Investigation of the Effects of Chain Extender on Material Properties of PLA/PCL and PLA/PEG Blends: Comparative Study between Polycaprolactone and Polyethylene Glycol
Abstract
:1. Introduction
2. Experiment and Methods
2.1. Materials
2.2. Preparation of Blends
2.3. Characterization
3. Results and Discussion
3.1. Phase Morphology
3.2. X-ray Diffraction Analysis
3.3. Thermal Properties
3.4. Thermal Stability
3.5. Thermomechanical Properties
3.6. Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Islam, M.S. Synthesis of polylactic acid for biomedical, food packaging and structural applications: A review. In Polylactic Acid: Synthesis, Properties and Applications; Piemonte, V., Ed.; Nova Science Publishers: New York, NY, USA, 2012; pp. 219–233. [Google Scholar]
- Notta-Cuvier, D.; Odent, J.; Delille, R.; Murariu, M.; Lauro, F.; Raquez, J.M.; Bennani, B.; Dubois, P. Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties. Polym. Test. 2014, 36, 1–9. [Google Scholar] [CrossRef]
- Bouzouita, A.; Notta-Cuvier, D.; Delille, R.; Lauro, F.; Raquez, J.M.; Dubois, P. Design of toughened PLA based material for application in structures subjected to severe loading conditions. Part 2. Quasi-static tensile tests and dynamic mechanical analysis at ambient and moderately high temperature. Polym. Test. 2017, 57, 235–244. [Google Scholar] [CrossRef]
- Fortelny, I.; Ujcic, A.; Fambri, L.; Slouf, M. Phase structure, compatibility, and toughness of PLA/PCL blends: A review. Front. Mater. 2019, 6, 206. [Google Scholar] [CrossRef]
- Wang, B.; Hina, K.; Zou, H.; Zuo, D.; Yi, C. Thermal, crystallization, mechanical and decomposition properties of poly(lactic acid) plasticized with poly(ethylene glycol). J. Vinyl Addit. Technol. 2018, 24, E154–E163. [Google Scholar] [CrossRef]
- Jeong, H.; Rho, J.; Shin, J.Y.; Lee, D.Y.; Hwang, T.; Kim, K.J. Mechanical properties and cytotoxicity of PLA/PCL films. Biomed. Eng. Lett. 2018, 8, 267–272. [Google Scholar] [CrossRef]
- Botlhoko, O.J.; Ramontja, J.; Ray, S.S. A new insight into morphological, thermal, and mechanical properties of melt-processed polylactide/poly(ε-caprolactone) blends. Polym. Degrad. Stab. 2018, 154, 84–95. [Google Scholar] [CrossRef]
- Davis, B.J.; Thapa, K.; Hartline, M.C.; Fuchs, W.K.; Blanton, M.D.; Wiggins, J.S.; Simon, Y.C. Enhanced photodegradation of TiO2-containing poly (ε-caprolactone)/poly(lactic acid) blends. J. Polym. Sci. 2021, 59, 2479–2491. [Google Scholar] [CrossRef]
- Salehiyan, R.; Ray, S.S. Tuning the conductivity of nanocomposites through nanoparticle migration and interface crossing in immiscible polymer blends: A review on fundamental understanding. Macromol. Mater. Eng. 2018, 304, 1800431. [Google Scholar] [CrossRef]
- Fehri, S.; Cinelli, P.; Coltelli, M.-B.; Anguillesi, I.; Lazzeri, A. Thermal properties of plasticized poly (lactic acid) (PLA) containing nucleating agent. Int. J. Chem. Eng. Appl. 2016, 7, 85–88. [Google Scholar] [CrossRef]
- Mokhena, T.C.; Sefadi, J.S.; Sadiku, E.R.; John, M.J.; Mochane, M.J.; Mtibe, A. Thermoplastic processing of PLA/cellulose nanomaterials composites. Polymers 2018, 10, 1363. [Google Scholar] [CrossRef]
- Delgado-Aguilar, M.; Puig, R.; Sazdovski, I.; Fullana, I.P.P. Polylactic acid/polycaprolactone blends: On the path to circular economy, substituting single-use commodity plastic products. Materials 2020, 13, 2655. [Google Scholar] [CrossRef] [PubMed]
- Gregorova, A.; Hrabalova, M.; Kovalcik, R.; Wimmer, R. Surface modification of spruce wood flour and effects on the dynamic fragility of PLA/wood composites. Polym. Eng. Sci. 2011, 51, 143–150. [Google Scholar] [CrossRef]
- Mohapatra, A.K.; Mohanty, S.; Nayak, S.K. Effect of PEG on PLA/PEG blend and its nanocomposites: A study of thermo-mechanical and morphological characterization. Polym. Compos. 2013, 35, 283–293. [Google Scholar] [CrossRef]
- Ostafinska, A.; Fortelny, I.; Hodan, J.; Krejcikova, S.; Nevoralova, M.; Kredatusova, J.; Krulis, Z.; Kotek, J.; Slouf, M. Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity. J. Mech. Behav. Biomed. Mater. 2017, 69, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Ferri, J.M.; Fenollar, O.; Jorda-Vilaplana, A.; García-Sanoguera, D.; Balart, R. Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/polycaprolactone blends. Polym. Int. 2016, 65, 453–463. [Google Scholar] [CrossRef]
- Dadras Chomachayi, M.; Jalali-arani, A.; Martínez Urreaga, J. A Comparison of the effect of silk fibroin nanoparticles and microfibers on the reprocessing and biodegradability of PLA/PCL blends. J. Polym. Environ. 2021, 29, 2585–2597. [Google Scholar] [CrossRef]
- Li, D.; Jiang, Y.; Lv, S.; Liu, X.; Gu, J.; Chen, Q.; Zhang, Y. Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials. PLoS ONE 2018, 13, e0193520. [Google Scholar] [CrossRef]
- Rychter, P.; Lewicka, K.; Rogacz, D. Environmental usefulness of PLA/PEG blends for controlled-release systems of soil-applied herbicides. J. Appl. Polym. Sci. 2019, 136, 47856. [Google Scholar] [CrossRef]
- Motloung, M.P.; Ojijo, V.; Bandyopadhyay, J.; Ray, S.S. Morphological characteristics and thermal, rheological, and mechanical properties of cellulose nanocrystals-containing biodegradable poly(lactic acid)/poly(ε-caprolactone) blend composites. J. Appl. Polym. Sci. 2019, 137, 48665. [Google Scholar] [CrossRef]
- Navarro-Baena, I.; Sessini, V.; Dominici, F.; Torre, L.; Kenny, J.M.; Peponi, L. Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polym. Degrad. Stab. 2016, 132, 97–108. [Google Scholar] [CrossRef]
- Arruda, L.C.; Magaton, M.; Bretas, R.E.S.; Ueki, M.M. Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym. Test. 2015, 43, 27–37. [Google Scholar] [CrossRef]
- Srisuwan, Y.; Baimark, Y.; Suttiruengwong, S. Toughening of poly(L-lactide) with blends of poly(epsilon-caprolactone-co-L-lactide) in the presence of chain extender. Int. J. Biomater. 2018, 2018, 1294397. [Google Scholar] [CrossRef] [PubMed]
- Ojijo, V.; Ray, S.S. Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization. Polymer 2015, 80, 1–17. [Google Scholar] [CrossRef]
- Muthuraj, R.; Misra, M.; Mohanty, A.K. Biodegradable compatibilized polymer blends for packaging applications: A literature review. J. Appl. Polym. Sci. 2018, 135, 45726. [Google Scholar] [CrossRef]
- Barletta, M.; Aversa, C.; Puopolo, M. Recycling of PLA-based bioplastics: The role of chain-extenders in twin-screw extrusion compounding and cast extrusion of sheets. J. Appl. Polym. Sci. 2020, 137, 49292. [Google Scholar] [CrossRef]
- Nishida, M.; Liu, X.; Furuya, S.; Nishida, M.; Takayama, T.; Todo, M. Effect of chain extender on morphology and tensile properties of poly(l-lactic acid)/poly(butylene succinate-co-l-lactate) blends. Mater. Today Commun. 2021, 26, 101852. [Google Scholar] [CrossRef]
- Doganci, M.D. Effects of star-shaped PCL having different numbers of arms on the mechanical, morphological, and thermal properties of PLA/PCL blends. J. Polym. Res. 2021, 28, 11. [Google Scholar] [CrossRef]
- Bijarimi, M.; Ahmad, S.; Rasid, R.; Khushairi, M.A.; Zakir, M. Poly(lactic acid)/poly(ethylene glycol) blends: Mechanical, thermal and morphological properties. In Proceedings of the 5th International Advances in Applied Physics and Materials Science Congress & Exhibition, Oludeniz, Turkey, 16–19 April 2015; Volume 1727, p. 020002. [Google Scholar] [CrossRef]
- Ghalia, M.A.; Dahman, Y. Investigating the effect of multi-functional chain extenders on PLA/PEG copolymer properties. Int. J. Biol. Macromol. 2017, 95, 494–504. [Google Scholar] [CrossRef]
- Przybysz-Romatowska, M.; Barczewski, M.; Mania, S.; Tercjak, A.; Haponiuk, J.; Formela, K. Morphology, thermo-mechanical properties and biodegradibility of PCL/PLA blends reactively compatibilized by different organic peroxides. Materials 2021, 14, 4205. [Google Scholar] [CrossRef]
- Moura, N.K.d.; Siqueira, I.A.W.B.; Machado, J.P.d.B.; Kido, H.W.; Avanzi, I.R.; Rennó, A.C.M.; Trichês, E.d.S.; Passador, F.R. Production and characterization of porous polymeric membranes of PLA/PCL blends with the addition of hydroxyapatite. J. Compos. Sci. 2019, 3, 45. [Google Scholar] [CrossRef]
- Dong, W.; Zou, B.; Yan, Y.; Ma, P.; Chen, M. Effect of chain-extenders on the properties and hydrolytic degradation behavior of the poly(lactide)/poly(butylene adipate-co-terephthalate) blends. Int. J. Mol. Sci. 2013, 14, 20189–20203. [Google Scholar] [CrossRef] [PubMed]
- Grace, H.P. Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem. Eng. Commun. 2007, 14, 225–277. [Google Scholar] [CrossRef]
- Athanasoulia, I.-G.; Tarantili, P.A. Preparation and characterization of polyethylene glycol/poly(L-lactic acid) blends. Pure Appl. Chem. 2017, 89, 141–152. [Google Scholar] [CrossRef]
- Baimark, Y.; Rungseesantivanon, W.; Prakymoramas, N. Improvement in melt flow property and flexibility of poly(l-lactide)-b-poly(ethylene glycol)-b-poly(l-lactide) by chain extension reaction for potential use as flexible bioplastics. Mater. Des. 2018, 154, 73–80. [Google Scholar] [CrossRef]
- Zhou, H.; Xia, Y.; Mu, G.; Gao, Y.; Liang, S.; Li, G.; Yang, Q.; Lin, X.; Qian, F. The preparation and characterization of biodegradable PCL/PLA shape memory blends. J. Macromol. Sci. Part A 2021, 58, 669–676. [Google Scholar] [CrossRef]
- Xiang, H.; Wang, S.; Wang, R.; Zhou, Z.; Peng, C.; Zhu, M. Synthesis and characterization of an environmentally friendly PHBV/PEG copolymer network as a phase change material. Sci. China Chem. 2013, 56, 716–723. [Google Scholar] [CrossRef]
- Todo, M.; Park, S.D.; Takayama, T.; Arakawa, K. Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends. Eng. Fract. Mech. 2007, 74, 1872–1883. [Google Scholar] [CrossRef]
- Shin, H.; Thanakkasaranee, S.; Sadeghi, K.; Seo, J. Preparation and characterization of ductile PLA/PEG blend films for eco-friendly flexible packaging application. Food Packag. Shelf Life 2022, 34, 100966. [Google Scholar] [CrossRef]
- Chaos, A.; Sangroniz, A.; Fernandez, J.; del Rio, J.; Iriarte, M.; Sarasua, J.R.; Etxeberria, A. Plasticization of poly(lactide) with poly(ethylene glycol): Low weight plasticizer vs triblock copolymers. Effect on free volume and barrier properties. J. Appl. Polym. Sci. 2020, 137, 48868. [Google Scholar] [CrossRef]
- Ojijo, V.; Ray, S.S.; Sadiku, R. Toughening of biodegradable polylactide/poly(butylene succinate-co-adipate) blends via in situ reactive compatibilization. ACS Appl. Mater. Interfaces 2013, 5, 4266–4276. [Google Scholar] [CrossRef]
- Lascano, D.; Quiles-Carrillo, L.; Balart, R.; Boronat, T.; Montanes, N. Toughened poly(lactic acid)-PLA formulations by binary blends with poly(butylene succinate-co-adipate)-PBSA and their shape memory behaviour. Materials 2019, 12, 622. [Google Scholar] [CrossRef] [PubMed]
- Mofokeng, J.P.; Luyt, A.S. Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO2 as nanofiller. Thermochim. Acta 2015, 613, 41–53. [Google Scholar] [CrossRef]
Sample Name | Composition | Blend Ratio (PLA:PCL) | Blend Ratio (PLA:PEG) | Joncryl (wt.%) |
---|---|---|---|---|
PLA Neat | PLA | 100:0 | 100:0 | - |
PCL Neat | PCL | 0:100 | - | - |
PEG Neat | PEG | - | 0:100 | - |
PLA/PCL 70/30 | PLA/PCL | 70:30 | - | - |
PLA/PCL JC0.1 | PLA/PCL/Joncryl | 70:30 | - | 0.1 |
PLA/PCL JC0.3 | PLA/PCL/Joncryl | 70:30 | - | 0.3 |
PLA/PCL JC0.5 | PLA/PCL/Joncryl | 70:30 | - | 0.5 |
PLA/PEG 70/30 | PLA/PEG | - | 70:30 | - |
PLA/PEG JC0.1 | PLA/PEG/Joncryl | - | 70:30 | 0.1 |
PLA/PEG JC0.3 | PLA/PEG/Joncryl | - | 70:30 | 0.3 |
PLA/PEG JC0.5 | PLA/PEG/Joncryl | - | 70:30 | 0.5 |
Sample Name | Tm PLA (°C) | ΔHm PLA (J/g) | Tcc PLA (°C) | Tm PCL (°C) | ΔHm PCL (J/g) | Tc PCL (°C) | Xc PLA (%) | Xc PCL (%) |
---|---|---|---|---|---|---|---|---|
PLA Neat | 151.0 ± 0.1 | 20.4 ± 0.5 | 125.9 ± 0.2 | - | - | - | 21.8 ± 0.5 | - |
PCL Neat | - | - | - | 57.8 ± 0.3 | 62.7 ± 0.7 | 30.1 ± 0.3 | - | 46.1 ± 0.5 |
PLA/PCL 70/30 | 148.9 ± 0.6 | 17.3 ± 0.6 | 119.1 ± 1.0 | 57.0 ± 0.4 | 16.9 ± 0.2 | 29.8 ± 0.5 | 26.4 ± 1.0 | 41.4 ± 0.5 |
PLA/PCL JC0.1 | 149.1 ± 0.1 | 20.7 ± 0.9 | 117.0 ± 1.1 | 57.3 ± 0.0 | 14.8 ± 1.2 | 29.3 ± 0.8 | 31.6 ± 1.3 | 36.3 ± 3.0 |
PLA/PCL JC0.3 | 149.7 ± 0.2 | 21.1 ± 2.5 | 118.1 ± 0.3 | 57.3 ± 0.2 | 15.7 ± 1.5 | 28.2 ± 0.0 | 32.2 ± 3.9 | 38.5 ± 3.7 |
PLA/PCL JC0.5 | 149.6 ± 0.4 | 19.6 ± 0.7 | 118.4 ± 1.5 | 57.2 ± 0.1 | 12.8 ± 0.1 | - | 29.9 ± 1.1 | 31.4 ± 0.3 |
Sample Name | Tm PLA (°C) | ΔHm PLA (J/g) | Tcc PLA (°C) | Tm PEG (°C) | ΔHm PEG (J/g) | Tc PEG (°C) | Xc PLA (%) | Xc PEG (%) |
---|---|---|---|---|---|---|---|---|
PLA Neat | 151.0 ± 0.1 | 20.4 ± 0.2 | 125.9 ± 0.5 | - | - | - | 21.8 ± 0.5 | - |
PEG Neat | - | - | - | 66.1 ± 0.4 | 170.3 ± 1.1 | 44.1 ± 0.5 | - | 86.4 ± 0.5 |
PLA/PEG 70/30 | 153.7 ± 1.5 | 27.8 ± 0.3 | - | - | - | 36.0 ± 1.2 | 42.4 ± 0.4 | - |
PLA/PEG JC0.1 | 153.0 ± 0.6 | 24.9 ± 0.6 | 88.9 ± 0.3 | - | - | 32.7 ± 1.0 | 38.0 ± 0.9 | - |
PLA/PEG JC0.3 | 152.3 ± 0.3 | 24.8 ± 0.4 | 88.2 ± 0.1 | - | - | 31.3 ± 1.0 | 37.8 ± 0.6 | - |
PLA/PEG JC0.5 | 151.6 ± 0.1 | 24.0 ± 0.2 | 88.2 ± 0.0 | - | - | 32.1 ± 0.5 | 36.6 ± 0.3 |
Sample Name | Tmax PLA (°C) | Tmax PCL (°C) | Tmax PEG (°C) |
---|---|---|---|
PLA Neat | 362.2 ± 1.9 | - | - |
PCL Neat | - | 402.1 ± 4.8 | |
PEG Neat | - | 390.2 ± 2.3 | |
PLA/PCL 70/30 | 361.3 ± 5.1 | 377.4 ± 4.3 | - |
PLA/PCL JC0.1 | 366.3 ± 3.6 | 401.6 ± 3.0 | - |
PLA/PCL JC0.3 | 365.1 ± 0.5 | 390.0 ± 0.7 | - |
PLA/PCL JC0.5 | 364.0 ± 1.7 | 384.5 ± 0 | - |
PLA/PEG 70/30 | 355.9 ± 2.6 | - | 304.9 ± 9.9 |
PLA/PEG JC0.1 | 352.4 ± 3.1 | - | 385.4 ± 11.3 |
PLA/PEG JC0.3 | 360.0 ± 9.1 | - | 377.9 ± 3.6 |
PLA/PEG JC0.5 | 358.6 ± 6.6 | - | 379.4 ± 2.9 |
Sample Name | Tensile (MPa) | Modulus (MPa) | Elongation (%) |
---|---|---|---|
PLA Neat | 106.3 ± 4.1 | 3390.2 ± 121.7 | 4.8 ± 0.5 |
PCL Neat | 37 ± 1.9 | 64.7 ± 4.2 | 660.5 ± 54.1 |
PLA/PCL 70/30 | 74.8 ± 2.0 | 1908.2 ± 33.5 | 12.6 ± 1.0 |
PLA/PCL JC0.1 | 72.1 ± 2.1 | 1295.7 ± 65.9 | 14.2 ± 1.4 |
PLA/PCL JC0.3 | 76 ± 1.9 | 1030.8 ± 47.0 | 14.6 ± 0.7 |
PLA/PCL JC0.5 | 81.1 ± 2.4 | 1120.1 ± 80.2 | 18.7 ± 0.8 |
Sample | Tensile (MPa) | Modulus (MPa) | Elongation (%) |
---|---|---|---|
PLA Neat | 106.3 ± 4.1 | 3390.2 ± 121.7 | 4.8 ± 0.5 |
PLA/PEG 70/30 | 23.8 ± 1.6 | 32.1 ± 2.0 | 253.2 ± 10.8 |
PLA/PEG JC0.1 | 21.7 ± 0.7 | 37.9 ± 1.5 | 160 ± 5.9 |
PLA/PEG JC0.3 | 24.5 ± 1.3 | 43.6 ± 1.1 | 187.6 ± 19.5 |
PLA/PEG JC0.5 | 23 ± 1.5 | 45.9 ± 2.8 | 218.7 ± 4.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matumba, K.I.; Motloung, M.P.; Ojijo, V.; Ray, S.S.; Sadiku, E.R. Investigation of the Effects of Chain Extender on Material Properties of PLA/PCL and PLA/PEG Blends: Comparative Study between Polycaprolactone and Polyethylene Glycol. Polymers 2023, 15, 2230. https://doi.org/10.3390/polym15092230
Matumba KI, Motloung MP, Ojijo V, Ray SS, Sadiku ER. Investigation of the Effects of Chain Extender on Material Properties of PLA/PCL and PLA/PEG Blends: Comparative Study between Polycaprolactone and Polyethylene Glycol. Polymers. 2023; 15(9):2230. https://doi.org/10.3390/polym15092230
Chicago/Turabian StyleMatumba, Karabo Innocent, Mpho Phillip Motloung, Vincent Ojijo, Suprakas Sinha Ray, and Emmanuel Rotimi Sadiku. 2023. "Investigation of the Effects of Chain Extender on Material Properties of PLA/PCL and PLA/PEG Blends: Comparative Study between Polycaprolactone and Polyethylene Glycol" Polymers 15, no. 9: 2230. https://doi.org/10.3390/polym15092230
APA StyleMatumba, K. I., Motloung, M. P., Ojijo, V., Ray, S. S., & Sadiku, E. R. (2023). Investigation of the Effects of Chain Extender on Material Properties of PLA/PCL and PLA/PEG Blends: Comparative Study between Polycaprolactone and Polyethylene Glycol. Polymers, 15(9), 2230. https://doi.org/10.3390/polym15092230