Nano Boron Oxide and Zinc Oxide Doped Lignin Containing Cellulose Nanocrystals Improve the Thermal, Mechanical and Flammability Properties of High-Density Poly(ethylene)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of ZnO Coated L-CNC
2.3. Synthesis of B2O3 Coated L-CNC
2.4. Design and Manufacture of Polymer Composites Using Inorganic Oxide Coated L-CNC as Filler Material
2.5. Characterization
2.5.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.5.2. Scanning Electron Microscopy
2.5.3. Thermogravimetric Analysis
2.5.4. Differential Scanning Calorimetry (DSC)
2.5.5. Dynamic Mechanical Analysis
2.5.6. Tensile Testing
2.5.7. Horizontal Burning Test
2.5.8. Microcalorimetry Test
3. Results and Discussion
3.1. Spectroscopy Analysis of the Composites
3.2. Morphological Analysis of the Composites
3.3. Thermogravimetric Property Analysis of the Composites
3.4. Crystallization Behavior Analysis of the Composites
3.5. Dynamic Mechanical Property Analysis of the Composites
3.6. Tensile Property Analysis of the Composites
3.7. Horizontal Burning Test Analysis
3.8. Microcalorimetry Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Frone, A.N.; Berlioz, S.; Chailan, J.-F.; Panaitescu, D.M. Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohydr. Polym. 2013, 91, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, F.; Jiang, L.; Zhu, J.Y.; Haagenson, D.; Wiesenborn, D.P. Cellulose nanocrystals vs. cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl. Mater. Interfaces 2013, 5, 2999–3009. [Google Scholar] [CrossRef] [PubMed]
- Ying, Z.; Wu, D.; Wang, Z.; Xie, W.; Qiu, Y.; Wei, X. Rheological and mechanical properties of polylactide nanocomposites reinforced with the cellulose nanofibers with various surface treatments. Cellulose 2018, 25, 3955–3971. [Google Scholar] [CrossRef]
- Salon, M.B.; Gerbaud, G.; Abdelmouleh, M.; Bruzzese, C.; Boufi, S.; Belgacem, M.N. Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid-state NMR. Magn. Reson. Chem. 2007, 45, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Shojaeiarani, J.; Bajwa, D.S.; Stark, N.M.; Bajwa, S.G. Rheological properties of cellulose nanocrystals engineered polylactic acid nanocomposites. Compos. Part B Eng. 2019, 161, 483–489. [Google Scholar] [CrossRef]
- Andersons, J.; Spārniņš, E.; Joffe, R. Stiffness and strength of flax fiber/polymer matrix composites. Polym. Compos. 2006, 27, 221–229. [Google Scholar] [CrossRef]
- Peijs, T.; Garkhail, S.; Heijenrath, R.; van Den Oever, M.; Bos, H. Thermoplastic composites based on flax fibres and polypropylene: Influence of fibre length and fibre volume fraction on mechanical properties. Macromol. Symp. 1998, 127, 193–203. [Google Scholar] [CrossRef]
- Liu, Y.; Matuana, L.M. Surface texture and barrier performance of poly (lactic acid)–cellulose nanocrystal extruded-cast films. J. Appl. Polym. Sci. 2019, 136, 47594. [Google Scholar] [CrossRef]
- Gupta, A.; Simmons, W.; Schueneman, G.T.; Hylton, D.; Mintz, E.A. Rheological and thermo-mechanical properties of poly (lactic acid)/lignin-coated cellulose nanocrystal composites. ACS Sustain. Chem. Eng. 2017, 5, 1711–1720. [Google Scholar] [CrossRef]
- Wei, L.; Agarwal, U.; Stark, N.; Sabo, R. Nanocomposites from lignin-containing cellulose nanocrystals and poly (lactic acid). Soc. Plast. Eng. 2017. [Google Scholar]
- Iyer, K.A.; Schueneman, G.T.; Torkelson, J.M. Cellulose nanocrystal/polyolefin biocomposites prepared by solid-state shear pulverization: Superior dispersion leading to synergistic property enhancements. Polymer 2015, 56, 464–475. [Google Scholar] [CrossRef]
- Orr, M.P.; Shofner, M.L. Processing strategies for cellulose nanocrystal/polyethylene-co-vinyl alcohol composites. Polymer 2017, 126, 211–223. [Google Scholar] [CrossRef]
- Codou, A.; Guigo, N.; van Berkel, J.G.; de Jong, E.; Sbirrazzuoli, N. Preparation and crystallization behavior of poly (ethylene 2, 5-furandicarboxylate)/cellulose composites by twin screw extrusion. Carbohydr. Polym. 2017, 174, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Tawiah, B.; Bin, Y.; Richard, K.K.Y.; Yuan, H.; Ruichao, W.; John, H.X.; Bin, F. Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene Oxide/Poly (Lactic acid) nanocomposites. Carbon 2019, 150, 8–20. [Google Scholar] [CrossRef]
- Zheng, T.; Zhang, Z.; Shukla, S.; Agnihotri, S.; Clemons, C.M.; Pilla, S. PHBV-graft-GMA via reactive extrusion and its use in PHBV/nanocellulose crystal composites. Carbohydr. Polym. 2019, 205, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, D.S.; Shojaeiarani, J.; Liaw, J.D.; Bajwa, S.G. Role of Hybrid Nano-Zinc Oxide and Cellulose Nanocrystals on the Mechanical, Thermal, and Flammability Properties of Poly (Lactic Acid) Polymer. J. Compos. Sci. 2021, 5, 43. [Google Scholar] [CrossRef]
- Kicko-Walczak, E.W.A. Novel halogen-free flame retardants-flame retardation of unsaturated polyester resins with use of boron compounds. Polimery 2008, 53, 126–132. [Google Scholar] [CrossRef]
- Shojaeiarani, J.; Bajwa, D.S.; Stark, N.M. Spin-coating: A new approach for improving dispersion of cellulose nanocrystals and mechanical properties of poly (lactic acid) composites. Carbohydr. Polym. 2018, 190, 139–147. [Google Scholar] [CrossRef]
- ASTM D1708-18; Standard Test Method for Tensile Properties of Plastics by Use of Microtensile Specimens. American Society of Testing Materials: West Conshohocken, PA, USA, 2018.
- ASTM D635-22; Standard Test Method for Rate of Burning and/or Extent and Time of Burning of Plastics in a Horizontal Position. American Society of Testing Materials: West Conshohocken, PA, USA, 2015.
- ASTM D7309-21b; Standard Test Method for Determining Flammability Characteristics of Plastics and Other Solid Materials Using Microscale Combustion Calorimetry. American Society of Testing Materials: West Conshohocken, PA, USA, 2021.
- Rahimi, S.K.; Otaigbe, J.U. The effects of the interface on microstructure and rheo-mechanical properties of polyamide 6/cellulose nanocrystal nanocomposites prepared by in-situ ring-opening polymerization and subsequent melt extrusion. Polymer 2017, 127, 269–285. [Google Scholar] [CrossRef]
- Bitinis, N.; Fortunati, E.; Verdejo, R.; Bras, J.; Kenny, J.M.; Torre, L.; López-Manchado, M.A. Poly (lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites Part I. Processing and morphology. Carbohydr. Polym. 2013, 96, 611–620. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Y.; Meng, Y.; Anusonti-Inthra, P.; Wang, S. Preparing cellulose nanocrystal/acrylonitrile-butadiene-styrene nanocomposites using the master-batch method. Carbohydr. Polym. 2015, 125, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Inai, N.; Lewandowska, A.; Ghita, O.; Eichhorn, S. Interfaces in polyethylene oxide modified cellulose nanocrystal-polyethylene matrix composites. Compos. Sci. Technol. 2018, 154, 128–135. [Google Scholar] [CrossRef]
- Gray, N.; Hamzeh, Y.; Kaboorani, A.; Abdulkhani, A. Influence of cellulose nanocrystal on strength and properties of low density polyethylene and thermoplastic starch composites. Ind. Crop. Prod. 2018, 115, 298–305. [Google Scholar] [CrossRef]
- Zheng, T.; Pilla, S. Melt processing of cellulose nanocrystal-filled composites: Toward reinforcement and foam nucleation. Ind. Eng. Chem. Res. 2020, 59, 8511–8531. [Google Scholar] [CrossRef]
- Nagalakshmaiah, M.; El Kissi, N.; Dufresne, A. Ionic compatibilization of cellulose nanocrystals with quaternary ammonium salt and their melt extrusion with polypropylene. ACS Appl. Mater. Interfaces 2016, 8, 8755–8764. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Jeon, H.; Jegal, J.; Kim, J.H.; Yang, H.; Park, J.; Oh, D.X.; Hwang, S.Y. Trans crystallization behavior and strong reinforcement effect of cellulose nanocrystals on reinforced poly (butylene succinate) nanocomposites. RSC Adv. 2018, 8, 15389–15398. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, Y.; Yu, T.; Wang, N.; Wang, C.; Wang, H. Preparation of polylactic acid/TEMPO-oxidized bacterial cellulose nanocomposites for 3D printing via Pickering emulsion approach. Compos. Commun. 2019, 16, 162–167. [Google Scholar] [CrossRef]
- Feng, C.; Yu, S.-S. 3D printing of thermal insulating polyimide/cellulose nanocrystal composite aerogels with low dimensional shrinkage. Polymers 2021, 13, 3614. [Google Scholar] [CrossRef]
- Zheng, T.; Clemons, C.M.; Pilla, S. Comparative study of direct compounding, coupling agent-aided and initiator-aided reactive extrusion to prepare cellulose nanocrystal/PHBV (CNC/PHBV) nanocomposite. ACS Sustain. Chem. Eng. 2019, 8, 814–822. [Google Scholar] [CrossRef]
- Richardson, J.J.; Tardy, B.L.; Guo, J.; Liang, K.; Rojas, O.J.; Ejima, H. Continuous metal–organic framework biomineralization on cellulose nanocrystals: Extrusion of functional composite filaments. ACS Sustain. Chem. Eng. 2019, 7, 6287–6294. [Google Scholar] [CrossRef]
- Leite, L.S.F.; Battirola, L.C.; Silva, L.C.; Gonçalves, M.D.G. Morphological investigation of cellulose acetate/cellulose nanocrystal composites obtained by melt extrusion. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Fallon, J.J.; Kolb, B.Q.; Herwig, C.J.; Foster, E.J.; Bortner, M.J. Mechanically adaptive thermoplastic polyurethane/cellulose nanocrystal composites: Process-driven structure–property relationships. J. Appl. Polym. Sci. 2019, 136, 46992. [Google Scholar] [CrossRef]
- Wei, L.; Stark, N.M.; Sabo, R.C.; Matuana, L. Modification of cellulose nanocrystals (CNCs) for use in poly (lactic acid)(PLA)-CNC composite packaging products. In Proceedings of the Forest Products Society International Convention, Portland, OR, USA, 28–29 June 2016. [Google Scholar]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Beck-Candanedo, S.; Roman, M.; Gray, D.G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 2005, 6, 1048–1054. [Google Scholar] [CrossRef]
- Kamal, M.R.; Khoshkava, V. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr. Polym. 2015, 123, 105–114. [Google Scholar] [CrossRef]
- Wei, L.; McDonald, A.G. A review on grafting of biofibers for biocomposites. Materials 2016, 9, 303. [Google Scholar] [CrossRef]
Sample Code | Resin (HDPE) (wt%) | LCNC (Weight Ratio) | ZnO/B2O3 (Weight Ratio) |
---|---|---|---|
Neat HDPE | 100 | - | - |
LC1Z0 | 99 | 1 | 0 |
LC1Z1 | 99 | 1 | 1 |
LC1Z2 | 99 | 1 | 2 |
LC2Z1 | 99 | 2 | 1 |
LC1B0 | 99 | 1 | 0 |
LC1B1 | 99 | 1 | 1 |
LC1B2 | 99 | 1 | 2 |
LC2B1 | 99 | 2 | 1 |
Sample Name | Tonset (°C) | T50 (°C) | Tendset (°C) | Residue wt. (%) |
---|---|---|---|---|
Neat HDPE | 404.05 | 460.24 | 481.70 | 0.5597 |
LC1Z0 | 405.91 | 451.09 | 469.85 | 1.487 |
LC1Z1 | 380.85 | 448.53 | 466.26 | 3.686 |
LC1Z2 | 385.47 | 450.63 | 469.12 | 3.309 |
LC2Z1 | 398.21 | 449.23 | 466.52 | 3.463 |
LC1B0 | 405.91 | 451.09 | 469.85 | 1.487 |
LC1B1 | 387.86 | 451.36 | 471.56 | 3.166 |
LC1B2 | 393.61 | 450.74 | 470.41 | 3.414 |
LC2B1 | 397.03 | 455.35 | 472.91 | 3.621 |
Sample Name | Tc (°C) | Tm (°C) | Crystallinity (Xc) (%) |
---|---|---|---|
Neat HDPE | 114.54 | 127.53 | 44.12 |
LC1Z0 | 112.40 | 125.64 | 36.45 |
LC1Z1 | 111.73 | 126.61 | 36.49 |
LC1Z2 | 111.56 | 126.54 | 37.87 |
LC2Z1 | 115.15 | 127.73 | 36.75 |
LC1B0 | 112.40 | 126.64 | 36.45 |
LC1B1 | 113.99 | 127.31 | 38.47 |
LC1B2 | 114.45 | 126.54 | 36.69 |
LC2B1 | 113.65 | 128.09 | 37.65 |
Sample Code | Mean Flame Spread Rate (mm/s) | Mean Weight-Loss (%) |
---|---|---|
HDPE | 1.08 ± 0.26 a | 65.77 ± 1.17 a |
LC1Z1 | 1.19 ± 0.14 b | 61.35 ± 1.88 a |
LC2Z1 | 1.17 ± 0.055 b | 59.68 ± 4.23 b |
LC1Z2 | 1.05 ± 0.035 a | 52.37 ± 2.80 b |
LC1Z0 | 0.92 ± 0.005 a | 49.78 ± 6.36 b |
LC2B1 | 1.08 ± 0.025 a | 61.35 ± 1.88 a |
LC1B1 | 1.02 ± 0.06 a | 60.66 ± 0.10 b |
LC1B2 | 0.99 ± 0.04 a | 56.04 ± 1.11 b |
LC1B0 | 0.92 ± 0.005 a | 53.73 ± 0.62 b |
Sample Code | HR Capacity (J/gK) | PHRR (W/g) | Total HR (kJ/g) |
---|---|---|---|
Neat HDPE | 414.67 b | 413.03 b | 22.73 b |
LC1Z1 | 417.00 b | 404.03 b | 20.80 b |
LC1B2 | 477.66 a | 475.37 a | 25.43 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajwa, D.S.; Holt, G.; Stark, N.; Bajwa, S.G.; Chanda, S.; Quadir, M. Nano Boron Oxide and Zinc Oxide Doped Lignin Containing Cellulose Nanocrystals Improve the Thermal, Mechanical and Flammability Properties of High-Density Poly(ethylene). Polymers 2024, 16, 36. https://doi.org/10.3390/polym16010036
Bajwa DS, Holt G, Stark N, Bajwa SG, Chanda S, Quadir M. Nano Boron Oxide and Zinc Oxide Doped Lignin Containing Cellulose Nanocrystals Improve the Thermal, Mechanical and Flammability Properties of High-Density Poly(ethylene). Polymers. 2024; 16(1):36. https://doi.org/10.3390/polym16010036
Chicago/Turabian StyleBajwa, Dilpreet S., Greg Holt, Nicole Stark, Sreekala G. Bajwa, Saptaparni Chanda, and Mohiuddin Quadir. 2024. "Nano Boron Oxide and Zinc Oxide Doped Lignin Containing Cellulose Nanocrystals Improve the Thermal, Mechanical and Flammability Properties of High-Density Poly(ethylene)" Polymers 16, no. 1: 36. https://doi.org/10.3390/polym16010036
APA StyleBajwa, D. S., Holt, G., Stark, N., Bajwa, S. G., Chanda, S., & Quadir, M. (2024). Nano Boron Oxide and Zinc Oxide Doped Lignin Containing Cellulose Nanocrystals Improve the Thermal, Mechanical and Flammability Properties of High-Density Poly(ethylene). Polymers, 16(1), 36. https://doi.org/10.3390/polym16010036