Mechanical, Crystallization, Rheological, and Supercritical CO2 Foaming Properties of Polybutylene Succinate Nanocomposites: Impact of Carbon Nanofiber Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PBS/CNF Nanocomposites and Their Nanocomposite Foams
2.3. Characterization
2.3.1. Scanning Electron Microscope (SEM) Test
2.3.2. Rheological Properties Test
2.3.3. Mechanical Properties Test
2.3.4. Differential Scanning Calorimetry (DSC) Test
2.3.5. Electrical Conductivity Test
2.3.6. Electromagnetic Interference Shielding Performance Test
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Min, Z.; Yang, H.; Chen, F.; Kuang, T. Scale-up production of lightweight high-strength polystyrene/carbonaceous filler composite foams with high-performance electromagnetic interference shielding. Mater. Lett. 2018, 230, 157–160. [Google Scholar] [CrossRef]
- Lian, X.; Mou, W.; Kuang, T.; Liu, X.; Zhang, S.; Li, F.; Liu, T.; Peng, X. Synergetic effect of nanoclay and nano-CaCO3 hybrid filler systems on the foaming properties and cellular structure of polystyrene nanocomposite foams using supercritical CO2. Cell. Polym. 2020, 39, 185–202. [Google Scholar] [CrossRef]
- Hossieny, N.J.; Barzegari, M.R.; Nofar, M.; Mahmood, S.H.; Park, C.B. Crystallization of hard segment domains with the presence of butane for microcellular thermoplastic polyurethane foams. Polymer 2014, 55, 651–662. [Google Scholar] [CrossRef]
- Wu, B.; Wang, H.; Chen, Y.; Wang, Z.; Maertens, T.; Kuang, T.; Fan, P.; Chen, F.; Zhong, M.; Tan, J. Preparation and properties of thermoplastic polyurethane foams with bimodal structure based on TPU/PDMS blends. J. Supercrit. Fluids 2021, 177, 105324. [Google Scholar] [CrossRef]
- You, J.; Jiang, Z.; Jiang, H.; Qiu, J.; Li, M.; Xing, H.; Xue, J.; Tang, T. A “Plasticizing-Foaming-Reinforcing” approach for creating thermally insulating PVC/polyurea blend foams with shape memory function. Chem. Eng. J. 2022, 450, 138071. [Google Scholar] [CrossRef]
- Li, Y.; Gong, P.; Liu, Y.; Niu, Y.; Park, C.B.; Li, G. Environmentally Friendly and Zero-Formamide EVA/LDPE Microcellular Foams via Supercritical Carbon Dioxide Solid Foaming. ACS Appl. Polym. Mater. 2021, 3, 4213–4222. [Google Scholar] [CrossRef]
- Kuang, T.; Ju, J.; Liu, T.; Hejna, A.; Saeb, M.R.; Zhang, S.; Peng, X. A facile structural manipulation strategy to prepare ultra-strong, super-tough, and thermally stable polylactide/nucleating agent composites. Adv. Compos. Hybrid Mater. 2022, 5, 948–959. [Google Scholar] [CrossRef]
- Kuang, T.; Ju, J.; Yang, Z.; Geng, L.; Peng, X. A facile approach towards fabrication of lightweight biodegradable poly (butylene succinate)/carbon fiber composite foams with high electrical conductivity and strength. Compos. Sci. Technol. 2018, 159, 171–179. [Google Scholar] [CrossRef]
- Ju, J.; Peng, X.; Huang, K.; Li, L.; Liu, X.; Chitrakar, C.; Chang, L.; Gu, Z.; Kuang, T. High-performance porous PLLA-based scaffolds for bone tissue engineering: Preparation, characterization, and in vitro and in vivo evaluation. Polymer 2019, 180, 121707. [Google Scholar] [CrossRef]
- Ju, J.; Gu, Z.; Liu, X.; Zhang, S.; Peng, X.; Kuang, T. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application. Int. J. Biol. Macromol. 2020, 147, 1164–1173. [Google Scholar] [CrossRef]
- Kuang, T.; Chang, L.; Chen, F.; Sheng, Y.; Fu, D.; Peng, X. Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 2016, 105, 305–313. [Google Scholar] [CrossRef]
- Kuang, T.; Chen, F.; Chang, L.; Zhao, Y.; Fu, D.; Gong, X.; Peng, X. Facile preparation of open-cellular porous poly (l-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications. Chem. Eng. J. 2017, 307, 1017–1025. [Google Scholar] [CrossRef]
- Yu, P.; Mi, H.-Y.; Huang, A.; Geng, L.-H.; Chen, B.-Y.; Kuang, T.-R.; Mou, W.-J.; Peng, X.-F. Effect of poly (butylenes succinate) on poly (lactic acid) foaming behavior: Formation of open cell structure. Ind. Eng. Chem. Res. 2015, 54, 6199–6207. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Wang, G.; Xu, Z.; Zhang, A.; Dong, G.; Zhao, G. Lightweight, low-shrinkage and high elastic poly (butylene adipate-co-terephthalate) foams achieved by microcellular foaming using N2 & CO2 as co-blowing agents. J. CO2 Util. 2022, 64, 102149. [Google Scholar]
- Ren, Q.; Zhu, X.; Li, W.; Wu, M.; Cui, S.; Ling, Y.; Ma, X.; Wang, G.; Wang, L.; Zheng, W. Fabrication of super-hydrophilic and highly open-porous poly (lactic acid) scaffolds using supercritical carbon dioxide foaming. Int. J. Biol. Macromol. 2022, 205, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, D.; Wan, G.; Li, B.; Zhao, G. Glass fiber reinforced PLA composite with enhanced mechanical properties, thermal behavior, and foaming ability. Polymer 2019, 181, 121803. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, G.; Wang, S.; Zhang, L.; Park, C.B. Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. J. Mater. Chem. C 2018, 6, 6847–6859. [Google Scholar] [CrossRef]
- Yin, D.; Mi, J.; Zhou, H.; Wang, X.; Fu, H. Microcellular foaming behaviors of chain extended poly (butylene succinate)/polyhedral oligomeric silsesquioxane composite induced by isothermal crystallization. Polym. Degrad. Stab. 2019, 167, 228–240. [Google Scholar] [CrossRef]
- Ru, K.; Zhang, S.; Peng, X.; Wang, J.; Peng, H. Fabrication of Poly (butylene succinate) phosphorus-containing ionomers microcellular foams with significantly improved thermal conductivity and compressive strength. Polymer 2019, 185, 121967. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, S.; Peng, X.; Wang, J. Fabrication and mechanism of poly (butylene succinate) urethane ionomer microcellular foams with high thermal insulation and compressive feature. Eur. Polym. J. 2018, 99, 250–258. [Google Scholar] [CrossRef]
- Yin, D.; Mi, J.; Zhou, H.; Wang, X.; Yu, K. Simple and feasible strategy to fabricate microcellular poly (butylene succinate) foams by chain extension and isothermal crystallization induction. J. Appl. Polym. Sci. 2020, 137, 48850. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, Y.; Wang, P.; Peng, X.; Zeng, J. Fabrication-controlled morphology of poly (butylene succinate) nano-microcellular foams by supercritical CO2. Polym. Adv. Technol. 2018, 29, 1953–1965. [Google Scholar] [CrossRef]
- Nofar, M.; Park, C.B. Poly (lactic acid) foaming. Prog. Polym. Sci. 2014, 39, 1721–1741. [Google Scholar] [CrossRef]
- Huang, A.; Lin, J.; Chen, S.; Fang, H.; Wang, H.; Peng, X. Facile preparation of poly (butylene succinate)/carbon nanotubes/polytetrafluoroethylene ternary nanocomposite foams with superior electrical conductivity by synergistic effect of “ball milling” and supercritical fluid-assisted processing. Compos. Sci. Technol. 2021, 201, 108519. [Google Scholar] [CrossRef]
- Wu, W.; Cao, X.; Lin, H.; He, G.; Wang, M. Preparation of biodegradable poly (butylene succinate)/halloysite nanotube nanocomposite foams using supercritical CO2 as blowing agent. J. Polym. Res. 2015, 22, 177. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, J.; Ju, J.; Kuang, T. Fabrication of poly (butylene succinate)/carbon black nanocomposite foams with good electrical conductivity and high strength by a supercritical CO2 foaming process. Polymers 2019, 11, 1852. [Google Scholar] [CrossRef]
- Luo, J.; Yin, D.; Yu, K.; Zhou, H.; Wen, B.; Wang, X. Facile Fabrication of PBS/CNTs Nanocomposite Foam for Electromagnetic Interference Shielding. ChemPhysChem 2022, 23, e202100778. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. Review of the mechanical properties of carbon nanofiber/polymer composites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 2126–2142. [Google Scholar] [CrossRef]
- Tibbetts, G.G.; Lake, M.L.; Strong, K.L.; Rice, B.P. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol. 2007, 67, 1709–1718. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.; Zeng, L.; Li, R.; Tian, H.; Fu, X.; Wang, Y.; Zhong, W.-H. A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. J. Mater. Sci. 2019, 54, 1036–1076. [Google Scholar] [CrossRef]
- Ju, J.; Kuang, T.; Ke, X.; Zeng, M.; Chen, Z.; Zhang, S.; Peng, X. Lightweight multifunctional polypropylene/carbon nanotubes/carbon black nanocomposite foams with segregated structure, ultralow percolation threshold and enhanced electromagnetic interference shielding performance. Compos. Sci. Technol. 2020, 193, 108116. [Google Scholar] [CrossRef]
- Chen, Y.; Weng, C.; Wang, Z.; Maertens, T.; Fan, P.; Chen, F.; Zhong, M.; Tan, J.; Yang, J. Preparation of polymeric foams with bimodal cell size: An application of heterogeneous nucleation effect of nanofillers. J. Supercrit. Fluids 2019, 147, 107–115. [Google Scholar] [CrossRef]
- Chen, Z.; Guan, M.; Cheng, Y.; Li, H.; Ji, G.; Chen, H.; Fu, X.; Awuye, D.E.; Zhu, Y.; Yin, X.; et al. Boehmite-enhanced poly(vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile (PVDF-HFP/PAN) coaxial electrospun nanofiber hybrid membrane: A superior separator for lithium-ion batteries. Adv. Compos. Hybrid Mater. 2023, 6, 219. [Google Scholar] [CrossRef]
- Ding, W.; Kuboki, T.; Wong, A.; Park, C.B.; Sain, M. Rheology, thermal properties, and foaming behavior of high d-content polylactic acid/cellulose nanofiber composites. RSC Adv. 2015, 5, 91544–91557. [Google Scholar] [CrossRef]
- Urbanczyk, L.; Calberg, C.; Detrembleur, C.; Jerome, C.; Alexandre, M. Batch foaming of SAN/clay nanocomposites with scCO2: A very tunable way of controlling the cellular morphology. Polymer 2010, 51, 3520–3531. [Google Scholar] [CrossRef]
Sample | Tensile Strength (MPa) | Young’s Modulus (MPa) | Elongation at Break (%) | Bending Strength (MPa) | Bending Modulus (MPa) | Impact Strength (KJ/m2) |
---|---|---|---|---|---|---|
PBS0 | 40.8 ± 0.4 | 250.3 ± 8.3 | 559.2 ± 12.6 | 41.1 ± 0.4 | 642.1 ± 3.2 | 8.4 ± 0.1 |
PBS1 | 41.1 ± 1.1 | 326.2 ± 29.1 | 27.1 ± 2.5 | 45.1 ± 1.2 | 770.4 ± 28.9 | 5.1 ± 0.4 |
PBS3 | 42.4 ± 1.2 | 372.2 ± 11.4 | 32.5 ± 0.9 | 46.3 ± 0.6 | 834.1 ± 23.4 | 5.2 ± 0.3 |
PBS5 | 43.6 ± 0.3 | 381.1 ± 12.9 | 31.0 ± 3.1 | 48.5 ± 0.5 | 922.7 ± 13.8 | 5.3 ± 0.3 |
PBS7 | 45.3 ± 1.5 | 417.5 ± 20.1 | 28.3 ± 0.4 | 50.9 ± 1.2 | 987.6 ± 17.7 | 5.1 ± 0.4 |
Samples | Tm (°C) | ∆Hm (J/g) | Xc (%) |
---|---|---|---|
PBS0 | 108.4 | 48.3 | 24.2 |
PBS1 | 113.8 | 58.3 | 29.2 |
PBS3 | 114.1 | 62.1 | 31.1 |
PBS5 | 113.8 | 65.2 | 32.6 |
PBS7 | 115.1 | 66.9 | 33.5 |
F-PBS0 | F-PBS1 | F-PBS3 | F-PBS5 | F-PBS7 | |
---|---|---|---|---|---|
Average cell size (μm) | 41.0 ± 11.1 | 35.1 ± 8.9 | 31.3 ± 7.6 | 26.9 ± 4.2 | 22.0 ± 4.5 |
Average cell density (cells/cm3) | 1.8 × 107 | 3.2 × 107 | 4.2 × 107 | 7.3 × 107 | 1.3 × 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Yin, X.; Chen, H.; Fu, X.; Sun, Y.; Chen, Q.; Liu, W.; Shen, X. Mechanical, Crystallization, Rheological, and Supercritical CO2 Foaming Properties of Polybutylene Succinate Nanocomposites: Impact of Carbon Nanofiber Content. Polymers 2024, 16, 28. https://doi.org/10.3390/polym16010028
Chen Z, Yin X, Chen H, Fu X, Sun Y, Chen Q, Liu W, Shen X. Mechanical, Crystallization, Rheological, and Supercritical CO2 Foaming Properties of Polybutylene Succinate Nanocomposites: Impact of Carbon Nanofiber Content. Polymers. 2024; 16(1):28. https://doi.org/10.3390/polym16010028
Chicago/Turabian StyleChen, Zhou, Xichen Yin, Hui Chen, Xuguang Fu, Yuyue Sun, Qian Chen, Weidong Liu, and Xiao Shen. 2024. "Mechanical, Crystallization, Rheological, and Supercritical CO2 Foaming Properties of Polybutylene Succinate Nanocomposites: Impact of Carbon Nanofiber Content" Polymers 16, no. 1: 28. https://doi.org/10.3390/polym16010028
APA StyleChen, Z., Yin, X., Chen, H., Fu, X., Sun, Y., Chen, Q., Liu, W., & Shen, X. (2024). Mechanical, Crystallization, Rheological, and Supercritical CO2 Foaming Properties of Polybutylene Succinate Nanocomposites: Impact of Carbon Nanofiber Content. Polymers, 16(1), 28. https://doi.org/10.3390/polym16010028