Simultaneous Production of Cellulose Nitrates and Bacterial Cellulose from Lignocellulose of Energy Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock
2.2. Preparation and Analysis of Cellulose Samples
2.2.1. Analysis of Chemical Composition and Cellulose Degree of Polymerization (DP)
2.2.2. X-ray Diffraction Analysis of Cellulose Samples
2.3. Enzymatic Hydrolysis of Cellulose Samples
- ηRS is the yield of RS on a substrate weight basis (%).
- CRS is the final concentration of RS in the hydrolyzate (g/L).
- CS is the substrate concentration on a dry matter basis (g/L).
- 0.9 is the factor associated with the water molecule addition to anhydroglucose residues of the respective monomeric units as a result of hydrolysis.
2.4. Cellulose Sample Analysis after Enzymatic Hydrolysis
2.5. Nitration and Analysis of CN Samples
2.6. Structural Analysis of Cellulose, CN, and Coupled TGA/DTA
2.7. Synthesis of Bacterial Cellulose
- W is the BC yield, %.
- m is the weight of the BC sample on an oven-dry basis, g.
- C is the RS concentration in the medium on a glucose basis, g/L.
- V is the volume of the medium, L.
- 0.9 is the conversion factor due to the water molecule detachment upon the polymerization of glucose into cellulose.
3. Results and Discussion
3.1. Properties of Cellulose Sample
3.2. Enzymatic Hydrolysis of Cellulose
3.3. Nitration
3.4. Synthesis of Bacterial Cellulose
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morris, E.; Pulham, C.R.; Morrison, C.A. Structure and properties of nitrocellulose: Approaching 200 years of research. RSC Adv. 2023, 13, 32321–32333. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Xie, M.Y.; Li, M.; Cao, L.; Feng, S.; Li, Z.; Xu, F. Nitrocellulose membrane for paper-based biosensor. Appl. Mater. Today 2022, 26, 101305. [Google Scholar] [CrossRef]
- Tang, R.; Xie, M.; Yan, X.; Qian, L.; Giesy, J.P.; Xie, Y. A nitrocellulose/cotton fiber hybrid composite membrane for paper-based biosensor. Cellulose 2023, 30, 6457–6469. [Google Scholar] [CrossRef] [PubMed]
- Gouda, A.A.; El Sheikh, R.; Youssef, A.O.; Gouda, N.; Gamil, W.; Khadrajy, H.A. Preconcentration and separation of Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) in environmental samples on cellulose nitrate membrane filter prior to their flame atomic absorption spectroscopy determinations. Intern. J. Environ. Anal. Chem. 2020, 103, 364–377. [Google Scholar] [CrossRef]
- Tang, R.; Alam, N.; Li, M.; Xie, M.; Ni, Y. Dissolvable sugar barriers to enhance the sensitivity of nitrocellulose membrane lateral flow assay for COVID-19 nucleic acid. Carbohydr. Polym. 2021, 268, 118259. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.A.; Milhem, R.M.; Panicker, N.G.; Rizvi, T.A.; Mustafa, F. Electrical characterization of DNA supported on nitrocellulose membranes. Sci. Rep. 2016, 6, 29089. [Google Scholar] [CrossRef] [PubMed]
- Toader, G.A.; Nitu, F.R.; Ionita, M. Graphene Oxide/Nitrocellulose Non-Covalent Hybrid as Solid Phase for Oligo-DNA Extraction from Complex Medium. Molecules 2023, 28, 4599. [Google Scholar] [CrossRef] [PubMed]
- Tarchoun, A.F.; Trache, D.; Hamouche, M.A.; Abdelaziz, A.; Boukeciat, H.; Chentir, I.; Klapötke, T.M. Elucidating the characteristics of a promising nitrate ester polysaccharide derived from shrimp shells and its blends with cellulose nitrate. Cellulose 2023, 30, 4941–4955. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Klapötke, T.M.; Selmani, A.; Saada, M.; Chelouche, S.; Abdelaziz, A. New insensitive high-energy dense biopolymers from giant reed cellulosic fibers: Their synthesis, characterization, and non-isothermal decomposition kinetics. New J. Chem. 2021, 45, 5099–5113. [Google Scholar] [CrossRef]
- Jamal, S.H.; Roslan, N.J.; Ahmad Shah, N.A.; Mohd Noor, S.A.; Khim, O.K.; Yunus, W.M.Z.W. Conversion of bacterial cellulose to cellulose nitrate with high nitrogen content as propellant ingredient. Solid State Phenom. 2021, 317, 305–311. [Google Scholar] [CrossRef]
- Huang, X.; Luo, Q.; Zhu, J.; Li, Z.; Zhao, J.; Pei, C. Development rheological and thermal properties of a novel propellant RDX/TEGDN/NBC. SN Appl. Sci. 2020, 2, 1–12. [Google Scholar] [CrossRef]
- Touidjine, S.; Boulkadid, M.K.; Trache, D.; Louafi, E.; Akbi, H.; Belkhiri, S.; Kadri, D.E. Synergetic effect of nano and micro titanium dioxide on the thermal decomposition behavior and chemical stability of nitrocellulose. J. Therm. Anal. Calorim. 2023, 148, 6909–6925. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Abdelaziz, A.; Harrat, A.; Boukecha, W.O.; Hamouche, M.A.; Dourari, M. Elaboration, characterization and thermal decomposition kinetics of new nanoenergetic composite based on Hydrazine 3-Nitro-1, 2, 4-triazol-5-one and nanostructured cellulose nitrate. Molecules 2022, 27, 6945. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Nitrate Esters Chemistry and Technology; Springer: Singapore, 2019; pp. 469–580. [Google Scholar]
- Mattar, H.; Baz, Z.; Saleh, A.; Shalaby, A.S.; Azzazy, A.E.; Salah, H.; Ismail, I. Nitrocellulose: Structure, synthesis, characterization, and applications. Water Energy Food Environ. J. 2020, 3, 1–15. [Google Scholar] [CrossRef]
- Misenan, M.S.M.; Norrrahim, M.N.F.; Saad, M.M.; Shaffie, A.H.; Zulkipli, N.A.; Farabi, M.A. Recent advances in nitrocellulose-based composites. In Synthetic and Natural Nanofillers in Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2023; pp. 399–415. [Google Scholar]
- Trache, D.; Khimeche, K.; Mezroua, A.; Benziane, M. Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J. Therm. Anal. Calorim. 2016, 124, 1485–1496. [Google Scholar] [CrossRef]
- Yolhamid, M.N.A.G.; Ibrahim, F.; Zarim, M.A.U.A.A.; Ibrahim, R.; Adnan, S.; Yahya, M.Z.A. The processing of nitrocellulose from rhizophora, palm oil bunches (EFB) and kenaf fibres as a propellant grade. Int. J. Eng. Technol. 2018, 7, 59–65. [Google Scholar]
- Tarchoun, A.F.; Trache, D.; Klapötke, T.M.; Belmerabet, M.; Abdelaziz, A.; Derradji, M.; Belgacemi, R. Synthesis, characterization, and thermal decomposition kinetics of nitrogen-rich energetic biopolymers from aminated giant reed cellulosic fibers. Ind. Eng. Chem. Res. 2020, 59, 22677–22689. [Google Scholar] [CrossRef]
- Muvhiiwa, R.; Mawere, E.; Moyo, L.B.; Tshuma, L. Utilization of cellulose in tobacco (Nicotiana tobacum) stalks for nitrocellulose production. Heliyon 2021, 7, e07598. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Li, Z.; Shi, X.; Pe, C. Giant panda feces: Potential raw material in preparation of nitrocellulose for propellants. Cellulose 2023, 30, 3127–3140. [Google Scholar] [CrossRef]
- Trache, D.; Klapötke, T.M.; Chelouche, S.; Derradji, M.; Bessa, W.; Mezroua, A. A Promising energetic polymer from Posidonia oceanica Brown Algae: Synthesis, characterization, and kinetic modeling. Macromol. Chem. Phys. 2019, 220, 1900358. [Google Scholar] [CrossRef]
- Rizkiah, R.; Kencanawati, K.; Rosidin, A.; Wibowo, L. Systhesis nitrocellulose from hempen using triethyleamin (Boechmerianivea). J. Sains Tek. 2021, 3, 21–26. [Google Scholar] [CrossRef]
- Gismatulina, Y.A.; Budaeva, V.V.; Sakovich, G.V. Cellulose nitrates from intermediate flax straw. Russ. Chem. Bull. 2016, 65, 2920–2924. [Google Scholar] [CrossRef]
- Korchagina, A.A.; Budaeva, V.V.; Kukhlenko, A.A. Esterification of oat-hull cellulose. Russ. Chem. Bull. 2019, 68, 1282–1288. [Google Scholar] [CrossRef]
- Gismatulina, Y.A.; Budaeva, V.V.; Sakovich, G.V. Nitrocellulose synthesis from Miscanthus cellulose. Propellants Explos. Pyrotech. 2018, 43, 96–100. [Google Scholar] [CrossRef]
- Sun, D.-P.; Ma, B.; Zhu, C.-L.; Liu, C.-S.; Yang, J.-Z. Novel nitrocellulose made from bacterial cellulose. J. Energetic Mater. 2010, 28, 85–97. [Google Scholar] [CrossRef]
- Jori Roslan, N.; Jamal, S.H.; Ong, K.K.; Wan Yunus, W.M.Z. Preliminary study on the effect of sulphuric acid to nitric acid mixture composition, temperature and time on nitrocellulose synthesis based Nata de Coco. Solid State Phenom. 2021, 317, 312–319. [Google Scholar] [CrossRef]
- Gismatulina, Y.A. Promising Energetic Polymers from Nanostructured Bacterial Cellulose. Polymers 2023, 15, 2213. [Google Scholar] [CrossRef] [PubMed]
- Gregory, D.A.; Tripathi, L.; Fricker, A.T.R.; Asare, E.; Orlando, I.; Raghavendran, V.; Roy, I. Bacterial Cellulose: A Smart Biomaterial with Diverse Applications. Mater. Sci. Eng. R Rep. 2021, 145, 100623. [Google Scholar] [CrossRef]
- Rahmadiawan, D.; Abral, H.; Kotodeli, R.A.; Sugiarti, E.; Muslimin, A.N.; Admi, R.I.; Arafat, A.; Kim, H.-J.; Sapuan, S.M.; Kosasih, E.A. A novel highly conductive, transparent, and strong pure-cellulose film from tempo-oxidized bacterial cellulose by increasing sonication power. Polymers 2023, 15, 643. [Google Scholar] [CrossRef]
- Choi, S.M.; Rao, K.M.; Zo, S.M.; Shin, E.J.; Han, S.S. Bacterial cellulose and its applications. Polymers 2022, 14, 1080. [Google Scholar] [CrossRef]
- Klemm, D.; Petzold-Welcke, K.; Kramer, F.; Richter, T.; Raddatz, V.; Fried, W.; Nietzsche, S.; Bellmann, T.; Fischer, D. Biotech Nanocellulose: A Review on Progress in Product Design and Today’s State of Technical and Medical Applications. Carbohydr. Polym. 2021, 254, 117313. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, S.; Li, J.; Wang, B.; Jin, M.; Liang, Q.; Zhang, D.; Han, Z.; Deng, L.; Qu, X.; et al. Insights into Hierarchical Structure–Property–Application Relationships of Advanced Bacterial Cellulose Materials. Adv. Funct. Mater. 2023, 33, 2214327. [Google Scholar] [CrossRef]
- Volova, T.G.; Prudnikova, S.V.; Kiselev, E.G.; Nemtsev, I.V.; Vasiliev, A.D.; Kuzmin, A.P.; Shishatskaya, E.I. Bacterial Cellulose (BC) and BC Composites: Production and Properties. Nanomaterials 2022, 12, 192. [Google Scholar] [CrossRef] [PubMed]
- Skiba, E.A.; Shavyrkina, N.A.; Skiba, M.A.; Mironova, G.F.; Budaeva, V.V. Biosynthesis of Bacterial Nanocellulose from Low-Cost Cellulosic Feedstocks: Effect of Microbial Producer. Int. J. Mol. Sci. 2023, 24, 14401. [Google Scholar] [CrossRef] [PubMed]
- Velásquez-Riaño, M.; Bojacá, V. Production of Bacterial Cellulose from Alternative Low-Cost Substrates. Cellulose 2017, 24, 2677–2698. [Google Scholar] [CrossRef]
- Islam, M.U.; Ullah, M.W.; Khan, S.; Shah, N.; Park, J.K. Strategies for Cost-Effective and Enhanced Production of Bacterial Cellulose. Int. J. Biol. Macromol. 2017, 102, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Sajjad, W.; Khan, T.; Wahid, F. Production of Bacterial Cellulose from Industrial Wastes: A Review. Cellulose 2019, 26, 2895–2911. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Ullah, M.W.; Khan, S.; Park, J.K. Production of Bacterial Cellulose from Alternative Cheap andWaste Resources: A Step for Cost Reduction with Positive Environmental Aspects. Korean J. Chem. Eng. 2020, 37, 925–937. [Google Scholar] [CrossRef]
- Zhong, C. Industrial-Scale Production and Applications of Bacterial Cellulose. Front. Bioeng. Biotechnol. 2020, 8, 605374. [Google Scholar] [CrossRef]
- Urbina, L.; Corcuera, M.Á.; Gabilondo, N.; Eceiza, A.; Retegi, A. A Review of Bacterial Cellulose: Sustainable Production from Agricultural Waste and Applications in Various Fields. Cellulose 2021, 28, 8229–8253. [Google Scholar] [CrossRef]
- Skiba, E.A.; Gladysheva, E.K.; Budaeva, V.V.; Aleshina, L.A.; Sakovich, G.V. Yield and Quality of Bacterial Cellulose from Agricultural Waste. Cellulose 2022, 29, 1543–1555. [Google Scholar] [CrossRef]
- Amorim, L.F.A.; Li, L.; Gomes, A.P.; Fangueiro, R.; Gouveia, I.C. Sustainable bacterial cellulose production by low cost feedstock: Evaluation of apple and tea by-products as alternative sources of nutrients. Cellulose 2023, 30, 5589–5606. [Google Scholar] [CrossRef]
- Son, J.; Lee, K.H.; Lee, T.; Kim, H.S.; Shin, W.H.; Oh, J.-M.; Koo, S.-M.; Yu, B.J.; Yoo, H.Y.; Park, C. Enhanced Production of Bacterial Cellulose from Miscanthus as Sustainable Feedstock through Statistical Optimization of Culture Conditions. Int. J. Environ. Res. Public Health 2022, 19, 866. [Google Scholar] [CrossRef] [PubMed]
- Shavyrkina, N.A.; Budaeva, V.V.; Skiba, E.A.; Mironova, G.F.; Bychin, N.V.; Gismatulina, Y.A.; Kashcheyeva, E.I.; Sitnikova, A.E.; Shilov, A.I.; Kuznetsov, P.S.; et al. Scale-up of biosynthesis process of bacterial nanocellulose. Polymers 2021, 13, 1920. [Google Scholar] [CrossRef] [PubMed]
- Dorogina, O.V.; Vasil’eva, O.Y.; Nuzhdina, N.S.; Buglova, L.V.; Zhmud, E.V.; Zueva, G.A.; Dudkin, R.V. Formation and study of the collection gene pool of resource species of the genus Miscanthus Anderss in the conditions of the forest–steppe of Western Siberia. Vavilov. Zh. Genet. Selekts. 2019, 23, 926–932. [Google Scholar]
- Schorling, M.; Enders, C.; Voigt, C.A. Assessing the cultivation potential of the energy crop Miscanthus × giganteus for Germany. GCB Bioenergy 2015, 7, 763–773. [Google Scholar] [CrossRef]
- Nakajima, T.; Yamada, T.; Anzoua, K.G.; Kokubo, R.; Noborio, K. Carbon sequestration and yield performances of Miscanthus × giganteus and Miscanthus sinensis. Carbon Manag. 2018, 9, 415–423. [Google Scholar] [CrossRef]
- Shepherd, A.; Awty-Carroll, D.; Kam, J.; Ashman, C.; Magenau, E.; Martani, E.; Hastings, A. Novel Miscanthus hybrids-Modelling productivity on marginal land in Europe using dynamics of canopy development determined by light interception. GCB Bioenergy 2023, 15, 444–461. [Google Scholar] [CrossRef]
- Feng, H.; Lin, C.; Liu, W.; Xiao, L.; Zhao, X.; Kang, L.; Liu, X.; Sang, T.; Yi, Z.; Yan, J.; et al. Transcriptomic Characterization of Miscanthus sacchariflorus × M. lutarioriparius and Its Implications for Energy Crop Development in the Semiarid Mine Area. Plants 2022, 11, 1568. [Google Scholar] [CrossRef]
- Briones, M.J.; Massey, A.; Elias, D.M.; McCalmont, J.P.; Farrar, K.; Donnison, I.; McNamara, N.P. Species selection determines carbon allocation and turnover in Miscanthus crops: Implications for biomass production and C sequestration. Sci. Total Environ. 2023, 887, 164003. [Google Scholar] [CrossRef]
- Gismatulina, Y.A.; Budaeva, V.V.; Kortusov, A.N.; Kashcheyeva, E.I.; Gladysheva, E.K.; Mironova, G.F.; Skiba, E.A.; Shavyrkina, N.A.; Korchagina, A.A.; Zolotukhin, V.N.; et al. Evaluation of Chemical Composition of Miscanthus × giganteus Raised in Different Climate Regions in Russia. Plants 2022, 11, 2791. [Google Scholar] [CrossRef] [PubMed]
- Danielewicz, D.; Surma-Ślusarska, B. Miscanthus × giganteus stalks as a potential non-wood raw material for the pulp and paper industry. Influence of pulping and beating conditions on the fibre and paper properties. Ind. Crops Prod. 2019, 141, 111744. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Y.; Kato, R.; Rowan, S.J. Preparation of cellulose nanofibers from Miscanthus × giganteus by ammonium persulfate oxidation. Carbohydr. Polym. 2019, 212, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Tsalagkas, D.; Börcsök, Z.; Pásztory, Z.; Gogate, P.; Csóka, L. Assessment of the papermaking potential of processed Miscanthus × giganteus stalks using alkaline pre-treatment and hydrodynamic cavitation for delignification. Ultrason. Sonochem. 2021, 72, 105462. [Google Scholar] [CrossRef] [PubMed]
- Turner, W.; Greetham, D.; Mos, M.; Squance, M.; Kam, J.; Du, C. Exploring the bioethanol production potential of Miscanthus cultivars. Appl. Sci. 2021, 11, 9949. [Google Scholar] [CrossRef]
- Bergs, M.; Monakhova, Y.; Diehl, B.W.; Konow, C.; Völkering, G.; Pude, R.; Schulze, M. Lignins Isolated via Catalyst-free Organosolv Pulping from Miscanthus × giganteus, M. sinensis, M. robustus and M. nagara: A Comparative Study. Molecules 2021, 26, 842. [Google Scholar] [CrossRef]
- Singh, S.S.; Lim, L.T.; Manickavasagan, A. Enhanced microfibrillation of Miscanthus× giganteus biomass by binary-enzymes pre-treatment. Ind. Crops Prod. 2022, 177, 114537. [Google Scholar] [CrossRef]
- Shavyrkina, N.A.; Budaeva, V.V.; Skiba, E.A.; Gismatulina, Y.A.; Sakovich, G.V. Review of Current Prospects for Using Miscanthus-Based Polymers. Polymers 2023, 15, 3097. [Google Scholar] [CrossRef]
- Mironova, G.F.; Budaeva, V.V.; Skiba, E.A.; Gismatulina, Y.A.; Kashcheyeva, E.I.; Sakovich, G.V. Recent Advances in Miscanthus Macromolecule Conversion: A Brief Overview. Int. J. Mol. Sci. 2023, 24, 13001. [Google Scholar] [CrossRef]
- Kurschner, K.; Hoffer, A. A new quantitative cellulose determination. Chem. Unserer Zeit 1931, 161, 1811. [Google Scholar]
- Puitel, A.C.; Suditu, G.D.; Danu, M.; Ailiesei, G.-L.; Nechita, M.T. An Experimental Study on the Hot Alkali Extraction of Xylan-Based Hemicelluloses from Wheat Straw and Corn Stalks and Optimization Methods. Polymers 2022, 14, 1662. [Google Scholar] [CrossRef] [PubMed]
- TAPPI. Solvent Extractives of Wood and Pulp, Test Method T 204 cm-97; TAPPI Press: Atlanta, GA, USA, 1997. [Google Scholar]
- Wang, C.; Kong, Y.; Hu, R.; Zhou, G. Miscanthus: A fast-growing crop for environmental remediation and biofuel production. GCB Bioenergy 2021, 13, 58–69. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nižetić, S.; Ong, H.C.; Mofijur, M.; Ahmed, S.F.; Ashok, B.; Chau, M.Q. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere 2021, 281, 130878. [Google Scholar] [CrossRef] [PubMed]
- TAPPI. Alpha-, Beta-, and Gamma-Cellulose in Pulp, Test Method T 203 cm-22; TAPPI Press: Atlanta, GA, USA, 1999. [Google Scholar]
- TAPPI. Acid-Insoluble Lignin in Wood and Pulp, Test Method T. 222 om-83. In Test Methods, 1998–1999; TAPPI Press: Atlanta, GA, USA, 1999. [Google Scholar]
- Kashcheyeva, E.I.; Gismatulina, Y.A.; Budaeva, V.V. Pretreatments of non-woody cellulosic feedstocks for bacterial cellulose synthesis. Polymers 2019, 11, 1645. [Google Scholar] [CrossRef] [PubMed]
- TAPPI. Ash in Wood, Pulp, Paper and Paperboard: Combustion at 525 _C. Test Method T. 211 om-02; TAPPI: Peachtree Corners, GA, USA, 2002. [Google Scholar]
- Hallac, B.B.; Ragauskas, A.J. Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels Bioprod. Biorefining. 2011, 5, 215–225. [Google Scholar] [CrossRef]
- Torlopov, M.A.; Mikhaylov, V.I.; Udoratina, E.V.; Aleshina, L.A.; Prusskii, A.I.; Tsvetkov, N.V.; Krivoshapkin, P.V. Cellulose nanocrystals with different length-to-diameter ratios extracted from various plants using novel system acetic acid/phosphotungstic acid/octanol-1. Cellulose 2018, 25, 1031–1046. [Google Scholar] [CrossRef]
- French, A.D. Increment in evolution of cellulose crystallinity analysis. Cellulose 2020, 27, 5445–5448. [Google Scholar] [CrossRef]
- Ghose, T.K. Measurement of cellulase activities. Pure Appl. Chem. 1987, 59, 257–268. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- López-López, M.; Alegre, J.M.R.; García-Ruiz, C.; Torre, M. Determination of the nitrogen content of nitrocellulose from smokeless gunpowders and collodions by alkaline hydrolysis and ion chromatography. Anal. Chim. Acta 2011, 685, 196–203. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, Z.; Wang, W.; Li, L.; Lv, Y.; Sun, J. System and method for simultaneous measurement of nitrogen content and uniformity of nitration of nitrocellulose. Cent. Eur. J. Energ. Mater. 2018, 15, 554–571. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Saito, Y.; Akiyoshi, M.; Endo, T.; Matsunaga, T. Preparation and characterization of nitrocellulose nanofiber. Propellants Explos. Pyrotech. 2021, 46, 962–968. [Google Scholar] [CrossRef]
- Goh, W.N.; Rosma, A.; Kaur, B.; Fazilah, A.; Karim, A.A.; Rajeev, B. Fermentation of black tea broth (Kombucha): I. Effects of sucrose concentration and fermentation time on the yield of microbial cellulose. Int. Food Res. J. 2012, 19, 109–117. [Google Scholar]
- Khai, D.M.; Nhan, P.D.; Hoanh, T.D. Synthesis and characteristics of the nitrate celluloses from acacia cellulose. In Proceedings of the 5th Academic Conference on Natural Science for Young Scientists, Da Lat City, Vietnam, 4–7 October 2017. [Google Scholar]
- Long, L.; Tian, D.; Hu, J.; Wang, F.; Saddler, J. A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation. Bioresour. Technol. 2017, 243, 898–904. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, A.R.; Mayorova, K.A.; Chukhchin, D.G.; Malkov, A.V.; Toptunov, E.A.; Telitsin, V.D.; Rozhkova, A.M.; Zorov, I.N.; Rodicheva, M.A.; Plakhin, V.A.; et al. Enzymatic Hydrolysis of Kraft and Sulfite Pulps: What Is the Best Cellulosic Substrate for Industrial Saccharification? Fermentation 2023, 9, 936. [Google Scholar] [CrossRef]
- Henríquez-Gallegos, S.; Albornoz-Palma, G.; Andrade, A.; Soto, C.; Pereira, M. Impact of the enzyme charge on the production and morphological features of cellulose nanofibrils. Polymers 2021, 13, 3238. [Google Scholar] [CrossRef]
- Lenz, J.; Esterbauer, H.; Sattler, W.; Schurz, J.; Wrentschur, E. Changes of Structure and Morphology of Regenerated Cellulose Caused by Acid and Enzymatic Hydrolysis. J. Appl. Polym. Sci. 1990, 41, 1315–1326. [Google Scholar] [CrossRef]
- Jesuet, M.S.G.; Musa, N.M.; Idris, N.M.; Musa, D.N.S.; Bakansing, S.M. Properties of Nitrocellulose from Acacia mangium. J. Phys. Conf. Ser. 2019, 1358, 012035. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Klapotke, T.M.; Krumm, B.; Mezroua, A.; Derradji, M.; Bessa, W. Design and characterization of new advanced energetic biopolymers based on surface functionalized cellulosic Materials. Cellulose 2021, 28, 6107–6123. [Google Scholar] [CrossRef]
- Duan, X.; Li, Z.; Wu, B.; Shen, J.; Pei, C. Preparation of nitrocellulose by homogeneous esterification of cellulose based on ionic liquids. Propellants Explos. Pyrotech. 2023, 48, e202200186. [Google Scholar] [CrossRef]
- Zhao, Y.; Jin, B.; Peng, R.; Ding, L. Interaction of nitrocellulose with pentaacyloxyphenyl fullerene derivatives: Autocatalytic inhibition in thermal decomposition of nitrocellulose. Cellulose 2020, 27, 3611–3622. [Google Scholar] [CrossRef]
- Krystynowicz, A.; Czaja, W.; Wiktorowska-Jezierska, A.; Gonçalves-Miśkiewicz, M.; Turkiewicz, M.; Bielecki, S. Factors affecting the yield and properties of bacterial cellulose. J. Ind. Microbiol. Biotechnol. 2002, 29, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Leonarski, E.; Cesca, K.; Borges, O.M.; de Oliveira, D.; Poletto, P. Typical kombucha fermentation: Kinetic evaluation of beverage and morphological characterization of bacterial cellulose. J. Food Process. Preserv. 2021, 45, e16100. [Google Scholar] [CrossRef]
- Casarica, A.; Campeanu, G.; Moscovici, M.; Ghiorghita, A.; Manea, V. Improvement of Bacterial Cellulose Production by Aceobacter Xyilinum Dsmz-2004 on Poor Quality Horticultural Substrates Using the Taguchi Method for Media Optimization. Part I. Cellul. Chem. Technol. 2013, 47, 61–68. [Google Scholar]
- Mangayil, R.; Rajala, S.; Pammo, A.; Sarlin, E.; Luo, J.; Santala, V.; Karp, M.; Tuukkanen, S. Engineering and Characterization of Bacterial Nanocellulose Films as Low Cost and Flexible Sensor Material. ACS Appl. Mater. Interfaces 2017, 9, 19048–19056. [Google Scholar] [CrossRef] [PubMed]
- Mohammadkazemi, F.; Azin, M.; Ashori, A. Production of bacterial cellulose using different carbon sources and culture media. Carbohydr. Polym. 2015, 117, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Huang, X.; Liu, H.; Lian, H.; Xu, B.; Zhang, W.; Sun, X.; Wang, W.; Jia, S.; Zhong, C. Improvement in bacterial cellulose production by co-culturing Bacillus cereus and Komagataeibacter xylinus. Carbohydr. Polym. 2023, 313, 120892. [Google Scholar] [CrossRef] [PubMed]
- Lupașcu, R.E.; Ghica, M.V.; Dinu-Pîrvu, C.E.; Popa, L.; Velescu, B.Ș.; Arsene, A.L. An overview regarding microbial aspects of production and applications of bacterial cellulose. Materials 2022, 15, 676. [Google Scholar] [CrossRef]
- Bolgova, A.L.; Shevtsov, A.V.; Arkharova, N.A.; Karimov, D.N.; Makarov, I.S.; Gromovykh, T.I.; Klechkovskaya, V.V. Microstructure of Gel Films of Bacterial Cellulose Synthesized under Static Conditions of Cultivation of the Gluconacetobacter hansenii GH-1/2008 Strain on Nutrient Media with Different Carbon Sources. Crystallogr. Rep. 2023, 68, 607–614. [Google Scholar] [CrossRef]
- Tsouko, E.; Kourmentza, C.; Ladakis, D.; Kopsahelis, N.; Mandala, I.; Papanikolaou, S.; Paloukis, F.; Alves, V.; Koutinas, A. Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 2015, 16, 14832–14849. [Google Scholar] [CrossRef]
- Lourenço, A.F.; Martins, D.; Dourado, F.; Sarmento, P.; Ferreira, P.J.; Gamelas, J.A. Impact of bacterial cellulose on the physical properties and printing quality of fine papers. Carbohydr. Polym. 2023, 314, 120915. [Google Scholar] [CrossRef] [PubMed]
Hydrolysis Time, h | Weight Loss, % | DP | DC, % | RS Content, g/L |
---|---|---|---|---|
0 | – | 1770 ± 10 | 64 ± 5 | 0 ± 0.0 |
2 | 32 | 1490 ± 10 | 72 ± 5 | 12.9 ± 0.2 |
4 | 47 | 1620 ± 10 | 72 ± 5 | 16.8 ± 0.5 |
6 | 48 | 1640 ± 10 | 73 ± 5 | 18.8 ± 0.5 |
8 | 50 | 1640 ± 10 | 74 ± 5 | 21.8 ± 0.5 |
24 | 58 | 1750 ± 10 | 75 ± 5 | 26.5 ± 0.5 |
32 | 65 | 1780 ± 10 | 76 ± 5 | 27.8 ± 0.5 |
48 | 66 | 1790 ± 10 | 76 ± 5 | 29.8 ± 0.5 |
Indicator | Hydrolysis Time, h | ||
---|---|---|---|
2 | 8 | 24 | |
Name | C2 | C8 | C24 |
Cellulose weight after hydrolysis, g | 3.07 ± 0.0001 | 3.29 ± 0.0001 | 3.36 ± 0.0001 |
DP | 1510 ± 10 | 1670 ± 10 | 1760 ± 10 |
DC, % | 72 ± 5 | 74 ± 5 | 75 ± 5 |
RS concentration in hydrolyzate, g/L | 13.4 ± 0.2 | 22.8 ± 0.5 | 27.5 ± 0.5 |
Sample | Characteristics | Yield *, % | ||
---|---|---|---|---|
N, % | Viscosity of 2% Solution in Acetone, mPa·s | Solubulity in Mixed Alcohol/Ester Solvent, % | ||
CN0 (initial) | 12.20 ± 0.05 | 120 ± 1 | 41 ± 2 | 142 |
CN2 | 11.35 ± 0.05 | 94 ± 1 | 79 ± 2 | 116 |
CN8 | 11.63 ± 0.05 | 113 ± 1 | 75 ± 2 | 123 |
CN24 | 11.83 ± 0.05 | 119 ± 1 | 94 ± 2 | 131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashcheyeva, E.I.; Korchagina, A.A.; Gismatulina, Y.A.; Gladysheva, E.K.; Budaeva, V.V.; Sakovich, G.V. Simultaneous Production of Cellulose Nitrates and Bacterial Cellulose from Lignocellulose of Energy Crop. Polymers 2024, 16, 42. https://doi.org/10.3390/polym16010042
Kashcheyeva EI, Korchagina AA, Gismatulina YA, Gladysheva EK, Budaeva VV, Sakovich GV. Simultaneous Production of Cellulose Nitrates and Bacterial Cellulose from Lignocellulose of Energy Crop. Polymers. 2024; 16(1):42. https://doi.org/10.3390/polym16010042
Chicago/Turabian StyleKashcheyeva, Ekaterina I., Anna A. Korchagina, Yulia A. Gismatulina, Evgenia K. Gladysheva, Vera V. Budaeva, and Gennady V. Sakovich. 2024. "Simultaneous Production of Cellulose Nitrates and Bacterial Cellulose from Lignocellulose of Energy Crop" Polymers 16, no. 1: 42. https://doi.org/10.3390/polym16010042
APA StyleKashcheyeva, E. I., Korchagina, A. A., Gismatulina, Y. A., Gladysheva, E. K., Budaeva, V. V., & Sakovich, G. V. (2024). Simultaneous Production of Cellulose Nitrates and Bacterial Cellulose from Lignocellulose of Energy Crop. Polymers, 16(1), 42. https://doi.org/10.3390/polym16010042