Experimental Study on Shear-Peeling Debonding Behavior of BFRP Sheet-to-Steel Interfaces
Abstract
:1. Introduction
2. Experimental Program
2.1. Specimen Design
2.2. Material Properties
2.3. Experimental Setup
3. Results and Discussions
3.1. Experimental Phenomena and Failure Modes
3.2. Load-Displacement Curves
3.3. Strain Distribution along the Bond Length
4. Evaluation of Bond Strength
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gardner, L. Stability and design of stainless steel structures-Review and outlook. Thin-Walled Struct. 2019, 141, 208–216. [Google Scholar] [CrossRef]
- Wang, F.; Hua, J.; Xue, X.; Ding, Z.; Lyu, Y.; Liu, Q. Low-cycle fatigue performance of bimetallic steel bar considering the effect of inelastic buckling. Constr. Build. Mater. 2022, 351, 128787. [Google Scholar] [CrossRef]
- Hua, J.; Xue, X.; Huang, Q.; Shi, Y.; Deng, W. Post-fire performance of high-strength steel plate girders developing post-buckling capacity. J. Build. Eng. 2022, 52, 104442. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhou, X.; Ke, K.; Shi, Y.; Xu, L. Experimental research on seismic performance of cold-formed thin-walled steel frames with braced shear panel. Thin-Walled Struct. 2023, 182, 110210. [Google Scholar] [CrossRef]
- Bai, Y.; Nguyen, T.C.; Zhao, X.; Al-Mahaidi, R. Environment-assisted degradation of the bond between steel and carborn-fiber-reinforced polymer. J. Mater. Civ. Eng. 2014, 26, 04014054.1–04014054.8. [Google Scholar] [CrossRef]
- Bagale, B.; Parvin, A. Fiber-reinforced polymer strengthening of steel beams under static and fatigue loadings. Pract. Period. Struct. Des. Constr. 2021, 26, 04020046. [Google Scholar] [CrossRef]
- Bastani, A.; Das, S.; Lawn, D. Rehabilitation of shear deficient steel beams using BFRP fabric. Structures 2019, 19, 349–361. [Google Scholar] [CrossRef]
- Lu, Y.; Li, W.; Li, S.; Li, X.; Zhu, T. Study of the tensile properties of CFRP strengthened steel plates. Polymers 2015, 7, 2595–2610. [Google Scholar] [CrossRef]
- Shi, J.; Jia, B.; Ren, Y.; Zhang, X.; Luo, J. Study on the interface constitutive relation between carbon fiber fabric and steel. Materials 2020, 13, 3263. [Google Scholar] [CrossRef]
- Teng, J.; Yu, T.; Fernando, D. Strengthening of steel structures with fiber-reinforced polymer composites. J. Constr. Steel Res. 2012, 78, 131–143. [Google Scholar] [CrossRef]
- Tao, X.; Cao, S.; Zhang, L. Elastic stability of perforated plates strengthened with FRP under uniaxial compression. Appl. Sci. 2017, 7, 1188. [Google Scholar] [CrossRef]
- Sundarraja, M.; Sriram, P.; Ganesh, P. Strengthening of hollow square sections under compression using FRP composites. Adv. Mater. Sci. Eng. 2014, 2014, 396597. [Google Scholar] [CrossRef]
- Bastani, A.; Das, S.; Kenno, S.Y. Flexural rehabilitation of steel beam with CFRP and BFRP fabrics-A comparative study. Arch. Civ. Mech. Eng. 2019, 19, 871–882. [Google Scholar] [CrossRef]
- Kamane, S.K.; Patil, N.K.; Patagundi, B.R. Prediction of twisting performance of steel I beam bonded exteriorly with fiber reinforced polymer sheet by using neural network. Mater. Today Proc. 2021, 43, 514–519. [Google Scholar] [CrossRef]
- Zheng, Z.; Du, Y.; Chen, Z.; Li, S.; Niu, J. Experimental and theoretical studies of FRP-steel composite plate under static tensile loading. Constr. Build. Mater. 2021, 271, 121501. [Google Scholar] [CrossRef]
- Wang, S.; Stratford, T.; Reynolds, T.P.S. Linear creep of bonded FRP-strengthened metallic structures at warm service temperatures. Constr. Build. Mater. 2021, 283, 122699. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, G.; Wan, B.; Han, B.; Ran, J. Axial compressive behavior and confinement mechanism of circular FRP-steel tubed concrete stub columns. Compos. Struct. 2021, 256, 113082. [Google Scholar] [CrossRef]
- Pang, Y.; Wu, G.; Wang, H.; Gao, D.; Zhang, P. Bond-slip model of the CFRP-steel interface with the CFRP delamination failure. Compos. Struct. 2021, 256, 113015. [Google Scholar] [CrossRef]
- Shen, D.; Li, M.; Liu, C.; Kang, J.; Li, C.; Yang, J. Seismic performance of corroded reinforced concrete beam-column joints repaired with BFRP sheets. Constr. Build. Mater. 2021, 307, 124731. [Google Scholar] [CrossRef]
- Zeng, X.; Jiang, S.; Deng, K.; Huang, H.; Cui, E. Seismic performance of circular RC columns strengthened in flexure using NSM reinforcement and externally bonded BFRP sheets. Eng. Struct. 2022, 256, 114033. [Google Scholar] [CrossRef]
- Al-Mosawe, A.; Al-Mahaidi, R.; Zhao, X.L. Effect of CFRP properties, on the bond characteristics between steel and CFRP laminate under quasi-static loading. Constr. Build. Mater. 2015, 98, 489–501. [Google Scholar] [CrossRef]
- He, J.; Xian, G. Debonding of CFRP-to-steel joint with CFRP delamination. Compos. Struct. 2016, 153, 12–20. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, W.; Pham, T.M.; Hao, H. Bond behaviour between hybrid fiber reinforced polymer sheets and concrete. Constr. Build. Mater. 2019, 210, 93–110. [Google Scholar] [CrossRef]
- Fawzia, S.; Zhao, X.; AL-Mahaidi, R.; Rizkalla, S. Bond characteristics between CFRP and steel plates in double strap joints. Adv. Steel Constr. 2005, 1, 17–28. [Google Scholar]
- Smith, S.T.; Teng, J. Interfacial stresses in plated beams. Eng. Struct. 2001, 23, 857–871. [Google Scholar] [CrossRef]
- Doroudi, Y.; Fernando, D.; Nguyen, V.T.; Torres, J.P. Experimental study on CFRP-to-steel bonded interfaces under quasi-static cyclic loading. J. Compos. Constr. 2019, 23, 04019023.1–04019023.13. [Google Scholar] [CrossRef]
- Bocciarelli, M.; Colombi, P.; Fava, G.; Fava, G.; Poggi, C. Fatigue performance of tensile steel members strengthened with CFRP plates. Compos. Struct. 2009, 87, 334–343. [Google Scholar] [CrossRef]
- Dehghani, E.; Daneshjoo, F.; Aghakouchak, A.A.; Khaji, N. A new bond-slip model for adhesive in CFRP-steel composite systems. Eng. Struct. 2012, 34, 447–454. [Google Scholar] [CrossRef]
- Biscaia, H.; Ribeiro, P. A temperature-dependent bond-slip model for CFRP-to-steel joints. Compos. Struct. 2019, 217, 186–205. [Google Scholar] [CrossRef]
- Yu, T.; Fernando, D.; Teng, J.; Zhao, X. Experimental study on CFRP-to-steel bonded interfaces. Compos. Part B 2012, 43, 2279–2289. [Google Scholar] [CrossRef]
- Wu, C.; Zhao, X.; Chiu, W.; Al-Mahaidi, R.; Duan, W. Effect of fatigue loading on the bond behaviour between UHM CFRP plates and steel plates. Compos. Part B 2013, 50, 344–353. [Google Scholar] [CrossRef]
- Wu, T.; Zhao, X.; Duan, W.; Al-Mahaidi, R. Bond characteristics between ultra high modulus CFRP laminates and steel. Thin-Walled Struct. 2012, 51, 147–157. [Google Scholar] [CrossRef]
- Golewski, P. Tensile behaviour of double-and triple-adhesive single lap joints made with spot epoxy and double-sided adhesive tape. Materials 2022, 15, 7855. [Google Scholar] [CrossRef]
- Jawdhari, A.; Fam, A.; Harik, I. Numerical study on the bond between CFRP rod panels (CRPs) and concrete. Constr. Build. Mater. 2018, 177, 522–534. [Google Scholar] [CrossRef]
- Mukhtar, F.M.; Jawdhari, A.; Peiris, A. Mixed-mode FRP-concrete bond failure analysis using a novel test apparatus and 3D nonlinear FEM. J. Compos. Constr. 2022, 26, 04022082. [Google Scholar] [CrossRef]
- Altaee, M.J.; Altayee, S.A.; Kadhim, M.; Jawdhari, A.; Majdi, A.; Chabuk, A.; Al-Ansari, N. Evaluation of existing bond-slip relations for CFRP-steel joints and new model for linear and nonlinear adhesives. Adv. Civ. Eng. 2022, 2022, 3673438. [Google Scholar] [CrossRef]
- Jawdhari, A.; Peiris, A.; Fam, A.; Harik, I. Evaluation of spliced UHM CFRP strip panels for strengthening steel beams. J. Compos. Constr. 2023, 27, 04022094. [Google Scholar] [CrossRef]
- Wang, J. Cohesive zone model of FRP-concrete interface debonding under mixed-mode loading. Int. J. Solids Struct. 2007, 44, 6551–6568. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, J. Fatigue properties of shear–peeling debonding between CFRP plates and concrete. Mag. Concr. Res. 2016, 68, 1210–1224. [Google Scholar] [CrossRef]
- Ghorbani, M.; Mostofinejad, D.; Hosseini, A. Bond behavior of CFRP sheets attached to concrete through EBR and EBROG joints subject to Mixed-Mode I/II loading. J. Compos. Constr. 2017, 21, 04017034. [Google Scholar] [CrossRef]
- GB/T 228.1-2021; Metallic Materials-Tensile Testing—Part 1, Method of Test at Room Temperature. China Architecture & Building Press: Beijing, China, 2021.
- GB/T 3354-1999; The Method for Tensile Properties of Oriented Fiber Reinforced Plastics. China Quality and Standards Press: Beijing, China, 1999.
- Zhou, H.; Fernando, D.; Torero, J.L.; Torres, J.P.; Maluk, C.; Emberley, R. Bond behavior of CFRP-to-steel bonded joints at mild temperatures: Experimental study. J. Compos. Constr. 2020, 24, 04020070. [Google Scholar] [CrossRef]
- Li, C.; Ke, L.; Chen, Z.; He, J.; Luo, N. Experimental study and numerical simulation for bond behavior of interface between CFRP and steel. Acta Mater. Compos. Sin. 2018, 35, 3534–3546. (In Chinese) [Google Scholar]
- Lu, X.; Teng, J.; Ye, L.; Jiang, J. Bond-slip models for FRP sheets/plates bonded to concrete. Eng. Struct. 2005, 27, 920–937. [Google Scholar] [CrossRef]
Specimen | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 |
---|---|---|---|---|---|---|---|---|---|
Initial angle θ | 0° | 2° | 4° | 6° | 8° | 10° | 12° | 15° | 20° |
Pre-unbond length (mm) | 0.0 | 143.2 | 71.5 | 45.6 | 35.6 | 28.4 | 23.5 | 18.7 | 13.7 |
Tensile Strength (MPa) | Flexural Strength (MPa) | Elongation at Break (%) | Compressive Strength (MPa) | Steel-to-Steel Joint (MPa) | Elastic Modulus (MPa) |
---|---|---|---|---|---|
35.0 | 45.0 | 1.4 | 67.0 | 17.3 | 3010.0 |
Thickness (mm) | Elastic Modulus (GPa) | Fiber Diameter (μm) | Tensile Strength (MPa) |
---|---|---|---|
0.2 | 85.0 | 8.0 | 2400.0 |
Steel Type | Thickness (mm) | Yield Strength (MPa) | Ultimate Strength (MPa) | Elastic Modulus (GPa) |
---|---|---|---|---|
Q345qD | 10 and 20 | 397.5 | 585.4 | 210.0 |
Specimen | Initial Angle θ | Ultimate Load P(kN) | Liu Model | P/Pcal (kN) |
---|---|---|---|---|
Calculated Ultimate Load Pcal (kN) | ||||
S1 | 0° | 30.8 | 29.2 | 1.05 |
S2 | 2° | 24.8 | 0.86 | |
S3 | 4° | 20.6 | 0.68 | |
S4 | 6° | 16.1 | 0.52 | |
S5 | 8° | 12.7 | 0.42 | |
S6 | 10° | 9.3 | 0.29 | |
S7 | 12° | 5.5 | 0.18 | |
S8 | 15° | 2.8 | 0.12 | |
S9 | 20° | 1.9 | 0.07 |
Specimen | Initial Angle θ | Experimental Value P (kN) | tan θ | P/Pcal | Predicted Value P (kN) | ||
---|---|---|---|---|---|---|---|
Equation (6) | Liu Model | Equation (6) | Liu Model | ||||
S1 | 0° | 30.8 | 0.025 | 1.19 | 1.05 | 34.8 | 29.2 |
S2 | 2° | 24.8 | 0.042 | 0.89 | 0.86 | 26.0 | 25.1 |
S3 | 4° | 20.6 | 0.067 | 0.67 | 0.68 | 19.5 | 19.9 |
S4 | 6° | 16.1 | 0.098 | 0.50 | 0.52 | 14.6 | 15.2 |
S5 | 8° | 12.7 | 0.125 | 0.37 | 0.42 | 10.9 | 12.3 |
S6 | 10° | 9.3 | 0.169 | 0.28 | 0.29 | 8.1 | 8.5 |
S7 | 12° | 5.5 | 0.228 | 0.20 | 0.18 | 6.0 | 5.3 |
S8 | 15° | 2.8 | 0.272 | 0.13 | 0.12 | 3.8 | 3.5 |
S9 | 20° | 1.9 | 0.338 | 0.06 | 0.07 | 1.7 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, H.; Cao, D.; Tang, Z.; Liu, Q.; Zhu, S.; Liu, J.; Sun, C. Experimental Study on Shear-Peeling Debonding Behavior of BFRP Sheet-to-Steel Interfaces. Polymers 2023, 15, 2216. https://doi.org/10.3390/polym15092216
Xue H, Cao D, Tang Z, Liu Q, Zhu S, Liu J, Sun C. Experimental Study on Shear-Peeling Debonding Behavior of BFRP Sheet-to-Steel Interfaces. Polymers. 2023; 15(9):2216. https://doi.org/10.3390/polym15092216
Chicago/Turabian StyleXue, Hanyang, Dafu Cao, Zhanzhan Tang, Qing Liu, Siji Zhu, Jiaqi Liu, and Chuanzhi Sun. 2023. "Experimental Study on Shear-Peeling Debonding Behavior of BFRP Sheet-to-Steel Interfaces" Polymers 15, no. 9: 2216. https://doi.org/10.3390/polym15092216
APA StyleXue, H., Cao, D., Tang, Z., Liu, Q., Zhu, S., Liu, J., & Sun, C. (2023). Experimental Study on Shear-Peeling Debonding Behavior of BFRP Sheet-to-Steel Interfaces. Polymers, 15(9), 2216. https://doi.org/10.3390/polym15092216