Parojcic, J. Comprehensive evaluation of formulation factors affecting critical quality attributes of casted orally disintegrating films. J. Drug Deliv. Sci. Technol. 2020, 56, 101614. [Google Scholar] [CrossRef]
- Sultana, F.; Arafat, M.; Pathan, S. Preparation and evaluation of fast dissolving oral thin film of caffeine. Int. J. Pharm. Biol. Sci. 2013, 3, 153–161. [Google Scholar]
- Niese, S.; Quodbach, J. Application of a chromatic confocal measurement system as new approach for in-line wet film thickness determination in continuous oral film manufacturing processes. Int. J. Pharm. 2018, 551, 203–211. [Google Scholar] [CrossRef]
- Jadhav, J.K.; Sreenivas, S.A. Formulation and in vitro evaluation of indomethacin transdermal patches using polymers HPMC E5 and Ethyl cellulose. Int. J. Pharm. Sci. 2012, 4, 550–556. [Google Scholar]
- Tamer, M.A.; Hammid, S.N.A.; Ahmed, B. Formulation and in vitro evaluation of bromocriptine mesylate as fast dissolving oral film. Int. J. Appl. Pharm. 2018, 10, 7–20. [Google Scholar] [CrossRef]
- Khalid, G.M.; Selmin, F.; Musazzi, U.M.; Gennari, C.G.; Minghetti, P.; Cilurzo, F. Trends in the Characterization Methods of Orodispersible Films. Curent Drug Deliv. 2021, 18, 935–946. [Google Scholar]
- Karthik, R.; Keerthy, H.S.; Yadav, R.A. Review on Fast Dissolving Oral Films. Asian J. Pharm. Res. Dev. 2021, 9, 122–128. [Google Scholar]
- Verma, S.; Malviya, R.; Sharma, P. Extraction, Characterization and Evaluation of Film Forming Capacity of Natural Polymer. Drug Deliv. Lett. 2014, 4, 244–253. [Google Scholar] [CrossRef]
- Saab, M.; Mehanna, M.M. Disintegration time of orally dissolving films: Various methodologies and in-vitro/in-vivo correlation. Die Pharm.-Int. J. Pharm. Sci. 2019, 74, 227–230. [Google Scholar] [CrossRef]
- She, B.; Shen, C.; Yuan, X.; Bai, J.; Lv, Q.; Xu, H.; Dai, L.; Yu, C.; Han, J.; Yuan, H. Development and characterization of an orodispersible film containing drug nanoparticles. Eur. J. Pharm. Biopharm. 2013, 85, 1348–1356. [Google Scholar]
- Shahzad, Y.; Maqbool, M.; Hussain, T.; Yousaf, A.M.; Khan, I.U.; Mahmood, T.; Jamshaid, M. Natural and semisynthetic polymers blended orodispersible films of citalopram. Nat. Prod. Res. 2019, 34, 16–25. [Google Scholar] [CrossRef]
- Jain, R.A.; Mundada, A.S. Formulation, development and optimization of fast dissolving oral film of montelukast sodium. Int. J. Drug Dev. Res. 2015, 7, 40–46. [Google Scholar]
- Ali, M.S.; Vijendar, C.; Sudheer, K.D.; Krishnaveni, J. Formulation and Evaluation of Fast Dissolving Oral Films of Diazepam. J. Pharmacovigil. 2016, 4, 1–5. [Google Scholar]
- Ibrahim, Y.H.-E.Y.; Regdon, G., Jr.; Kristó, K.; Kelemen, A.; Adam, M.E.; Hamedelniel, E.I.; Sovány, T. Design and characterization of chitosan/citrate films as carrier for oral macromolecule delivery. Eur. J. Pharm. Sci. 2020, 146, 1–10. [Google Scholar]
- Dwivedy, B.N.; Dabral, P.; Kumar, R. Preparation and evaluation of mouth dissolving film of pantoprazole sodium. World J. Pharm. Pharmceut. Sci. 2014, 3, 1564–1576. [Google Scholar]
- Speer, I.; Steiner, D.; Thabet, Y.; Breitkreutz, J.; Kwade, A. Comparative study on disintegration methods for oral film preparations. Eur. J. Pharm. Biopharm. 2018, 132, 50–61. [Google Scholar] [CrossRef]
- Khan, Q.; Siddique, M.I.; Rasool, F.; Naeem, M.; Usman, M.; Zaman, M. Development and Characterization of Orodispersible Film Containing Cefixime Trihydrate. Drug Dev. Ind. Pharm. 2020, 46, 2070–2080. [Google Scholar] [CrossRef]
Brand Name/Formulation Code | API | Film-Forming Agent | Reference |
---|---|---|---|
CAF-ODFs Registered as Dietary Supplements | |||
Nanoveda® Energy strips | Caffeine + L-thiamine + Vitamin B12 | Pullulan | [39] |
Aavishkar oral strips (Caffeine strips) | Caffeine | ❖ | [40] |
BonAyu® Caffeine energy strips | 100 mg Caffeine 4 mg Vitamin B6 | Maltodextrin, HPC | [41] |
Revvies® Energy strips | 40 mg Caffeine | Starch, Hydroxypropyl cellulose | [42] |
CAF ODF outlined in the literature | |||
H11/K11/H12 | Caffeine | PVA, HPC | [43] |
F1–F3 | Caffeine | HPMC 2910 (15 cPs) | [44] |
F4–F6 | Caffeine | Sodium alginate + sodium starch glycolate | [44] |
F7–F9 | Caffeine | Kollicoat ®IR white | [44] |
5%, 10%, 15% w/w | Caffeine | Blanose Carboxymethyl Cellulose Type 7HF-PH | [3] |
1% (w/w) | Caffeine | HPMC/HPMC + PVA | [45] |
Ingredient % (w/w) | Formulation Code | |||
---|---|---|---|---|
CAF1 | CAF2 | CAF3 | CAF4 | |
HPMC E 5 | 8 | 8 | 9 | 9 |
1,2-propylene glycol | 10 | 10 | 10 | 10 |
Sucralose | 0.2 | 0.2 | 0.2 | 0.2 |
CAF | 2.88 | 2.88 | 2.88 | 2.88 |
CA | - | 2.88 | 2.88 | - |
SB | - | - | - | 2.88 |
Ethanol 96% (v/v) | 39.46 | 38.00 | 37.50 | 37.50 |
Distilled water | 39.46 | 38.00 | 37.50 | 37.50 |
Dispersion weight | 100 | 100 | 100 | 100 |
Liquid Used | Method Employed | Reference |
---|---|---|
Phosphate buffer, pH = 6.8 Phosphate buffer, pH = 6.8 Saliva | Petri dish Drop method In vivo | [1] |
Simulated salivary fluid | Oral cavity model | [3] |
Phosphate buffer, pH = 6.8 | Clamp method | [5] |
Simulated salivary fluid | Petri dish method Slide frame method | [6] |
Simulated salivary fluid | Clamp method | [8] |
Simulated salivary fluid | Clamp method | [10] |
Distilled water | Slide frame method Modified pharmacopoeial method | [12] |
Deionized water | Petri dish method Drop method | [37] |
Simulated saliva | Glass beaker with 20 mL of simulated saliva | [38] |
Salivary simulated fluid | Clamp method | [43] |
Distilled water | Glass beaker with 25 mL distilled water, swirling every 10 s | [44] |
Distilled water | Petri dish method | [47] |
Phosphate buffer, pH = 6.75 | Clamp method Cell method Frame method Modified USP method Agar plate method | [51] |
Water | Pharmacopoeial method | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlad, R.-A.; Pintea, A.; Coaicea, M.; Antonoaea, P.; Rédai, E.M.; Todoran, N.; Ciurba, A. Preparation and Evaluation of Caffeine Orodispersible Films: The Influence of Hydrotropic Substances and Film-Forming Agent Concentration on Film Properties. Polymers 2023, 15, 2034. https://doi.org/10.3390/polym15092034
Vlad R-A, Pintea A, Coaicea M, Antonoaea P, Rédai EM, Todoran N, Ciurba A. Preparation and Evaluation of Caffeine Orodispersible Films: The Influence of Hydrotropic Substances and Film-Forming Agent Concentration on Film Properties. Polymers. 2023; 15(9):2034. https://doi.org/10.3390/polym15092034
Chicago/Turabian StyleVlad, Robert-Alexandru, Andrada Pintea, Mădălina Coaicea, Paula Antonoaea, Emőke Margit Rédai, Nicoleta Todoran, and Adriana Ciurba. 2023. "Preparation and Evaluation of Caffeine Orodispersible Films: The Influence of Hydrotropic Substances and Film-Forming Agent Concentration on Film Properties" Polymers 15, no. 9: 2034. https://doi.org/10.3390/polym15092034
APA StyleVlad, R. -A., Pintea, A., Coaicea, M., Antonoaea, P., Rédai, E. M., Todoran, N., & Ciurba, A. (2023). Preparation and Evaluation of Caffeine Orodispersible Films: The Influence of Hydrotropic Substances and Film-Forming Agent Concentration on Film Properties. Polymers, 15(9), 2034. https://doi.org/10.3390/polym15092034