Assessment of Soy Protein Acid Hydrolysate—Xanthan Gum Mixtures on the Stability, Disperse and Rheological Properties of Oil-in-Water Emulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Surface Tension Measurements
2.3. Emulsion Preparation
2.4. Emulsion Droplet Size Analysis
- d4,3—volume-length mean diameter,
- particle diameters—d (0.5), d (0.1), and d (0.9), which represent diameters at 10%, 50%, and 90% cumulative volume, respectively,
- Span—the width of a droplet size distribution, calculated using the equation:
2.5. Creaming Stability
2.6. Rheological Behavior of Emulsions
2.7. Statistical Analysis
3. Results
3.1. Surface Tension Measurements
3.2. Emulsion Droplets Size and Distribution
3.3. Creaming Stability
3.4. Rheological Properties of Emulsions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graeff-Hönninger, S.; Khajehei, F. The demand for superfoods: Consumers’ desire, production viability and bio-intelligent transition. In Food Tech Transitions: Reconnecting Agri-Food, Technology and Society; Springer: Berlin/Heidelberg, Germany, 2019; pp. 81–94. [Google Scholar]
- Bom, S.; Jorge, J.; Ribeiro, H.M.; Marto, J. A step forward on sustainability in the cosmetics industry: A review. J. Clean. Prod. 2019, 225, 270–290. [Google Scholar] [CrossRef]
- Kim, W.; Wang, Y.; Selomulya, C. Dairy and plant proteins as natural food emulsifiers. Trends Food Sci. Technol. 2020, 105, 261–272. [Google Scholar] [CrossRef]
- Padial-Domínguez, M.; Espejo-Carpio, F.J.; Pérez-Gálvez, R.; Guadix, A.; Guadix, E.M. Optimization of the emulsifying properties of food protein hydrolysates for the production of fish oil-in-water emulsions. Foods 2020, 9, 636. [Google Scholar] [CrossRef] [PubMed]
- Britten, M.; Giroux, H.J. Emulsifying Properties of Whey Protein and Casein Composite Blends. J. Dairy Sci. 1991, 74, 3318–3325. [Google Scholar] [CrossRef]
- Krstonošić, V.; Dokić, L.; Nikolić, I.; Milanović, M. Influence of xanthan gum on oil-in-water emulsion characteristics stabilized by OSA starch. Food Hydrocoll. 2015, 45, 9–17. [Google Scholar] [CrossRef]
- Lorenzo, G.; Cortés, N.M.; Zaritzky, N.; Califano, A. Studying the role of xanthan gum upon the rheology and stability of oil/water emulsions. In Xanthan Gum: Applications and Research Studies; Nova Science Publishers: Hauppauge, NY, USA, 2016; pp. 98–129. [Google Scholar]
- García-Ochoa, F.; Santos, V.E.; Casas, J.A.; Gómez, E. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 2000, 18, 549–579. [Google Scholar] [CrossRef]
- Said, M.; Haq, B.; Al Shehri, D.; Rahman, M.M.; Muhammed, N.S.; Mahmoud, M. Modification of xanthan gum for a high-temperature and high-salinity reservoir. Polymers 2021, 13, 4212. [Google Scholar] [CrossRef]
- European Commission. Commission Decision of 9 February 2006 amending Decision 96/335/EC establishing an inventory and a common nomenclature of ingredients employed in cosmetic products. Off. J. Eur. Union 2006, L97, 1–528. [Google Scholar]
- European Commission. Ingredient: Hydrolyzed Soy Protein; European Commission (EU): Brussels, Belgium, 2009; Available online: https://ec.europa.eu/growth/tools-databases/cosing/index.cfm?fuseaction=search.details_v2&id=76584 (accessed on 3 March 2023).
- Jeon, S.-Y.; Lee, Y.-M.; Kim, S.S.; Kim, K.-O. Effect of added hydrolyzed vegetable proteins on consumers’ response for Doenjang (Korean traditional fermented soybean paste) soup. Food Sci. Biotechnol. 2020, 29, 45–53. [Google Scholar] [CrossRef]
- Lee, H.; Shin, E.; Kang, H.; Youn, H.; Youn, B. Soybean-derived peptides attenuate hyperlipidemia by regulating trans-intestinal cholesterol excretion and bile acid synthesis. Nutrients 2022, 14, 95. [Google Scholar] [CrossRef]
- Yang, S.C.; Liu, S.M.; Yang, H.Y.; Chen, J.R.; Lin, Y.H. Soybean Protein Hydrolysate Improves Plasma and Liver Lipid Profiles in Rats Fed High-Cholesterol Diet. J. Am. Coll. Nutr. 2007, 26, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.Y.; Chen, J.R.; Chang, L.S. Effects of soy protein hydrolysate on blood pressure and angiotensin-converting enzyme activity in rats with chronic renal failure. Hypertens. Res. 2008, 31, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Adhikari, B.; He, Z.; Qin, F.; Huang, X.; Chen, J. Improving the Foaming Properties of Soy Protein Isolate Through Partial Enzymatic Hydrolysis. Dry. Technol. 2013, 31, 1545–1552. [Google Scholar] [CrossRef]
- Tanaka, H.; Nishikawa, Y.; Kure, K.; Tsuda, K.; Hosokawa, M. The addition of xanthan gum to enteral nutrition suppresses postprandial glycemia in humans. J. Nutr. Sci. Vitaminol. 2018, 64, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Samudre, S.; Tekade, A.; Thorve, K.; Jamodkar, A.; Parashar, G.; Chaudhari, N. Xanthan gum coated mucoadhesive liposomes for efficient nose to brain delivery of curcumin. Drug Deliv. Lett. 2015, 5, 201–207. [Google Scholar] [CrossRef]
- Kazachenko, A.S.; Vasilieva, N.Y.; Borovkova, V.S.; Fetisova, O.Y.; Issaoui, N.; Malyar, Y.N.; Elsuf’ev, E.V.; Karacharov, A.A.; Skripnikov, A.M.; Miroshnikova, A.V.; et al. Food Xanthan Polysaccharide Sulfation Process with Sulfamic Acid. Foods 2021, 10, 2571. [Google Scholar] [CrossRef]
- Rafigh, S.M.; Soleymani, A.R.; Heydarinasab, A. Sulfated xanthan: Synthesis, characterization and biological evaluation. Polym. Bull. 2021, 78, 4899–4918. [Google Scholar] [CrossRef]
- Krstonošić, V.; Dokić, L.; Milanović, J. Micellar properties of OSA starch and interaction with xanthan gum in aqueous solution. Food Hydrocoll. 2011, 25, 361–367. [Google Scholar] [CrossRef]
- Jafari, S.M.; Assadpoor, E.; He, Y.; Bhandari, B. Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocoll. 2008, 22, 1191–1202. [Google Scholar] [CrossRef]
- Han, S.; Lyu, S.; Wang, S.; Fu, F. High-intensity ultrasound assisted manufacturing of melamine-urea-formaldehyde/paraffin nanocapsules. Colloids Surf. A Physicochem. Eng. Asp. 2019, 568, 75–83. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Xiao, N.; He, W.; Zhao, Y.; Yao, Y.; Xu, M.; Du, H.; Wu, N.; Tu, Y. Effect of pH and xanthan gum on emulsifying property of ovalbumin stabilized oil-in water emulsions. LWT 2021, 147, 111621. [Google Scholar] [CrossRef]
- Makri, E.A.; Doxastakis, G.I. Study of emulsions stabilized with Phaseolus vulgaris or Phaseolus coccineus with the addition of Arabic gum, locust bean gum and xanthan gum. Food Hydrocoll. 2006, 20, 1141–1152. [Google Scholar] [CrossRef]
- Papalamprou, E.M.; Makri, E.A.; Kiosseoglou, V.D.; Doxastakis, G.I. Effect of medium molecular weight xanthan gum in rheology and stability of oil-in-water emulsion stabilized with legume proteins. J. Sci. Food Agric. 2005, 85, 1967–1973. [Google Scholar] [CrossRef]
- Niu, F.; Niu, D.; Zhang, H.; Chang, C.; Gu, L.; Su, Y.; Yang, Y. Ovalbumin/gum arabic-stabilized emulsion: Rheology, emulsion characteristics, and Raman spectroscopic study. Food Hydrocoll. 2016, 52, 607–614. [Google Scholar] [CrossRef]
- Krstonošić, V.; Dokić, L.; Dokić, P.; Dapčević, T. Effects of xanthan gum on physicochemical properties and stability of corn oil-in-water emulsions stabilized by polyoxyethylene (20) sorbitan monooleate. Food Hydrocoll. 2009, 23, 2212–2218. [Google Scholar] [CrossRef]
- Cortez-Trejo, M.C.; Mendoza, S.; Loarca-Piña, G.; Figueroa-Cárdenas, J.D. Physicochemical characterization of protein isolates of amaranth and common bean and a study of their compatibility with xanthan gum. Int. J. Biol. Macromol. 2021, 166, 861–868. [Google Scholar] [CrossRef]
- Sriprablom, J.; Suphantharika, M. Influence of xanthan gum on properties and stability of oil-in-water Pickering emulsions stabilized by zein colloidal particles. J. Food Meas. Charact. 2022, 16, 2772–2781. [Google Scholar] [CrossRef]
- Silva, J.T.D.P.; Janssen, A.; Nicoletti, V.R.; Schroën, K.; de Ruiter, J. Synergistic effect of whey proteins and their derived microgels in the stabilization of O/W emulsions. Food Hydrocoll. 2023, 135, 108229. [Google Scholar] [CrossRef]
- Ye, A.; Hemar, Y.; Singh, H. Enhancement of coalescence by xanthan addition to oil-in-water emulsions formed with extensively hydrolysed whey proteins. Food Hydrocoll. 2004, 18, 737–746. [Google Scholar] [CrossRef]
- Ravera, F.; Dziza, K.; Santini, E.; Cristofolini, L.; Liggieri, L. Emulsification and emulsion stability: The role of the interfacial properties. Adv. Colloid Interface Sci. 2021, 288, 102344. [Google Scholar] [CrossRef]
- Wilde, P.J. Improving emulsion stability through selection of emulsifiers and stabilizers. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Krog, N. Emulsifiers and Emulsions in Dairy Foods; Elsevier: Amsterdam, The Netherlands, 2002; pp. 891–900. [Google Scholar]
- Pocan, P.; Ilhan, E.; Oztop, M.H. Characterization of Emulsion Stabilization Properties of Gum Tragacanth, Xanthan Gum and Sucrose Monopalmitate: A Comparative Study. J. Food Sci. 2019, 84, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, W.; Zhao, Q.; Selomulya, C.; Zhu, X.; Xiong, H. Physical and Oxidative Stabilities of O/W Emulsions Formed with Rice Dreg Protein Hydrolysate: Effect of Xanthan Gum Rheology. Food Bioprocess Technol. 2016, 9, 1380–1390. [Google Scholar] [CrossRef]
- Borreani, J.; Hernando, I.; Quiles, A. Cream replacement by hydrocolloid-stabilized emulsions to reduce fat digestion in panna cottas. LWT 2020, 119, 108896. [Google Scholar] [CrossRef]
- Espert, M.; Sanz, T.; Salvador, A. Development of structured sunflower oil systems for decreasing trans and saturated fatty acid content in bakery creams. Foods 2021, 10, 505. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Sharma, V.; Upadhyay, N.; Singh, A.K.; Arora, S.; Lal, D.; Sabikhi, L. Development of stable flaxseed oil emulsions as a potential delivery system of ω-3 fatty acids. J. Food Sci. Technol. 2015, 52, 4256–4265. [Google Scholar] [CrossRef]
- Vukašinović, M.; Savić, S.; Cekić, N.; Ilić, T.; Pantelić, I.; Savić, S.D. Efficient Development of Green Emulsifier/Emollient-Based Emulsion Vehicles: From RSM Optimal Experimental Design to Abridged In Vivo Assessment. Pharmaceutics 2023, 15, 486. [Google Scholar] [CrossRef]
- Estanqueiro, M.; Amaral, M.H.; Sousa Lobo, J.M. Comparison between sensory and instrumental characterization of topical formulations: Impact of thickening agents. Int. J. Cosmet. Sci. 2016, 38, 389–398. [Google Scholar] [CrossRef]
- Dickinson, E. Strategies to control and inhibit the flocculation of protein-stabilized oil-in-water emulsions. Food Hydrocoll. 2019, 96, 209–223. [Google Scholar] [CrossRef]
- Junqueira, L.A.; Amaral, T.N.; Oliveira, N.L.; Prado, M.E.T.; de Resende, J.V. Rheological behavior and stability of emulsions obtained from pereskia aculeata miller via different drying methods. Int. J. Food Prop. 2018, 21, 21–35. [Google Scholar] [CrossRef]
- Ren, Z.; Li, Z.; Chen, Z.; Zhang, Y.; Lin, X.; Weng, W.; Yang, H.; Li, B. Characteristics and Application of Fish Oil-in-Water Pickering Emulsions Structured with Tea Water-Insoluble Proteins/κ-Carrageenan Complexes. Food Hydrocoll. 2021, 114, 106562. [Google Scholar] [CrossRef]
- Li, K.; Fu, L.; Zhao, Y.; Xue, S.; Wang, P.; Xu, X.; Bai, Y. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion. Food Hydrocoll. 2020, 98, 105275. [Google Scholar] [CrossRef]
- Mikkonen, K.S.; Merger, D.; Kilpeläinen, P.; Murtomäki, L.; Schmidt, U.S.; Wilhelm, M. Determination of physical emulsion stabilization mechanisms of wood hemicelluloses: Via rheological and interfacial characterization. Soft Matter 2016, 12, 8690–8700. [Google Scholar] [CrossRef] [PubMed]
CSPAH (%, w/w) | γDW a | γXG1 b | γXG2 c |
---|---|---|---|
(mN m−1) | |||
0 | 72.06 ± 0.15 y | 72.08 ± 0.22 y | 71.86 ± 0.09 y |
0.1 | 64.96 ± 0.86 y | 64.36 ± 0.68 y | 64.24 ± 0.40 y |
0.2 | 59.68 ± 0.38 y | 59.42 ± 0.38 y | 60.02 ± 0.72 y |
0.3 | 57.74 ± 0.49 y | 57.36 ± 0.38 y | 57.14 ± 0.15 y |
0.5 | 53.88 ± 0.49 y | 54.06 ± 0.34 y | 53.24 ± 0.80 y |
1.0 | 49.24 ± 0.69 y | 49.60 ± 0.42 y | 49.46 ± 0.35 y |
2.0 | 45.9 ± 0.24 y | 45.96 ± 0.39 y | 46.30 ± 0.29 y |
3.0 | 44.74 ± 0.30 y | 44.78 ± 0.30 y | 45.10 ± 0.24 y |
4.0 | 44.46 ± 0.13 y | 44.32 ± 0.27 y | 45.12 ± 0.08 x |
5.0 | 43.76 ± 0.21 x | 44.24 ± 0.24 x | 44.72 ± 0.13 x |
Specific Surface Area (m2/g) | Vol. Weighted Mean d4,3 (μm) | d (0.1) (μm) | d (0.5) (μm) | d (0.9) (μm) | Span | Vol. Weighted Mean after 7 Days of Storage d4,3 (μm) | |
---|---|---|---|---|---|---|---|
3% SPAH | 0.059 ± 0.0035 a | 130.06 ± 8.5869 a | 75.65 ± 4.0393 a | 123.13 ± 6.6205 a | 194.90 ± 11.9777 a | 0.97 ± 0.0240 ab | 146.08 ± 3.7315 y |
5% SPAH | 0.068 ± 3.51 × 10−4 abc | 104.47 ± 5.1603 a | 57.40 ± 2.4033 a | 93.27 ± 0.4968 a | 161.90 ± 16.3914 a | 1.12 ± 0.2048 a | 127.48 ± 11.1811 y |
7% SPAH | 0.107 ± 0.0183 b | 60.79 ± 2.5386 c | 40.74 ± 1.1515 c | 59.11 ± 1.8325 c | 84.10 ± 4.7680 c | 0.73 ± 0.0391 b | 65.12 ± 1.4580 x |
5% SPAH + 0.1%XG | 0.138 ± 7.37 × 10−4 a | 51.35 ± 1.4096 b | 30.42 ± 0.4825 b | 48.81 ± 1.3585 b | 73.77 ± 4.6581 b | 0.89 ± 0.0808 b | 52.82 ± 4.4821 x |
5% SPAH + 0.2%XG | 0.188 ± 0.0904 b | 47.61 ± 0.7388 bc | 31.62 ± 0.5908 b | 46.05 ± 0.1724 c | 66.45 ± 0.7853 bc | 0.76 ± 0.0190 b | 50.90 ± 2.0610 x |
5% SPAH + 0.3%XG | 0.147 ± 0.0026 a | 44.02 ± 1.3569 cd | 29.68 ± 0.5898 b | 42.42 ± 1.0296 d | 60.58 ± 3.5474 bc | 0.73 ± 0.0775 b | 44.40 ± 2.0081 x |
5% SPAH + 0.4%XG | 0.167 ± 0.0026 a | 38.99 ± 0.3399 de | 26.29 ± 0.7278 c | 37.54 ± 0.4874 e | 53.68 ± 0.3727 c | 0.73 ± 0.0375 b | 39.92 ± 1.4841 x |
5% SPAH + 0.5%XG | 0.175 ± 5.77 × 10−4 c | 37.44 ± 0.7581 e | 24.49 ± 0.9374 c | 35.85 ± 0.4014 e | 52.63 ± 3.0443 c | 0.78 ± 0.1029 b | 37.48 ± 0.6569 x |
K (Pa sn) Forward Flow | n Forward Flow | K (Pa sn) Backward Flow | n Backward Flow | Hysteresis Area (Pa s−1) | |
---|---|---|---|---|---|
3% SPAH | 0.0060 ± 7.48 × 10−4 a | 0.8662 ± 0.0222 a | / | / | / |
5% SPAH | 0.0080 ± 3.56 × 10−4 a | 0.8464 ± 0.0264 a | / | / | / |
7% SPAH | 0.0094 ± 0.0018 b | 0.8418 ± 0.0246 a | / | / | / |
5% SPAH + 0.1%XG | 0.1732 ± 0.0073 a | 0.5744 ± 0.0199 b | 0.1514 ± 0.0250 a | 0.5880 ± 0.0232 b | 29.69 ± 3.53832 b |
5% SPAH + 0.2%XG | 0.8487 ± 0.0111 b | 0.4025 ± 0.0048 c | 0.8048 ± 0.0037 b | 0.4027 ± 0.0063 c | 44.46 ± 3.70146 c |
5% SPAH + 0.3%XG | 2.011 ± 0.0158 c | 0.3125 ± 0.0011 d | 1.7370 ± 0.0156 c | 0.3376 ± 3.055 × 10−4 d | 61.55 ± 0.41388 d |
5% SPAH + 0.4%XG | 3.61 ± 0.0240 d | 0.2644 ± 0.0015 e | 2.9620 ± 0.0287 d | 0.2994 ± 0.0012 e | 103.63667 ± 3.85357 e |
5% SPAH + 0.5%XG | 5.06 ± 0.1927 e | 0.2353 ± 0.0029 e | 3.9416 ± 0.1309 e | 0.2799 ± 0.0019 e | 146.96667 ± 8.25853 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćirin, D.; Pavlović, N.; Nikolić, I.; Krstonošić, V. Assessment of Soy Protein Acid Hydrolysate—Xanthan Gum Mixtures on the Stability, Disperse and Rheological Properties of Oil-in-Water Emulsions. Polymers 2023, 15, 2195. https://doi.org/10.3390/polym15092195
Ćirin D, Pavlović N, Nikolić I, Krstonošić V. Assessment of Soy Protein Acid Hydrolysate—Xanthan Gum Mixtures on the Stability, Disperse and Rheological Properties of Oil-in-Water Emulsions. Polymers. 2023; 15(9):2195. https://doi.org/10.3390/polym15092195
Chicago/Turabian StyleĆirin, Dejan, Nebojša Pavlović, Ivana Nikolić, and Veljko Krstonošić. 2023. "Assessment of Soy Protein Acid Hydrolysate—Xanthan Gum Mixtures on the Stability, Disperse and Rheological Properties of Oil-in-Water Emulsions" Polymers 15, no. 9: 2195. https://doi.org/10.3390/polym15092195
APA StyleĆirin, D., Pavlović, N., Nikolić, I., & Krstonošić, V. (2023). Assessment of Soy Protein Acid Hydrolysate—Xanthan Gum Mixtures on the Stability, Disperse and Rheological Properties of Oil-in-Water Emulsions. Polymers, 15(9), 2195. https://doi.org/10.3390/polym15092195