Research Progress and Trends on Utilization of Lignocellulosic Residues as Supports for Enzyme Immobilization via Advanced Bibliometric Analysis
Abstract
:1. Introduction
- RQ1. What are the advances in scientific production on lignocellulosic biomass and enzymatic immobilization?
- RQ2. Research hotspots (keywords) that stand out in studies of lignocellulosic biomass and enzymatic immobilization?
- RQ3. Which authors, organizations, and countries stand out in studies on lignocellulosic biomass and enzymatic immobilization?
- RQ4. What are the main emerging research subfields of lignocellulosic biomass and enzyme immobilization in recent literature?
2. Methodology
2.1. Data Source
2.2. Data Analysis
3. Results and Discussion
3.1. Enzymatic Immobilization
3.2. Supports
3.2.1. Agroindustrial Waste
3.2.2. Lignocellulosic Materials
3.3. Bibliometric Analysis
3.3.1. Publication Result: Overall Results
3.3.2. Distribution of Scientific Journals
3.3.3. Distribution by Countries, Organizations, and Authors
3.3.4. The Most Cited Articles
3.3.5. The Research Areas
3.4. Hot Research Topics
3.4.1. Quantitative Analysis of Frequent Keywords
3.4.2. Research Hotspots
Constant Fields of Investigation
4. Future Trends
- Increase and strengthening of cooperation between emerging countries to enhance research with lignocellulosic materials;
- Strengthening of relations between organizations with researchers that follow the same objective, guaranteeing an exchange of data and information that will be significant for the development of this area, where enzymatic immobilization in lignocellulosic materials is carried out;
- The highlighted keywords analyzed showed the future trend for this area, where these new biomaterials will be applied in the most diverse research;
- Finally, an increase in the applicability of these materials is expected in order to reduce the impacts involved in incorrect disposal in the environment.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Unugul, T.; Kutluk, T.; Gürkaya Kutluk, B.; Kapucu, N. Environmentally Friendly Processes from Coffee Wastes to Trimethylolpropane Esters to Be Considered Biolubricants. J. Air Waste Manag. Assoc. 2020, 70, 1198–1215. [Google Scholar] [CrossRef]
- Papadaki, A.; Fernandes, K.V.; Chatzifragkou, A.; Aguieiras, E.C.G.; da Silva, J.A.C.; Fernandez-Lafuente, R.; Papanikolaou, S.; Koutinas, A.; Freire, D.M.G. Bioprocess Development for Biolubricant Production Using Microbial Oil Derived via Fermentation from Confectionery Industry Wastes. Bioresour. Technol. 2018, 267, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Adeleke, A.A.; Odusote, J.K.; Ikubanni, P.P.; Agboola, O.O.; Balogun, A.O.; Lasode, O.A. Tumbling Strength and Reactivity Characteristics of Hybrid Fuel Briquette of Coal and Biomass Wastes Blends. Alex. Eng. J. 2021, 60, 4619–4625. [Google Scholar] [CrossRef]
- Jaiswal, K.K.; Kumar, V.; Vlaskin, M.S.; Sharma, N.; Rautela, I.; Nanda, M.; Arora, N.; Singh, A.; Chauhan, P.K. Microalgae Fuel Cell for Wastewater Treatment: Recent Advances and Challenges. J. Water Process Eng. 2020, 38, 101549. [Google Scholar] [CrossRef]
- Darwesh, O.M.; Matter, I.A.; Eida, M.F. Development of Peroxidase Enzyme Immobilized Magnetic Nanoparticles for Bioremediation of Textile Wastewater Dye. J. Environ. Chem. Eng. 2019, 7, 102805. [Google Scholar] [CrossRef]
- Arun, S.; Sinharoy, A.; Pakshirajan, K.; Lens, P.N.L. Algae Based Microbial Fuel Cells for Wastewater Treatment and Recovery of Value-Added Products. Renew. Sustain. Energy Rev. 2020, 132, 110041. [Google Scholar] [CrossRef]
- Do, J.-M.; Jo, S.-W.; Kim, I.-S.; Na, H.; Lee, J.H.; Kim, H.S.; Yoon, H.-S. A Feasibility Study of Wastewater Treatment Using Domestic Microalgae and Analysis of Biomass for Potential Applications. Water 2019, 11, 2294. [Google Scholar] [CrossRef]
- Chu, R.; Li, S.; Zhu, L.; Yin, Z.; Hu, D.; Liu, C.; Mo, F. A Review on Co-Cultivation of Microalgae with Filamentous Fungi: Efficient Harvesting, Wastewater Treatment and Biofuel Production. Renew. Sustain. Energy Rev. 2021, 139, 110689. [Google Scholar] [CrossRef]
- García-Galán, M.J.; Arashiro, L.; Santos, L.H.M.L.M.; Insa, S.; Rodríguez-Mozaz, S.; Barceló, D.; Ferrer, I.; Garfí, M. Fate of Priority Pharmaceuticals and Their Main Metabolites and Transformation Products in Microalgae-Based Wastewater Treatment Systems. J. Hazard. Mater. 2020, 390, 121771. [Google Scholar] [CrossRef]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of Lignocellulosic Hydrolysates. I: Inhibition and Detoxification. Bioresour. Technol. 2000, 74, 17–24. [Google Scholar] [CrossRef]
- Rodríguez-Restrepo, Y.A.; Orrego, C.E. Immobilization of Enzymes and Cells on Lignocellulosic Materials. Environ. Chem. Lett. 2020, 18, 787–806. [Google Scholar] [CrossRef]
- Thapa, S.; Mishra, J.; Arora, N.; Mishra, P.; Li, H.; O′Hair, J.; Bhatti, S.; Zhou, S. Microbial Cellulolytic Enzymes: Diversity and Biotechnology with Reference to Lignocellulosic Biomass Degradation. Rev. Environ. Sci. Biotechnol. 2020, 19, 621–648. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, W.; Yang, Z.; Yang, X.; Wang, N.; Yu, X. Novel Magnetic Cross-Linked Cellulase Aggregates with a Potential Application in Lignocellulosic Biomass Bioconversion. Molecules 2017, 22, 269. [Google Scholar] [CrossRef]
- Bassan, J.; de Souza Bezerra, T.; Peixoto, G.; da Cruz, C.; Galán, J.; Vaz, A.; Garrido, S.; Filice, M.; Monti, R. Immobilization of Trypsin in Lignocellulosic Waste Material to Produce Peptides with Bioactive Potential from Whey Protein. Materials 2016, 9, 357. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, A.; Morya, V.; Ghoroi, C. Enzyme-Mimetic Activity of Sugar Cane Juice Stabilized CuO Nanospheres and CuO/GO Nanocomposite: Green Synthesis and Applications. Colloid. Interface Sci. Commun. 2020, 35, 100239. [Google Scholar] [CrossRef]
- Susmita Devi, L.; Kalita, S.; Mukherjee, A.; Kumar, S. Carnauba Wax-Based Composite Films and Coatings: Recent Advancement in Prolonging Postharvest Shelf-Life of Fruits and Vegetables. Trends Food Sci. Technol. 2022, 129, 296–305. [Google Scholar] [CrossRef]
- de Souza, T.C.; de S. Fonseca, T.; da Costa, J.A.; Rocha, M.V.P.; de Mattos, M.C.; Fernandez-Lafuente, R.; Gonçalves, L.R.B.; dos Santos, J.C.S. Cashew Apple Bagasse as a Support for the Immobilization of Lipase B from Candida Antarctica: Application to the Chemoenzymatic Production of (R)-Indanol. J. Mol. Catal. B Enzym. 2016, 130, 58–69. [Google Scholar] [CrossRef]
- Chagas, L.H.; Zonetti, P.C.; Souza, E.F.; Pandoli, O.G.; Alves, O.C.; Rabello, C.R.K.; Moreira, C.R.; Silveira, E.B.; Mendes, F.M.T.; Gaspar, A.B.; et al. Sugar-Cane Based Biorefineries: The Butadiene Synthesis from Ethanol Employing ZnZr/SiO2 Catalyst. Mol. Catal. 2022, 531, 112690. [Google Scholar] [CrossRef]
- Livage, J.; Coradin, T. Encapsulation of Enzymes, Antibodies, and Bacteria. In Handbook of Sol-Gel Science and Technology; Springer International Publishing: Cham, Switzerland, 2018; pp. 2909–2931. [Google Scholar]
- Brena, B.; González-Pombo, P.; Batista-Viera, F. Immobilization of Enzymes: A Literature Survey. In Immobilization of Enzymes and Cells, 3rd ed.; Springer: New York, NY, USA, 2013; pp. 15–31. [Google Scholar]
- Li, S.; Yang, X.; Yang, S.; Zhu, M.; Wang, X. Technology prospecting on enzymes: Application, marketing and engineering. Comput. Struct. Biotechnol. J. 2012, 2, e201209017. [Google Scholar] [CrossRef]
- Valério, R.B.R.; Cavalcante, A.L.G.; Mota, G.F.; de Sousa, I.G.; da Silva Souza, J.E.; Cavalcante, F.T.T.; de Aguiar Falcão, I.R.; da Silva Moreira, K. Understanding the Biocatalytic Potential of Lipase from Rhizopus Chinensis. Biointerface Res. Appl. Chem. 2021, 12, 4230–4260. [Google Scholar] [CrossRef]
- Souza, J.E.S.; Monteiro, R.R.C.; Rocha, T.G.; Moreira, K.S.; Cavalcante, F.T.T.; de Sousa Braz, A.K.; de Souza, M.C.M.; dos Santos, J.C.S. Sonohydrolysis Using an Enzymatic Cocktail in the Preparation of Free Fatty Acid. 3 Biotech. 2020, 10, 254. [Google Scholar] [CrossRef] [PubMed]
- Rocha, T.G.; de L. Gomes, P.H.; de Souza, M.C.M.; Monteiro, R.R.C.; dos Santos, J.C.S. Lipase Cocktail for Optimized Biodiesel Production of Free Fatty Acids from Residual Chicken Oil. Catal. Lett. 2021, 151, 1155–1166. [Google Scholar] [CrossRef]
- Chapman, J.; Ismail, A.E.; Dinu, C.Z. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks. Catalysts 2018, 8, 238. [Google Scholar] [CrossRef]
- Zhu, D.; Wu, Q.; Hua, L. Industrial Enzymes. In Comprehensive Biotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–13. [Google Scholar]
- Rufer, A.C. Drug Discovery for Enzymes. Drug Discov. Today 2021, 26, 875–886. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef]
- Secundo, F. Conformational Changes of Enzymes upon Immobilisation. Chem. Soc. Rev. 2013, 42, 6250. [Google Scholar] [CrossRef]
- Meghwanshi, G.K.; Kaur, N.; Verma, S.; Dabi, N.K.; Vashishtha, A.; Charan, P.D.; Purohit, P.; Bhandari, H.S.; Bhojak, N.; Kumar, R. Enzymes for Pharmaceutical and Therapeutic Applications. Biotechnol. Appl. Biochem. 2020, 67, 586–601. [Google Scholar] [CrossRef] [PubMed]
- Schmid, R.D.; Verger, R. Lipases: Interfacial Enzymes with Attractive Applications. Angew. Chem. Int. Ed. 1998, 37, 1608–1633. [Google Scholar] [CrossRef]
- Pierre, A.C. The Sol-Gel Encapsulation of Enzymes. Biocatal. Biotransformation 2004, 22, 145–170. [Google Scholar] [CrossRef]
- Drout, R.J.; Robison, L.; Farha, O.K. Catalytic Applications of Enzymes Encapsulated in Metal–Organic Frameworks. Coord. Chem. Rev. 2019, 381, 151–160. [Google Scholar] [CrossRef]
- de Pina Mariz, B.; Carvalho, S.; Batalha, I.L.; Pina, A.S. Artificial Enzymes Bringing Together Computational Design and Directed Evolution. Org. Biomol. Chem. 2021, 19, 1915–1925. [Google Scholar] [CrossRef]
- Liu, D.-M.; Chen, J.; Shi, Y.-P. Advances on Methods and Easy Separated Support Materials for Enzymes Immobilization. TrAC Trends Anal. Chem. 2018, 102, 332–342. [Google Scholar] [CrossRef]
- Farhan, L.O.; Mehdi, W.A.; Taha, E.M.; Farhan, A.M.; Mehde, A.A.; Özacar, M. Various Type Immobilizations of Isocitrate Dehydrogenases Enzyme on Hyaluronic Acid Modified Magnetic Nanoparticles as Stable Biocatalysts. Int. J. Biol. Macromol. 2021, 182, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Homaei, A.A.; Sariri, R.; Vianello, F.; Stevanato, R. Enzyme Immobilization: An Update. J. Chem. Biol. 2013, 6, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, M.P.; Monteiro, R.R.C.; Silva, F.F.M.; Lemos, T.L.G.; Fernandez-Lafuente, R.; Gonçalves, L.R.B.; dos Santos, J.C.S. Modulation of Lecitase Properties via Immobilization on Differently Activated Immobead-350: Stabilization and Inversion of Enantiospecificity. Process Biochem. 2019, 87, 128–137. [Google Scholar] [CrossRef]
- de Sousa, I.G.; Mota, G.F.; Cavalcante, A.L.G.; Rocha, T.G.; da Silva Sousa, P.; Holanda Alexandre, J.Y.N.; da Silva Souza, J.E.; Neto, F.S.; Cavalcante, F.T.T.; Lopes, A.A.S.; et al. Renewable Processes of Synthesis of Biolubricants Catalyzed by Lipases. J. Env. Chem. Eng. 2023, 11, 109006. [Google Scholar] [CrossRef]
- Alexandre, J.Y.N.H.; Cavalcante, F.T.T.; Freitas, L.M.; Castro, A.P.; Borges, P.T.; de Sousa Junior, P.G.; Filho, M.N.R.; Lopes, A.A.S.; da Fonseca, A.M.; Lomonaco, D.; et al. A Theoretical and Experimental Study for Enzymatic Biodiesel Production from Babassu Oil (Orbignya Sp.) Using Eversa Lipase. Catalysts 2022, 12, 1322. [Google Scholar] [CrossRef]
- Sales, M.B.; Borges, P.T.; Filho, M.N.R.; da Silva, L.R.M.; Castro, A.P.; Lopes, A.A.S.; de Lima, R.K.C.; de Sousa Rios, M.A.; dos Santos, J.C.S. Sustainable Feedstocks and Challenges in Biodiesel Production: An Advanced Bibliometric Analysis. Bioengineering 2022, 9, 539. [Google Scholar] [CrossRef]
- Cavalcante, F.T.T.; da Fonseca, A.M.; Alexandre, J.Y.N.H.; dos Santos, J.C.S. A Stepwise Docking and Molecular Dynamics Approach for Enzymatic Biolubricant Production Using Lipase Eversa® Transform as a Biocatalyst. Ind. Crops Prod. 2022, 187, 115450. [Google Scholar] [CrossRef]
- da Fonseca, A.M.; de Freitas, Í.B.; Soares, N.B.; de Araújo, F.A.; Gaieta, E.M.; dos Santos, J.C.; Sobrinho, A.C.; Marinho, E.S.; Colares, R.P. Synthesis, Biological Activity, and In Silico Study of Bioesters Derived from Bixin by the CALB Enzyme. Biointerface Res. Appl. Chem. 2021, 12, 5901–5917. [Google Scholar] [CrossRef]
- Rueda, N.; dos Santos, J.C.S.; Torres, R.; Barbosa, O.; Ortiz, C.; Fernandez-Lafuente, R. Reactivation of Lipases by the Unfolding and Refolding of Covalently Immobilized Biocatalysts. RSC Adv. 2015, 5, 55588–55594. [Google Scholar] [CrossRef]
- Adlercreutz, P. Immobilisation and Application of Lipases in Organic Media. Chem. Soc. Rev. 2013, 42, 6406. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.R.C.; dos Santos, J.C.S.; Alcántara, A.R.; Fernandez-Lafuente, R. Enzyme-Coated Micro-Crystals: An Almost Forgotten but Very Simple and Elegant Immobilization Strategy. Catalysts 2020, 10, 891. [Google Scholar] [CrossRef]
- Cabrera, M.P.; da Fonseca, T.F.; de Souza, R.V.B.; de Assis, C.R.D.; Marcatoma, J.Q.; Maciel, J.D.C.; Neri, D.F.M.; Soria, F.; Carvalho, L.B., Jr. Polyaniline-Coated Magnetic Diatomite Nanoparticles as a Matrix for Immobilizing Enzymes. Appl. Surf. Sci. 2018, 457, 21–29. [Google Scholar] [CrossRef]
- Cavalcante, A.L.G.; Chaves, A.V.; Fechine, P.B.A.; Alexandre, J.Y.N.H.; Freire, T.M.; Davi, D.M.B.; Neto, F.S.; de Sousa, I.G.; da Silva Moreira, K.; de Oliveira, A.L.B.; et al. Chemical Modification of Clay Nanocomposites for the Improvement of the Catalytic Properties of Lipase A from Candida Antarctica. Process Biochem. 2022, 120, 1–14. [Google Scholar] [CrossRef]
- Monteiro, R.R.C.; de Oliveira, A.L.B.; de Menezes, F.L.; de Souza, M.C.M.; Fechine, P.B.A.; dos Santos, J.C.S. Improvement of Enzymatic Activity and Stability of Lipase A from Candida Antartica onto Halloysite Nanotubes with Taguchi Method for Optimized Immobilization. Appl. Clay Sci. 2022, 228, 106634. [Google Scholar] [CrossRef]
- Bilal, M.; Rashid, E.U.; Zdarta, J.; dos Santos, J.C.S.; Fernandes, P.C.B.; Cheng, H.; Jesionowski, T. Engineering Magnetic Nanobiocatalytic Systems with Multipurpose Functionalities for Biocatalysis, Biotechnology and Bioprocess Applications. Sustain. Chem. Pharm. 2022, 30, 100866. [Google Scholar] [CrossRef]
- de Sousa, I.G.; Valério Chaves, A.; de Oliveira, A.L.B.; da Silva Moreira, K.; de Sousa Junior, P.G.; Neto, F.S.; de Carvalho, S.C.F.; Valério, R.B.R.; Lima, G.V.; Lopes, A.A.S.; et al. A Novel Hybrid Biocatalyst from Immobilized Eversa ® Transform 2.0 Lipase and Its Application in Biolubricant Synthesis. Biocatal. Biotransformation 2022, 41, 1–22. [Google Scholar] [CrossRef]
- Rodrigues, A.F.S.; da Silva, A.F.; da Silva, F.L.B.; dos Santos, K.M.; de Oliveira, M.P.; Nobre, M.M.R.; Catumba, B.D.; Sales, M.B.; Silva, A.R.M.; Braz, A.K.S.; et al. A Scientometric Analysis of Research Progress and Trends in the Design of Laccase Biocatalysts for the Decolorization of Synthetic Dyes. Process Biochem. 2023, 126, 272–291. [Google Scholar] [CrossRef]
- Datta, S.; Christena, L.R.; Rajaram, Y.R.S. Enzyme Immobilization: An Overview on Techniques and Support Materials. 3 Biotech 2013, 3, 1–9. [Google Scholar] [CrossRef]
- Duraiarasan, S.; Razack, S.A.; Manickam, A.; Munusamy, A.; Syed, M.B.; Ali, M.Y.; Ahmed, G.M.; Mohiuddin, M.S. Direct Conversion of Lipids from Marine Microalga C. Salina to Biodiesel with Immobilised Enzymes Using Magnetic Nanoparticle. J. Environ. Chem. Eng. 2016, 4, 1393–1398. [Google Scholar] [CrossRef]
- Verma, M.L.; Barrow, C.J.; Puri, M. Nanobiotechnology as a Novel Paradigm for Enzyme Immobilisation and Stabilisation with Potential Applications in Biodiesel Production. Appl. Microbiol. Biotechnol. 2013, 97, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Ren, S.; Sun, B.; Jia, S. Optimization Protocols and Improved Strategies for Metal-Organic Frameworks for Immobilizing Enzymes: Current Development and Future Challenges. Coord. Chem. Rev. 2018, 370, 22–41. [Google Scholar] [CrossRef]
- Bezerra, R.M.; Monteiro, R.R.C.; Neto, D.M.A.; da Silva, F.F.M.; de Paula, R.C.M.; de Lemos, T.L.G.; Fechine, P.B.A.; Correa, M.A.; Bohn, F.; Gonçalves, L.R.B.; et al. A New Heterofunctional Support for Enzyme Immobilization: PEI Functionalized Fe3O4 MNPs Activated with Divinyl Sulfone. Application in the Immobilization of Lipase from Thermomyces Lanuginosus. Enzym. Microb. Technol. 2020, 138, 109560. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.R.C.; Virgen-Ortiz, J.J.; Berenguer-Murcia, Á.; da Rocha, T.N.; dos Santos, J.C.S.; Alcántara, A.R.; Fernandez-Lafuente, R. Biotechnological Relevance of the Lipase A from Candida Antarctica. Catal. Today 2021, 362, 141–154. [Google Scholar] [CrossRef]
- Monteiro, R.R.C.; Neto, D.M.A.; Fechine, P.B.A.; Lopes, A.A.S.; Gonçalves, L.R.B.; dos Santos, J.C.S.; de Souza, M.C.M.; Fernandez-Lafuente, R. Ethyl Butyrate Synthesis Catalyzed by Lipases A and B from Candida Antarctica Immobilized onto Magnetic Nanoparticles. Improvement of Biocatalysts’ Performance under Ultrasonic Irradiation. Int. J. Mol. Sci. 2019, 20, 5807. [Google Scholar] [CrossRef]
- Rueda, N.; dos Santos, J.C.S.; Torres, R.; Ortiz, C.; Barbosa, O.; Fernandez-Lafuente, R. Immobilization of Lipases on Heterofunctional Octyl–Glyoxyl Agarose Supports. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2016; pp. 73–85. [Google Scholar]
- de Oliveira, A.L.B.; Cavalcante, F.T.T.; Moreira, K.S.; Monteiro, R.R.C.; Rocha, T.G.; Souza, J.E.S.; da Fonseca, A.M.; Lopes, A.A.S.; Guimarães, A.P.; de Lima, R.K.C.; et al. Lipases Immobilized onto Nanomaterials as Biocatalysts in Biodiesel Production: Scientific Context, Challenges, and Opportunities. Rev. Virtual De Química 2021, 13, 875–891. [Google Scholar] [CrossRef]
- Silva, A.; Alexandre, J.; Souza, J.; Neto, J.; de Sousa Júnior, P.; Rocha, M.; dos Santos, J. The Chemistry and Applications of Metal–Organic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems. Molecules 2022, 27, 4529. [Google Scholar] [CrossRef]
- da Fonseca, A.M.; dos Santos, J.C.S.; de Souza, M.C.M.; de Oliveira, M.M.; Colares, R.P.; de Lemos, T.L.G.; Braz-Filho, R. The Use of New Hydrogel Microcapsules in Coconut Juice as Biocatalyst System for the Reaction of Quinine. Ind. Crops Prod. 2020, 145, 111890. [Google Scholar] [CrossRef]
- Carvalho, T.; Pereira, A.D.S.; Bonomo, R.C.; Franco, M.; Finotelli, P.V.; Amaral, P.F. Simple Physical Adsorption Technique to Immobilize Yarrowia Lipolytica Lipase Purified by Different Methods on Magnetic Nanoparticles: Adsorption Isotherms and Thermodynamic Approach. Int. J. Biol. Macromol. 2020, 160, 889–902. [Google Scholar] [CrossRef]
- Binhayeeding, N.; Yunu, T.; Pichid, N.; Klomklao, S.; Sangkharak, K. Immobilisation of Candida Rugosa Lipase on Polyhydroxybutyrate via a Combination of Adsorption and Cross-Linking Agents to Enhance Acylglycerol Production. Process Biochem. 2020, 95, 174–185. [Google Scholar] [CrossRef]
- Catumba, B.D.; Sales, M.B.; Borges, P.T.; Filho, M.N.R.; Lopes, A.A.S.; Rios, M.A.D.S.; Desai, A.S.; Bilal, M.; dos Santos, J.C.S. Sustainability and Challenges in Hydrogen Production: An Advanced Bibliometric Analysis. Int. J. Hydrog. Energy 2023, 48, 7975–7992. [Google Scholar] [CrossRef]
- Jiang, A.; Ginocchio, L.A.; Rosenkrantz, A.B. Associations Between Academic Rank and Advanced Bibliometric Indices Among United States Academic Radiologists. Acad. Radiol. 2016, 23, 1568–1572. [Google Scholar] [CrossRef] [PubMed]
- Dutra, L.D.S.; Pinto, M.C.C.; Cipolatti, E.P.; Aguieiras, E.C.G.; Manoel, E.A.; Greco-Duarte, J.; Freire, D.M.G.; Pinto, J.C. How the Biodiesel from Immobilized Enzymes Production Is Going on: An Advanced Bibliometric Evaluation of Global Research. Renew. Sustain. Energy Rev. 2022, 153, 111765. [Google Scholar] [CrossRef]
- Bornmann, L.; Leydesdorff, L. The Validation of (Advanced) Bibliometric Indicators through Peer Assessments: A Comparative Study Using Data from InCites and F1000. J. Inf. 2013, 7, 286–291. [Google Scholar] [CrossRef]
- Malekli, M.; Aslani, A.; Zolfaghari, Z.; Zahedi, R.; Moshari, A. Advanced Bibliometric Analysis on the Development of Natural Gas Combined Cycle Power Plant with CO2 Capture and Storage Technology. Sustain. Energy Technol. Assess. 2022, 52, 102339. [Google Scholar] [CrossRef]
- Marvuglia, A.; Havinga, L.; Heidrich, O.; Fonseca, J.; Gaitani, N.; Reckien, D. Advances and Challenges in Assessing Urban Sustainability: An Advanced Bibliometric Review. Renew. Sustain. Energy Rev. 2020, 124, 109788. [Google Scholar] [CrossRef]
- Rosenkrantz, A.B.; Jiang, A. Associations Between NIH Funding and Advanced Bibliometric Indices Among Radiological Investigators. Acad. Radiol. 2016, 23, 669–674. [Google Scholar] [CrossRef]
- Catani, L.; Grassi, E.; Cocozza di Montanara, A.; Guidi, L.; Sandulli, R.; Manachini, B.; Semprucci, F. Essential Oils and Their Applications in Agriculture and Agricultural Products: A Literature Analysis through VOSviewer. Biocatal. Agric. Biotechnol. 2022, 45, 102502. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Y.; Li, L. A Comparative Study of Credit Risk Infection at Domestic and Abroad Based on Knowledge Map. Procedia Comput. Sci. 2022, 199, 215–222. [Google Scholar] [CrossRef]
- Lima, P.J.M.; da Silva, R.M.; Neto, C.A.C.G.; e Silva, N.C.G.; Souza, J.E.D.S.; Nunes, Y.L.; dos Santos, J.C.S. An Overview on the Conversion of Glycerol to Value-added Industrial Products via Chemical and Biochemical Routes. Biotechnol. Appl. Biochem. 2022, 69, 2794–2818. [Google Scholar] [CrossRef]
- Virgen-Ortíz, J.J.; dos Santos, J.C.S.; Ortiz, C.; Berenguer-Murcia, Á.; Barbosa, O.; Rodrigues, R.C.; Fernandez-Lafuente, R. Lecitase Ultra: A Phospholipase with Great Potential in Biocatalysis. Mol. Catal. 2019, 473, 110405. [Google Scholar] [CrossRef]
- Moreira, K.S.; Júnior, L.S.M.; Monteiro, R.R.C.; de Oliveira, A.L.B.; Valle, C.P.; Freire, T.M.; Fechine, P.B.A.; de Souza, M.C.M.; Fernandez-Lorente, G.; Guisan, J.M.; et al. Optimization of the Production of Enzymatic Biodiesel from Residual Babassu Oil (Orbignya Sp.) via RSM. Catalysts 2020, 10, 414. [Google Scholar] [CrossRef]
- Mota, G.F.; de Sousa, I.G.; de Oliveira, A.L.B.; Cavalcante, A.L.G.; da Silva Moreira, K.; Cavalcante, F.T.T.; da Silva Souza, J.E.; de Aguiar Falcão, Í.R.; Rocha, T.G.; Valério, R.B.R.; et al. Biodiesel Production from Microalgae Using Lipase-Based Catalysts: Current Challenges and Prospects. Algal. Res. 2022, 62, 102616. [Google Scholar] [CrossRef]
- Nunes, Y.L.; de Menezes, F.L.; de Sousa, I.G.; Cavalcante, A.L.G.; Cavalcante, F.T.T.; da Silva Moreira, K.; de Oliveira, A.L.B.; Mota, G.F.; da Silva Souza, J.E.; de Aguiar Falcão, I.R.; et al. Chemical and Physical Chitosan Modification for Designing Enzymatic Industrial Biocatalysts: How to Choose the Best Strategy? Int. J. Biol. Macromol. 2021, 181, 1124–1170. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, F.; Falcão, I.d.A.; Souza, J.D.S.; Rocha, T.; de Sousa, I.; Cavalcante, A.; de Oliveira, A.; de Sousa, M.; dos Santos, J. Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. Electrochem 2021, 2, 149–184. [Google Scholar] [CrossRef]
- Souza, J.E.d.S.; de Oliveira, G.P.; Alexandre, J.Y.N.H.; Neto, J.G.L.; Sales, M.B.; Junior, P.G.d.S.; de Oliveira, A.L.B.; de Souza, M.C.M.; dos Santos, J.C.S. A Comprehensive Review on the Use of Metal–Organic Frameworks (MOFs) Coupled with Enzymes as Biosensors. Electrochem 2022, 3, 89–113. [Google Scholar] [CrossRef]
- dos Santos, J.C.S.; Garcia-Galan, C.; Rodrigues, R.C.; de Sant’Ana, H.B.; Gonçalves, L.R.B.; Fernandez-Lafuente, R. Stabilizing Hyperactivated Lecitase Structures through Physical Treatment with Ionic Polymers. Process Biochem. 2014, 49, 1511–1515. [Google Scholar] [CrossRef]
- Garcia-Galan, C.; Barbosa, O.; Hernandez, K.; Santos, J.; Rodrigues, R.; Fernandez-Lafuente, R. Evaluation of Styrene-Divinylbenzene Beads as a Support to Immobilize Lipases. Molecules 2014, 19, 7629–7645. [Google Scholar] [CrossRef]
- Villalba, M.; Verdasco-Martín, C.M.; dos Santos, J.C.S.; Fernandez-Lafuente, R.; Otero, C. Operational Stabilities of Different Chemical Derivatives of Novozym 435 in an Alcoholysis Reaction. Enzym. Microb. Technol. 2016, 90, 35–44. [Google Scholar] [CrossRef]
- Brandão Júnior, J.; Nascimento, J.G.A.; Silva, M.P.F.; Brandão, E.A.L.; Bizerra, V.C.; Santos, K.M.; Serpa, J.F.; Dos Santos, J.C.S.; Fonseca, A.M.; Oliveira, D.L.V.; et al. Performance of Eversa Transform 2.0 Lipase in Ester Production Using Babassu Oil (Orbignya sp.) and Tucuman Oil (Astrocaryum vulgar): A Comparative Study between Liquid and Immobilized Forms in Fe3O4 Nanoparticles. Catalysts. 2023, 13, 571. [Google Scholar] [CrossRef]
- de Souza, T.C.; de Sousa Fonseca, T.; de Sousa Silva, J.; Lima, P.J.M.; Neto, C.A.C.G.; Monteiro, R.R.C.; Rocha, M.V.P.; de Mattos, M.C.; dos Santos, J.C.S.; Gonçalves, L.R.B. Modulation of Lipase B from Candida Antarctica Properties via Covalent Immobilization on Eco-Friendly Support for Enzymatic Kinetic Resolution of Rac-Indanyl Acetate. Bioprocess Biosyst. Eng. 2020, 43, 2253–2268. [Google Scholar] [CrossRef] [PubMed]
- Moreira, K.D.S.; de Oliveira, A.L.B.; Júnior, L.S.D.M.; de Sousa, I.G.; Cavalcante, A.L.G.; Neto, F.S.; Valério, R.B.R.; Chaves, A.V.; Fonseca, T.D.S.; Cruz, D.M.V.; et al. Taguchi Design-Assisted Co-Immobilization of Lipase A and B from Candida Antarctica onto Chitosan: Characterization, Kinetic Resolution Application, and Docking Studies. Chem. Eng. Res. Des. 2022, 177, 223–244. [Google Scholar] [CrossRef]
- Cavalcante, F.T.T.; Cavalcante, A.L.G.; de Sousa, I.G.; Neto, F.S.; dos Santos, J.C.S. Current Status and Future Perspectives of Supports and Protocols for Enzyme Immobilization. Catalysts 2021, 11, 1222. [Google Scholar] [CrossRef]
- Almutairi, F.M.; Monier, M.; Alatawi, R.A.S.; Alhawiti, A.S.; Al-Rasheed, H.H.; Almutairi, T.M.; Elsayed, N.H. Synthesis of Photo-Crosslinkable Hydrogel Membranes for Entrapment of Lactase Enzyme. React. Funct. Polym. 2022, 172, 105159. [Google Scholar] [CrossRef]
- Cao, Y.-P.; Zhi, G.-Y.; Han, L.; Chen, Q.; Zhang, D.-H. Biosynthesis of Benzyl Cinnamate Using an Efficient Immobilized Lipase Entrapped in Nano-Molecular Cages. Food Chem. 2021, 364, 130428. [Google Scholar] [CrossRef]
- Elagli, A.; Belhacene, K.; Vivien, C.; Dhulster, P.; Froidevaux, R.; Supiot, P. Facile Immobilization of Enzyme by Entrapment Using a Plasma-Deposited Organosilicon Thin Film. J. Mol. Catal. B Enzym. 2014, 110, 77–86. [Google Scholar] [CrossRef]
- de Oliveira, R.L.; da Silva, O.S.; Converti, A.; Porto, T.S. Thermodynamic and Kinetic Studies on Pectinase Extracted from Aspergillus Aculeatus: Free and Immobilized Enzyme Entrapped in Alginate Beads. Int. J. Biol. Macromol. 2018, 115, 1088–1093. [Google Scholar] [CrossRef]
- Jalkh, C.; Ghazaly, C.; El-Rassy, H. Entrapment vs. Immobilization of Polyoxometalates into Silica and Titania Aerogels: Application in Heterogeneous Oxidation Catalysis. Mater. Chem. Phys. 2020, 252, 123296. [Google Scholar] [CrossRef]
- Xing, M.; Chen, Y.; Li, B.; Tian, S. Highly Efficient Removal of Patulin Using Immobilized Enzymes of Pseudomonas Aeruginosa TF-06 Entrapped in Calcium Alginate Beads. Food Chem. 2022, 377, 131973. [Google Scholar] [CrossRef]
- Alamsyah, G.; Albels, V.A.; Sahlan, M.; Hermansyah, H. Effect of Chitosan’s Amino Group in Adsorption-Crosslinking Immobilization of Lipase Enzyme on Resin to Catalyze Biodiesel Synthesis. Energy Procedia 2017, 136, 47–52. [Google Scholar] [CrossRef]
- Kharrat, N.; Ben Ali, Y.; Marzouk, S.; Gargouri, Y.-T.; Karra-Châabouni, M. Immobilization of Rhizopus Oryzae Lipase on Silica Aerogels by Adsorption: Comparison with the Free Enzyme. Process Biochem. 2011, 46, 1083–1089. [Google Scholar] [CrossRef]
- Gao, Z.; Chu, J.; Jiang, T.; Xu, T.; Wu, B.; He, B. Lipase Immobilization on Functionalized Mesoporous TiO2: Specific Adsorption, Hyperactivation and Application in Cinnamyl Acetate Synthesis. Process Biochem. 2018, 64, 152–159. [Google Scholar] [CrossRef]
- Khademian, E.; Salehi, E.; Sanaeepur, H.; Galiano, F.; Figoli, A. A Systematic Review on Carbohydrate Biopolymers for Adsorptive Remediation of Copper Ions from Aqueous Environments-Part A: Classification and Modification Strategies. Sci. Total Environ. 2020, 738, 139829. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, N.F.; Muhd Noor, N.D.; Mohd Shariff, F.; Mohamad Ali, M.S. The Immobilization of Lipases on Porous Support by Adsorption and Hydrophobic Interaction Method. Catalysts 2020, 10, 744. [Google Scholar] [CrossRef]
- Sugahara, V.H.; Varéa, G.D.S. Immobilization of Beauveria Bassiana Lipase on Silica Gel by Physical Adsorption. Braz. Arch. Biol. Technol. 2014, 57, 842–850. [Google Scholar] [CrossRef]
- Zhou, W.; Zhuang, W.; Ge, L.; Wang, Z.; Wu, J.; Niu, H.; Liu, D.; Zhu, C.; Chen, Y.; Ying, H. Surface Functionalization of Graphene Oxide by Amino Acids for Thermomyces Lanuginosus Lipase Adsorption. J. Colloid. Interface Sci. 2019, 546, 211–220. [Google Scholar] [CrossRef]
- Machado, N.B.; Miguez, J.P.; Bolina, I.C.A.; Salviano, A.B.; Gomes, R.A.B.; Tavano, O.L.; Luiz, J.H.H.; Tardioli, P.W.; Cren, É.C.; Mendes, A.A. Preparation, Functionalization and Characterization of Rice Husk Silica for Lipase Immobilization via Adsorption. Enzym. Microb. Technol. 2019, 128, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Kashefi, S.; Borghei, S.M.; Mahmoodi, N.M. Covalently Immobilized Laccase onto Graphene Oxide Nanosheets: Preparation, Characterization, and Biodegradation of Azo Dyes in Colored Wastewater. J. Mol. Liq. 2019, 276, 153–162. [Google Scholar] [CrossRef]
- Bonazza, H.L.; Manzo, R.M.; dos Santos, J.C.S.; Mammarella, E.J. Operational and Thermal Stability Analysis of Thermomyces Lanuginosus Lipase Covalently Immobilized onto Modified Chitosan Supports. Appl. Biochem. Biotechnol. 2018, 184, 182–196. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, R.L.; da Silva, M.F.; da Silva, S.P.; de Araújo, A.C.V.; Cavalcanti, J.V.F.L.; Converti, A.; Porto, T.S. Fructo-Oligosaccharides Production by an Aspergillus Aculeatus Commercial Enzyme Preparation with Fructosyltransferase Activity Covalently Immobilized on Fe3O4–Chitosan-Magnetic Nanoparticles. Int. J. Biol. Macromol. 2020, 150, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Jung, D.; Park, S.; Oh, Y.; Oh, K.K.; Lee, S.H. Immobilization of Laccase via Cross-Linked Enzyme Aggregates Prepared Using Genipin as a Natural Cross-Linker. Int. J. Biol. Macromol. 2021, 169, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Wahab, M.K.H.A.; El-Enshasy, H.A.; Bakar, F.D.A.; Murad, A.M.A.; Jahim, J.M.; Illias, R.M. Improvement of Cross-Linking and Stability on Cross-Linked Enzyme Aggregate (CLEA)-Xylanase by Protein Surface Engineering. Process Biochem. 2019, 86, 40–49. [Google Scholar] [CrossRef]
- Guajardo, N.; Ahumada, K.; de María, P.D. Immobilization of Pseudomonas Stutzeri Lipase through Cross-Linking Aggregates (CLEA) for Reactions in Deep Eutectic Solvents. J. Biotechnol. 2021, 337, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Nouri, M.; khodaiyan, F. Green Synthesis of Chitosan Magnetic Nanoparticles and Their Application with Poly-Aldehyde Kefiran Cross-Linker to Immobilize Pectinase Enzyme. Biocatal. Agric. Biotechnol. 2020, 29, 101681. [Google Scholar] [CrossRef]
- Jegan Roy, J.; Abraham, T.E. Strategies in Making Cross-Linked Enzyme Crystals. Chem. Rev. 2004, 104, 3705–3722. [Google Scholar] [CrossRef]
- Sheldon, R.A. Cross-Linked Enzyme Aggregates as Industrial Biocatalysts. Org. Process Res. Dev. 2011, 15, 213–223. [Google Scholar] [CrossRef]
- Schoevaart, R.; Wolbers, M.W.; Golubovic, M.; Ottens, M.; Kieboom, A.P.G.; van Rantwijk, F.; van der Wielen, L.A.M.; Sheldon, R.A. Preparation, Optimization, and Structures of Cross-Linked Enzyme Aggregates (CLEAs). Biotechnol. Bioeng. 2004, 87, 754–762. [Google Scholar] [CrossRef]
- Betancor, L.; López-Gallego, F.; Hidalgo, A.; Alonso-Morales, N.; Mateo, G.D.-O.C.; Fernández-Lafuente, R.; Guisán, J.M. Different Mechanisms of Protein Immobilization on Glutaraldehyde Activated Supports: Effect of Support Activation and Immobilization Conditions. Enzym. Microb. Technol. 2006, 39, 877–882. [Google Scholar] [CrossRef]
- Mulinari, J.; Oliveira, J.V.; Hotza, D. Lipase Immobilization on Ceramic Supports: An Overview on Techniques and Materials. Biotechnol. Adv. 2020, 42, 107581. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Virgen-Ortíz, J.J.; dos Santos, J.C.S.; Berenguer-Murcia, Á.; Alcantara, A.R.; Barbosa, O.; Ortiz, C.; Fernandez-Lafuente, R. Immobilization of Lipases on Hydrophobic Supports: Immobilization Mechanism, Advantages, Problems, and Solutions. Biotechnol. Adv. 2019, 37, 746–770. [Google Scholar] [CrossRef]
- Chen, M.; Mou, X.; Wang, S.; Chen, X.; Tan, Y.; Chen, M.; Zhao, Z.; Huang, C.; Yang, W.; Lin, R.; et al. Porous Organic Polymer-Supported Palladium Catalyst for Hydroesterification of Olefins. Mol. Catal. 2020, 498, 111239. [Google Scholar] [CrossRef]
- Lou, W.-Y.Y.; Fernández-Lucas, J.; Ge, J.; Wu, C. Editorial: Enzyme or Whole Cell Immobilization for Efficient Biocatalysis: Focusing on Novel Supporting Platforms and Immobilization Techniques. Front. Bioeng. Biotechnol. 2021, 9, 620292. [Google Scholar] [CrossRef] [PubMed]
- Skoronski, E.; de Oliveira, D.C.; Fernandes, M.; da Silva, G.F.; Magalhães, M.D.L.B.; João, J.J. Valorization of Agro-Industrial by-Products: Analysis of Biodiesel Production from Porcine Fat Waste. J. Clean Prod. 2016, 112, 2553–2559. [Google Scholar] [CrossRef]
- Motaung, T.E.; Linganiso, L.Z. Critical Review on Agrowaste Cellulose Applications for Biopolymers. Int. J. Plast. Technol. 2018, 22, 185–216. [Google Scholar] [CrossRef]
- de Castro Coêlho, M.; da Câmara Rocha, J.; Augusto Santos, F.; Carlos Ramos Gonçalves, J.; Maria de Vasconcelos, S.; Cristina Soares de Lima Grisi, T.; Florentino de Melo Santos, S.; Antônio Machado de Araújo, D.; Campos Teixeira de Carvalho-Gonçalves, L. Use of Agroindustrial Wastes for the Production of Cellulases by Penicillium Sp. FSDE15. J. King Saud. Univ. Sci. 2021, 33, 101553. [Google Scholar] [CrossRef]
- Fuentes, R.A.; Berthe, J.A.; Barbosa, S.E.; Castillo, L.A. Development of Biodegradable Pots from Different Agroindustrial Wastes and Byproducts. Sustain. Mater. Technol. 2021, 30, e00338. [Google Scholar] [CrossRef]
- Martínez, R.J.; Vela-Carrillo, A.Z.; Godínez, L.A.; Pérez-Bueno, J.D.J.; Robles, I. Competitive Adsorption of Anionic and Cationic Molecules on Three Activated Carbons Derived from Agroindustrial Waste. Biomass Bioenergy 2023, 168, 106660. [Google Scholar] [CrossRef]
- Adriana, M.C.; Misael, C.R.; Guillermo, C.L.; Fernando, O.S.; Liliana, S.C. Optimization of the Reproduction of Weissella Cibaria in a Fermentation Substrate Formulated with Agroindustrial Waste. Biotechnol. Rep. 2021, 32, e00671. [Google Scholar] [CrossRef]
- Greses, S.; Tomás-Pejó, E.; Gónzalez-Fernández, C. Agroindustrial Waste as a Resource for Volatile Fatty Acids Production via Anaerobic Fermentation. Bioresour. Technol. 2020, 297, 122486. [Google Scholar] [CrossRef]
- Li, M.; Wang, T.; Chen, X.; Ma, X. Conversion Study from Lignocellulosic Biomass and Electric Energy to H2 and Chemicals. Int. J. Hydrog. Energy, 2022; in press, Corrected Proof. [Google Scholar] [CrossRef]
- Farid, M.A.A.; Andou, Y. A Route towards Graphene from Lignocellulosic Biomass: Technicality, Challenges, and Their Prospective Applications. J. Clean Prod. 2022, 380, 135090. [Google Scholar] [CrossRef]
- Baptista, M.; Domingues, L. Kluyveromyces Marxianus as a Microbial Cell Factory for Lignocellulosic Biomass Valorisation. Biotechnol. Adv. 2022, 60, 108027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ding, Z.; Hossain, M.S.; Maurya, R.; Yang, Y.; Singh, V.; Kumar, D.; Salama, E.-S.; Sun, X.; Sindhu, R.; et al. Recent Advances in Lignocellulosic and Algal Biomass Pretreatment and Its Biorefinery Approaches for Biochemicals and Bioenergy Conversion. Bioresour. Technol. 2023, 367, 128281. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Sharma, R.K. Lignocellulosic Biomass Based Microbial Fuel Cells: Performance and Applications. J. Clean Prod. 2022, 361, 132269. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, X.; Xia, A.; Shah, A.A.; Yan, H.; Huang, Y.; Zhu, X.; Zhu, X.; Liao, Q. Comparison of Machine Learning Methods for Predicting the Methane Production from Anaerobic Digestion of Lignocellulosic Biomass. Energy 2023, 263, 125883. [Google Scholar] [CrossRef]
- Nahak, B.K.; Preetam, S.; Sharma, D.; Shukla, S.K.; Syväjärvi, M.; Toncu, D.-C.; Tiwari, A. Advancements in Net-Zero Pertinency of Lignocellulosic Biomass for Climate Neutral Energy Production. Renew. Sustain. Energy Rev. 2022, 161, 112393. [Google Scholar] [CrossRef]
- Lin, X.; Jiang, K.; Liu, X.; Han, D.; Zhang, Q. Review on Development of Ionic Liquids in Lignocellulosic Biomass Refining. J. Mol. Liq. 2022, 359, 119326. [Google Scholar] [CrossRef]
- Singh, R.; Pal, D.B.; Alkhanani, M.F.; Almalki, A.H.; Areeshi, M.Y.; Haque, S.; Srivastava, N. Prospects of Soil Microbiome Application for Lignocellulosic Biomass Degradation: An Overview. Sci. Total Environ. 2022, 838, 155966. [Google Scholar] [CrossRef]
- Bandgar, P.S.; Jain, S.; Panwar, N.L. A Comprehensive Review on Optimization of Anaerobic Digestion Technologies for Lignocellulosic Biomass Available in India. Biomass Bioenergy 2022, 161, 106479. [Google Scholar] [CrossRef]
- Deivayanai, V.C.; Yaashikaa, P.R.; Kumar, P.S.; Rangasamy, G. A Comprehensive Review on the Biological Conversion of Lignocellulosic Biomass into Hydrogen: Pretreatment Strategy, Technology Advances and Perspectives. Bioresour. Technol. 2022, 365, 128166. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, X.; Tao, S.; Hu, L.; Zhang, X.; Lin, X. Process Optimization for Deep Eutectic Solvent Pretreatment and Enzymatic Hydrolysis of Sugar Cane Bagasse for Cellulosic Ethanol Fermentation. Renew Energy 2021, 177, 259–267. [Google Scholar] [CrossRef]
- Bezerra, T.M.D.S.; Bassan, J.C.; Santos, V.T.D.O.; Ferraz, A.; Monti, R. Covalent Immobilization of Laccase in Green Coconut Fiber and Use in Clarification of Apple Juice. Process Biochem. 2015, 50, 417–423. [Google Scholar] [CrossRef]
- Barouni, E.; Petsi, T.; Kolliopoulos, D.; Vasileiou, D.; Panas, P.; Bekatorou, A.; Kanellaki, M.; Koutinas, A.A. Immobilized Rennin in TC/SG Composite in Cheese Production. Food Chem. 2016, 200, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Tanaka, S. Ethanol Fermentation from Biomass Resources: Current State and Prospects. Appl. Microbiol. Biotechnol. 2006, 69, 627–642. [Google Scholar] [CrossRef] [PubMed]
- Munjal, S.; Andersson, U.; Pereira, V.; Budhwar, P. Exploring Reverse Knowledge Transfer and Asset Augmentation Strategy by Developed Country MNEs: Case Study Evidence from the Indian Pharmaceutical Industry. Int. Bus. Rev. 2021, 30, 101882. [Google Scholar] [CrossRef]
- Seong, P.-J.; Jeon, B.W.; Lee, M.; Cho, D.H.; Kim, D.-K.; Jung, K.S.; Kim, S.W.; Han, S.O.; Kim, Y.H.; Park, C. Enzymatic Coproduction of Biodiesel and Glycerol Carbonate from Soybean Oil and Dimethyl Carbonate. Enzym. Microb. Technol. 2011, 48, 505–509. [Google Scholar] [CrossRef]
- Choi, H.S.; Kim, D.S.; Thapa, L.P.; Lee, S.J.; Kim, S.B.; Cho, J.; Park, C.; Kim, S.W. Production and Characterization of Cellobiose Dehydrogenase from Phanerochaete Chrysosporium KCCM 60256 and Its Application for an Enzymatic Fuel Cell. Korean J. Chem. Eng. 2016, 33, 3434–3441. [Google Scholar] [CrossRef]
- Go, A.-R.; Lee, Y.; Kim, Y.H.; Park, S.; Choi, J.; Lee, J.; Han, S.O.; Kim, S.W.; Park, C. Enzymatic Coproduction of Biodiesel and Glycerol Carbonate from Soybean Oil in Solvent-Free System. Enzym. Microb. Technol. 2013, 53, 154–158. [Google Scholar] [CrossRef]
- Song, Y.S.; Lee, H.U.; Park, C.; Kim, S.W. Batch and Continuous Synthesis of Lactulose from Whey Lactose by Immobilized β-Galactosidase. Food Chem. 2013, 136, 689–694. [Google Scholar] [CrossRef]
- Lee, H.U.; Yoo, H.Y.; Lkhagvasuren, T.; Song, Y.S.; Park, C.; Kim, J.; Kim, S.W. Enzymatic Fuel Cells Based on Electrodeposited Graphite Oxide/Cobalt Hydroxide/Chitosan Composite–Enzymeelectrode. Biosens. Bioelectron. 2013, 42, 342–348. [Google Scholar] [CrossRef]
- Song, Y.-S.; Lee, H.-U.; Park, C.; Kim, S.-W. Optimization of Lactulose Synthesis from Whey Lactose by Immobilized β-Galactosidase and Glucose Isomerase. Carbohydr. Res. 2013, 369, 1–5. [Google Scholar] [CrossRef]
- Go, A.-R.; Ko, J.W.; Lee, S.J.; Kim, S.W.; Han, S.O.; Lee, J.; Woo, H.M.; Um, Y.; Nam, J.; Park, C. Process Design and Evaluation of Value-Added Chemicals Production from Biomass. Biotechnol. Bioprocess Eng. 2012, 17, 1055–1061. [Google Scholar] [CrossRef]
- Song, Y.S.; Suh, Y.J.; Park, C.; Kim, S.W. Improvement of Lactulose Synthesis through Optimization of Reaction Conditions with Immobilized β-Galactosidase. Korean J. Chem. Eng. 2013, 30, 160–165. [Google Scholar] [CrossRef]
- Kim, S.B.; Kim, D.S.; Yang, J.H.; Lee, J.; Kim, S.W. Utilization of Hydrolysate from Lignocellulosic Biomass Pretreatment to Generate Electricity by Enzymatic Fuel Cell System. Enzym. Microb. Technol. 2016, 85, 32–37. [Google Scholar] [CrossRef]
- Lee, H.U.; Park, C.; Kim, S.W. Immobilization of Glucose Oxidase onto Cobalt Based on Silica Core/Shell Nanoparticles as Carrier. Process Biochem. 2012, 47, 1282–1286. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, S.B.; Yoo, H.Y.; Lee, J.H.; Park, C.; Han, S.O.; Kim, S.W. Kinetic Modeling of Biodiesel Production by Mixed Immobilized and Co-Immobilized Lipase Systems under Two Pressure Conditions. Korean J. Chem. Eng. 2013, 30, 1272–1276. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, S.B.; Yoo, H.Y.; Lee, J.H.; Han, S.O.; Park, C.; Kim, S.W. Co-Immobilization of Candida Rugosa and Rhyzopus Oryzae Lipases and Biodiesel Production. Korean J. Chem. Eng. 2013, 30, 1335–1338. [Google Scholar] [CrossRef]
- Yoo, H.Y.; Lee, J.H.; Suh, Y.J.; Kim, S.B.; Park, S.-M.; Kim, S.W. Immobilization of Acetyl Xylan Esterase on Modified Graphite Oxide and Utilization to Peracetic Acid Production. Biotechnol. Bioprocess Eng. 2014, 19, 1042–1047. [Google Scholar] [CrossRef]
- Kim, E.; Song, Y.S.; Choi, H.S.; Yoo, H.Y.; Kang, S.W.; Song, K.H.; Han, S.O.; Kim, S.W. Efficient Immobilization Technique for Enhancement of Cellobiose Dehydrogenase Activity on Silica Gel. Biotechnol. Bioprocess Eng. 2012, 17, 55–59. [Google Scholar] [CrossRef]
- Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.R.; Khan, M.I.; Parishcha, R.; Ajaykumar, P.V.; Alam, M.; Kumar, R.; et al. Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Lett. 2001, 1, 515–519. [Google Scholar] [CrossRef]
- Wesenberg, D. White-Rot Fungi and Their Enzymes for the Treatment of Industrial Dye Effluents. Biotechnol. Adv. 2003, 22, 161–187. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging Trends in Regenerative Medicine: A Scientometric Analysis in CiteSpace. Expert Opin. Biol. 2012, 12, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Yang, Z. Knowledge Mapping of Platform Research: A Visual Analysis Using VOSviewer and CiteSpace. Electron. Commer. Res. 2022, 22, 787–809. [Google Scholar] [CrossRef]
- Huang, C.; Wang, W.; Yue, S.; Adeel, M.; Qiao, Y. Role of Biochar and Eisenia Fetida on Metal Bioavailability and Biochar Effects on Earthworm Fitness. Environ. Pollut. 2020, 263, 114586. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.Q.; Han, S.J.; Zhou, Y.M.; Ren, F.R.; Xin, L.H.; Zhang, Y. Microbial Activity in a Temperate Forest Soil as Affected by Elevated Atmospheric CO2. Pedosphere 2010, 20, 427–435. [Google Scholar] [CrossRef]
- Narisetty, V.; Tarafdar, A.; Bachan, N.; Madhavan, A.; Tiwari, A.; Chaturvedi, P.; Varjani, S.; Sirohi, R.; Kumar, V.; Awasthi, M.K.; et al. An Overview of Cellulase Immobilization Strategies for Biofuel Production. Bioenergy Res. 2022, 16, 4–15. [Google Scholar] [CrossRef]
- Cen, Q.; Wu, X.; Cao, L.; Lu, Y.; Lu, X.; Chen, J.; Fu, G.; Liu, Y.; Ruan, R. Green Production of a Yellow Laccase by Coriolopsis Gallica for Phenolic Pollutants Removal. AMB Express 2022, 12, 96. [Google Scholar] [CrossRef]
- Pant, D.; Adholeya, A. Identification, Ligninolytic Enzyme Activity and Decolorization Potential of Two Fungi Isolated from a Distillery Effluent Contaminated Site. Water Air Soil Pollut. 2007, 183, 165–176. [Google Scholar] [CrossRef]
- Lee-Parsons, C.W.T.; Shuler, M.L. Sparge Gas Composition Affects Biomass and Ajmalicine Production from Immobilized Cell Cultures of Catharanthus Roseus. Enzym. Microb. Technol. 2005, 37, 424–434. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, X.; Li, Z.; Li, X.; Wang, F.; Nie, X.; Jiang, J. Immobilized Recombinant Rhizopus Oryzae Lipase for the Production of Biodiesel in Solvent Free System. J. Mol. Catal B Enzym. 2010, 67, 45–51. [Google Scholar] [CrossRef]
- Alavijeh, R.S.; Tabandeh, F.; Tavakoli, O.; Karkhane, A.; Shariati, P. Enzymatic Production of Biodiesel from Microalgal Oil Using Ethyl Acetate as an Acyl Acceptor. J. Oleo. Sci. 2015, 64, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Yuzbasheva, E.Y.; Yuzbashev, T.V.; Laptev, I.A.; Konstantinova, T.K.; Sineoky, S.P. Efficient Cell Surface Display of Lip2 Lipase Using C-Domains of Glycosylphosphatidylinositol-Anchored Cell Wall Proteins of Yarrowia Lipolytica. Appl. Microbiol. Biotechnol. 2011, 91, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Schoebitz, M.; Mengual, C.; Roldán, A. Combined Effects of Clay Immobilized Azospirillum Brasilense and Pantoea Dispersa and Organic Olive Residue on Plant Performance and Soil Properties in the Revegetation of a Semiarid Area. Sci. Total Environ. 2014, 466–467, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Seidel, G.; Tollnick, C.; Beyer, M.; Fahimi, Y.; Schügerl, K. Process Engineering Aspects of the Production of Cephalosporin C by Acremonium Chrysogenum. Part I. Application of Complex Media. Process Biochem. 2002, 38, 229–239. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, Y. Poly(Carboxybetaine Methacrylate)-Grafted Silica Nanoparticle: A Novel Carrier for Enzyme Immobilization. Biochem. Eng. J. 2018, 132, 122–129. [Google Scholar] [CrossRef]
- Domínguez, A.; Rivela, I.; Couto, S.R.; Sanromán, M.Á. Design of a New Rotating Drum Bioreactor for Ligninolytic Enzyme Production by Phanerochaete Chrysosporium Grown on an Inert Support. Process Biochem. 2001, 37, 549–554. [Google Scholar] [CrossRef]
Rank | Journal | Publisher | Country | Number of Publications | Impact Factor | Number of Citations | Average Citations | Percentage (%) |
---|---|---|---|---|---|---|---|---|
1 | Bioresource Technology | Elsevier | ENG | 51 | 11.889 | 2913 | 57.12 | 4.21 |
2 | Applied Biochemistry and Biotechnology | Springer | USA | 50 | 3.094 | 1774 | 14.94 | 4.13 |
3 | Enzyme and Microbial Technology | Elsevier | USA | 37 | 3.705 | 1196 | 32.32 | 3.06 |
4 | Biomass and Bioenergy | Elsevier | ENG | 24 | 5.774 | 701 | 29.21 | 1.98 |
5 | Chemosphere | Elsevier | ENG | 23 | 8.943 | 368 | 16.00 | 1.90 |
6 | Process Biochemistry | Elsevier | ENG | 23 | 4.885 | 1025 | 44.57 | 1.90 |
7 | Science of The Total Environment | Elsevier | NLD | 21 | 10.754 | 224 | 10.67 | 1.73 |
8 | Waste and Biomass Valorization | Springer | NLD | 21 | 3.449 | 699 | 33.29 | 1.73 |
9 | Soil Biology and Biochemistry | Elsevier | ENG | 20 | 8.546 | 1620 | 81.00 | 1.65 |
10 | International Journal of Biological Macromolecules | Elsevier | NLD | 18 | 8.025 | 250 | 13.89 | 1.49 |
Rank | Country | Number of Publications | Number of Citations | Average Citation | Total Link Strength | Percentage (%) |
---|---|---|---|---|---|---|
1 | China | 340 | 7419 | 21.82 | 57.67 | 28.07 |
2 | India | 163 | 5399 | 33.12 | 37.78 | 13.46 |
3 | United States of America | 126 | 4126 | 32.74 | 23.93 | 10.4 |
4 | Brazil | 111 | 1598 | 14.39 | 28.46 | 9.16 |
5 | South Korea | 68 | 2462 | 36.20 | 14.94 | 5.61 |
6 | Germany | 60 | 2947 | 49.11 | 11.95 | 4.95 |
7 | Spain | 58 | 1191 | 20.53 | 14.24 | 4.78 |
8 | Italy | 54 | 1184 | 21.92 | 9.79 | 4.45 |
9 | Japan | 43 | 2305 | 53.60 | 7.80 | 3.55 |
10 | Australia | 41 | 1044 | 25.46 | 12.72 | 3.38 |
Rank | Paper | Authors | Year of Publication | Annual Average Citations | Total Citations |
---|---|---|---|---|---|
1 | Ethanol fermentation from biomass resources: current state and prospects | Lin, Y, and Tanaka, S | 2006 | 59.88 | 1018 |
2 | Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification | Palmqvist, E and Hahn -Hagerdal, B | 2000 | 40.83 | 939 |
3 | Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis | Mukherjee, P; Ahmad, A; Mandal, D; Senapati, S; Sainkar, SR; Khan, MI; Parishcha, R; Ajaykumar, PV; Alam, M; Kumar, R, and Sastry, M | 2001 | 38.41 | 845 |
4 | White-rot fungi and their enzymes for the treatment of industrial dye effluents | Wesenberg, D; Kyriakides, I and Agathos, SN | 2003 | 38.9 | 778 |
5 | An overview of enzymatic production of biodiesel | Ranganathan, SV; Narasimhan, SL and Muthukumar, K | 2008 | 29.8 | 447 |
6 | Fungal dye decolorization: Recent advances and future potential | Kaushik, P and Malik, A | 2009 | 28.71 | 402 |
7 | Pathways of nitrogen utilization by soil microorganisms—A review | Geisseler, D; Horwath, WR; Joergensen, RG and Ludwig, B | 2010 | 29.46 | 383 |
8 | Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation | Murthy, HN; Lee, EJ, and Paek, KY | 2014 | 36.78 | 331 |
9 | Enzyme stabilization by nano/ microsized hybrid materials | Hwang, ET and Gu, MB | 2013 | 30.6 | 306 |
10 | The role of additives on anaerobic digestion: A review | Romero- Guiza, MS; Vila, JJ; Mata-Alvarez, J; Chimenos, JM and Astals, S | 2016 | 43.43 | 304 |
Rank | Keyword | Frequency | Total Link Strength | Rank | Keyword | Frequency | Total Link Strength |
---|---|---|---|---|---|---|---|
1 | immobilization | 385 | 622 | 11 | Lignocellulosic biomass | 80 | 170 |
2 | Biomass | 192 | 290 | 12 | optimization | 80 | 169 |
3 | Enzyme immobilization | 125 | 234 | 13 | Biodiesel | 78 | 108 |
4 | hydrolysis | 116 | 262 | 14 | Enzyme-activities | 76 | 64 |
5 | lipase | 107 | 220 | 15 | fermentation | 69 | 126 |
6 | purification | 106 | 225 | 16 | Enzyme | 67 | 130 |
7 | enzymes | 106 | 184 | 17 | adsorption | 66 | 123 |
8 | nanoparticles | 91 | 191 | 18 | pretreatment | 65 | 160 |
9 | stability | 89 | 236 | 19 | Microbial biomass | 64 | 54 |
10 | cellulase | 80 | 237 | 20 | degradation | 62 | 93 |
Cluster ID | Label | Node Size | Mean | Top Five Terms | Representative Articles |
---|---|---|---|---|---|
#0 | Microbial activity | 159 | 2010 | Microbial activity; agricultural soil; microbial biomass; soil microorganism; temperate forest soil | [159,160] |
#1 | Enzymatic hydrolysis | 145 | 2014 | Enzymatic hydrolysis; lignocellulosic biomass; situ saccharifications; thermal stability; mesoporous silica | [13,161] |
#2 | white rot fungi | 63 | 2009 | White rot fungi; ligninolytic enzyme; Phanerochaete chrysosporium; white rot; dye decolorization | [162,163] |
#3 | Chromatographic behavior | 55 | 2006 | Chromatographic behavior; chelate metal; continuous production; tomato pomace; hydrophilic polyurethane foam | [164] |
#4 | Biodiesel production | 53 | 2012 | Biodiesel production; enzymatic production; solvent-free system; recombinant Rhizopus oryzae lipase; biotechnological production | [165,166] |
#5 | microbial growth | 52 | 2008 | Microbial growth; yarrow lipolytic; biobased production; lignocellulosic hydrolysate; lip2 lipase | [10,167] |
#6 | semiarid area | 34 | 2006 | semiarid area; process engineering aspect; Acremonium chrysogenum; complex media; Cephalosporin c | [168,169] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neto, F.S.; Fernandes de Melo Neta, M.M.; Sales, M.B.; Silva de Oliveira, F.A.; de Castro Bizerra, V.; Sanders Lopes, A.A.; de Sousa Rios, M.A.; Santos, J.C.S.d. Research Progress and Trends on Utilization of Lignocellulosic Residues as Supports for Enzyme Immobilization via Advanced Bibliometric Analysis. Polymers 2023, 15, 2057. https://doi.org/10.3390/polym15092057
Neto FS, Fernandes de Melo Neta MM, Sales MB, Silva de Oliveira FA, de Castro Bizerra V, Sanders Lopes AA, de Sousa Rios MA, Santos JCSd. Research Progress and Trends on Utilization of Lignocellulosic Residues as Supports for Enzyme Immobilization via Advanced Bibliometric Analysis. Polymers. 2023; 15(9):2057. https://doi.org/10.3390/polym15092057
Chicago/Turabian StyleNeto, Francisco Simão, Maria Marliete Fernandes de Melo Neta, Misael Bessa Sales, Francisco Arisson Silva de Oliveira, Viviane de Castro Bizerra, Ada Amélia Sanders Lopes, Maria Alexsandra de Sousa Rios, and José Cleiton Sousa dos Santos. 2023. "Research Progress and Trends on Utilization of Lignocellulosic Residues as Supports for Enzyme Immobilization via Advanced Bibliometric Analysis" Polymers 15, no. 9: 2057. https://doi.org/10.3390/polym15092057
APA StyleNeto, F. S., Fernandes de Melo Neta, M. M., Sales, M. B., Silva de Oliveira, F. A., de Castro Bizerra, V., Sanders Lopes, A. A., de Sousa Rios, M. A., & Santos, J. C. S. d. (2023). Research Progress and Trends on Utilization of Lignocellulosic Residues as Supports for Enzyme Immobilization via Advanced Bibliometric Analysis. Polymers, 15(9), 2057. https://doi.org/10.3390/polym15092057