Large-Scale Fabrication of Tunable Sandwich-Structured Silver Nanowires and Aramid Nanofiber Films for Exceptional Electromagnetic Interference (EMI) Shielding
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Materials
2.2. Preparation of AgNWs
2.3. Preparation of ANF/DMSO Solution
2.4. Preparation of NAAANF Films
2.5. Characterizations
3. Results and Discussion
3.1. Morphologies and Microstructures of ANFs and AgNWs
3.2. Structural Characterization of NAAANF
3.3. Electrical Conductivity and EMI Shielding Properties of NAAANF
3.4. Mechanical Properties and Thermal Stability of NAAANF
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, Y.; Liu, S.; Huang, K.; Chen, B.; Shi, P.; Chen, Z.; Liu, B.; Liu, K.; Wu, Z.; Chen, K.; et al. Ultra-Broadband Strong Electromagnetic Interference Shielding with Ferromagnetic Graphene Quartz Fabric. Adv. Mater. 2022, 34, 2202982. [Google Scholar] [CrossRef] [PubMed]
- Rebecchi, F.; Pastor, A.; Mozo, A.; Lombardo, C.; Bruschi, R.; Aliferis, I.; Doriguzzi-Corin, R.; Gouvas, P.; Alvarez Romero, A.; Angelogianni, A.; et al. A Digital Twin for the 5G Era: The SPIDER Cyber Range. In Proceedings of the IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Belfast, UK, 14–17 June 2022. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.; Wang, Y.; Zhao, W.; Zhao, Y.; Zhou, M.; Wu, Y.; Ji, G. Green, Sustainable Architectural Bamboo with High Light Transmission and Excellent Electromagnetic Shielding as a Candidate for Energy-Saving Buildings. Nano-Micro Lett. 2023, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, Q.; Wang, J.; Wang, P.; Zhang, Y. Conductive Cotton Fabric Fabricated Using Stable Ag/MXene Colloidal Solution and PDMS for Heating and Electromagnetic Shielding. Mater. Today Phys. 2024, 40, 101295. [Google Scholar] [CrossRef]
- Li, Y.; Shang, Y.; Li, M.; Zhang, X.; He, J. High Electromagnetic Shielding Effect of Carbon Nanotubes/Waterborne Polyurethane Composites Prepared by “Break-Adsorption” Method. Materials 2022, 15, 6430. [Google Scholar] [CrossRef]
- Abbasi, H.; Antunes, M.; Velasco, J.I. Recent Advances in Carbon-Based Polymer Nanocomposites for Electromagnetic Interference Shielding. Prog. Mater. Sci. 2019, 103, 319–373. [Google Scholar] [CrossRef]
- Shahzad, F.; Alhabeb, M.; Hatter, C.B.; Anasori, B.; Hong, S.M.; Koo, C.M.; Gogotsi, Y. Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes). Science 2016, 353, 1137–1140. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.F.; Yu, B.; Chen, Z.Y.; Qu, Y.X.; Li, Y.T.; Shi, Y.Q.; Ma, Z.W.; Sun, F.N.; Pan, Q.H.; Tang, L.C.; et al. Fire Intumescent, High-Temperature Resistant, Mechanically Flexible Graphene Oxide Network for Exceptional Fire Shielding and Ultra-Fast Fire Warning. Nano-Micro Lett. 2022, 14, 92. [Google Scholar] [CrossRef]
- Xiong, J.; Ding, R.; Liu, Z.; Zheng, H.; Li, P.; Chen, Z.; Yan, Q.; Zhao, X.; Xue, F.; Peng, Q.; et al. High-Strength, Super-Tough, and Durable Nacre-Inspired MXene/Heterocyclic Aramid Nanocomposite Films for Electromagnetic Interference Shielding and Thermal Management. Chem. Eng. J. 2023, 474, 145972. [Google Scholar] [CrossRef]
- Zazoum, B.; Bachri, A.; Nayfeh, J. Functional 2D MXene Inks for Wearable Electronics. Materials 2021, 14, 6603. [Google Scholar] [CrossRef]
- Xiong, C.; Xiong, Q.; Zhao, M.; Wang, B.; Dai, L.; Ni, Y. Recent Advances in Non-Biomass and Biomass-Based Electromagnetic Shielding Materials. Adv. Compos. Hybrid Mater. 2023, 6, 205. [Google Scholar] [CrossRef]
- Bi, X.; Song, K.; Pan, Y.-T.; Barreneche, C.; Vahabi, H.; He, J.; Yang, R.; Bi, X.; Song, K.; Pan, Y.-T.; et al. Hollow Superstructure In Situ Assembled by Single-Layer Janus Nanospheres toward Electromagnetic Shielding Flame-Retardant Polyurea Composites. Small 2023, 2307492. [Google Scholar] [CrossRef] [PubMed]
- Pušić, T.; Šaravanja, B.; Malarić, K. Electromagnetic Shielding Properties of Knitted Fabric Made from Polyamide Threads Coated with Silver. Materials 2021, 14, 1281. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Huang, J.; Guo, B.; Liu, H.; Huang, J.; Guo, B. Light Weight, Flexible and Ultrathin PTFE@Ag and Ni@PVDF Composite Film for High-Efficient Electromagnetic Interference Shielding. Materials 2023, 16, 4831. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Huo, Y.; Mu, C.; Wang, B.; Xiang, J.; Nie, A.; Zhai, K.; Xue, T.; Wen, F.; Liu, Z. Flexible Aramid Nanofiber/Ag Nanowires/Graphene Nanosheets Composite Films with Sandwich Structure for High-Performance Electromagnetic Interference Shielding and Joule Heating. J. Alloys Compd. 2022, 923, 166401. [Google Scholar] [CrossRef]
- Cheng, M.; Ying, M.; Zhao, R.; Ji, L.; Li, H.; Liu, X.; Zhang, J.; Li, Y.; Dong, X.; Zhang, X. Transparent and Flexible Electromagnetic Interference Shielding Materials by Constructing Sandwich AgNW@MXene/Wood Composites. ACS Nano 2022, 16, 16996–17007. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Sheng, Z.; Zhang, X. Laminated Structural Engineering Strategy toward Carbon Nanotube-Based Aerogel Films. ACS Nano 2022, 16, 9378–9388. [Google Scholar] [CrossRef] [PubMed]
- Tretjak, M.; Pralgauskaitė, S.; Matukas, J.; Plyushch, A.; Macutkevič, J.; Banys, J.; Karakashov, B.; Fierro, V.; Celzard, A. Electrical Resistivity and Microwave Properties of Carbon Fiber Felt Composites. Materials 2022, 15, 8654. [Google Scholar] [CrossRef]
- Sha, Z.; He, H.; Ma, H.; Hong, B.; Lu, J.; Fei, X.; Zhu, M. All-in-One Integrated Flexible PE@PET/MXene Films for High-Performance Electromagnetic Shields with Self-Reinforced Conductivity and Mechanical Properties. Carbon 2024, 216, 118595. [Google Scholar] [CrossRef]
- Jia, F.; Dong, J.; Dai, X.; Liu, Y.; Wang, H.; Lu, Z. Journal Pre-Proofs Robust, Flexible, and Stable CuNWs/MXene/ANFs Hybrid Film Constructed by Structural Assemble Strategy for Efficient EMI Shielding Robust, Flexible, and Stable CuNWs/MXene/ANFs Hybrid Film Constructed by Structural Assemble Strategy for efficient EMI shielding. Chem. Eng. J. 2022, 452, 139395. [Google Scholar] [CrossRef]
- Wang, H.; Zhuang, T.; Wang, J.; Sun, X.; Wang, Y.; Li, K.; Dai, X.; Guo, Q.; Li, X.; Chong, D.; et al. Multifunctional Filler-Free PEDOT:PSS Hydrogels with Ultrahigh Electrical Conductivity Induced by Lewis-Acid-Promoted Ion Exchange. Adv. Mater. 2023, 35, 2302919. [Google Scholar] [CrossRef]
- Zhang, R.; Xie, D.; Zhang, C.; Xu, Z.; Fang, Y.; Wang, W.; Xu, M.; Song, Y. A Highly Stretchable, Self-Adhesive, Anti-Freezing, and Highly Sensitive Dual-Network Conductive Hydrogel Sensor for Multifunctional Electronic Skin. J. Mater. Chem. A 2023, 11, 24608–24617. [Google Scholar] [CrossRef]
- Li, Y.; Xue, B.; Yang, S.; Cheng, Z.; Xie, L.; Zheng, Q. Flexible Multilayered Films Consisting of Alternating Nanofibrillated Cellulose/Fe3O4 and Carbon Nanotube/Polyethylene Oxide Layers for Electromagnetic Interference Shielding. Chem. Eng. J. 2021, 410, 128356. [Google Scholar] [CrossRef]
- Gong, S.; Sheng, X.; Li, X.; Sheng, M.; Wu, H.; Lu, X.; Qu, J. A Multifunctional Flexible Composite Film with Excellent Multi-Source Driven Thermal Management, Electromagnetic Interference Shielding, and Fire Safety Performance, Inspired by a “Brick–Mortar” Sandwich Structure. Adv. Funct. Mater. 2022, 32, 2200570. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, L.; Yang, F.; Jiao, Z.; Tao, X.; Yao, Z.; Zheng, Y.; Zhou, J. Superhydrophobic Ti3C2Tx MXene/Aramid Nanofiber Films for High-Performance Electromagnetic Interference Shielding in Thermal Environment. Chem. Eng. J. 2022, 446, 136945. [Google Scholar] [CrossRef]
- Li, S.; Qian, K.; Thaiboonrod, S.; Wu, H.; Cao, S.; Miao, M.; Shi, L.; Feng, X. Flexible Multilayered Aramid Nanofiber/Silver Nanowire Films with Outstanding Thermal Durability for Electromagnetic Interference Shielding. Compos. Part A Appl. Sci. Manuf. 2021, 151, 106643. [Google Scholar] [CrossRef]
- Yang, B.; Wang, L.; Zhang, M.; Luo, J.; Lu, Z.; Ding, X.; Yang, B.; Wang, L.; Zhang, M.; Luo, J.; et al. Fabrication, Applications, and Prospects of Aramid Nanofiber. Adv. Funct. Mater. 2020, 30, 2000186. [Google Scholar] [CrossRef]
- Lee, J.U.; Park, B.; Kim, B.S.; Bae, D.R.; Lee, W. Electrophoretic Deposition of Aramid Nanofibers on Carbon Fibers for Highly Enhanced Interfacial Adhesion at Low Content. Compos. Part A Appl. Sci. Manuf. 2016, 84, 482–489. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, C.; Gao, G.; Hu, C.; Luo, L.; Xu, J. Aramid Nanofiber/Bacterial Cellulose Composite Separators for Lithium-Ion Batteries. Carbohydr. Polym. 2020, 247, 116702. [Google Scholar] [CrossRef]
- Zhao, B.; Ma, Z.; Sun, Y.; Han, Y.; Gu, J. Flexible and Robust Ti3C2Tx/(ANF@FeNi) Composite Films with Outstanding Electromagnetic Interference Shielding and Electrothermal Conversion Performances. Small Struct. 2022, 3, 2200162. [Google Scholar] [CrossRef]
- Han, Y.; Ruan, K.; Gu, J. Multifunctional Thermally Conductive Composite Films Based on Fungal Tree-like Heterostructured Silver Nanowires@Boron Nitride Nanosheets and Aramid Nanofibers. Small Struct. 2022, 135, e202216093. [Google Scholar] [CrossRef]
- Pan, X.-F.; Yu, G.-H.; Gao, H.-L.; Wang, Z.-Z.; Bao, Z.; Li, X.; Yu, S.-H.; Pan, X.; Yu, G.; Gao, H.; et al. Large-Scale Production of Rectorite Nanosheets and Their Co-Assembly with Aramid Nanofibres for High-Performance Electrical Insulating Nanopapers. Adv. Mater. 2022, 34, 2206855. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Wang, L.; Zhao, J.; Pang, R.; Yuan, B.; Tan, J.; Song, S.; Nie, J.; Zhang, M. A Robust, Flexible, Hydrophobic, and Multifunctional Pressure Sensor Based on an MXene/Aramid Nanofiber (ANF) Aerogel Film. ACS Appl. Mater. Interfaces 2022, 14, 47075–47088. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yuan, X.; Zhai, H.; Zhang, Y.; Ma, L.; Wei, Q.; Xu, Y.; Wang, G. Flexible and Ultrathin Graphene/Aramid Nanofiber Carbonizing Films with Nacre-like Structures for Heat-Conducting Electromagnetic Wave Shielding/Absorption. ACS Appl. Mater. Interfaces 2023, 15, 15872–15883. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Zeng, J.; Li, P.; Wang, T.; Li, J.; Wang, B.; Chen, K. Nacre-Inspired Strong Nanopapers of Aramid Nanofiber-Integrated Montmorillonite Nanoplates, Cellulose Nanofibrils, and Ag Nanowires for High-Performance Electrical Heaters. J. Mater. Chem. A 2023, 11, 14126. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, G.; Zhou, J.; Li, H.; Shi, L.; Xu, X.; Cheng, B.; Zhuang, X. Proton Donor-Regulated Mechanically Robust Aramid Nanofiber Aerogel Membranes for High-Temperature Thermal Insulation. ACS Nano 2022, 16, 5993. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Jia, H.; Liu, G.; Ji, Q.; Yin, Q.; Jia, H.; Liu, G.; Ji, Q. Tailoring the Mechanical Performance of Carbon Nanotubes Buckypaper by Aramid Nanofibers towards Robust and Compact Supercapacitor Electrode. Adv. Funct. Mater. 2022, 32, 2111177. [Google Scholar] [CrossRef]
- Huang, L.; Xiao, G.; Wang, Y.; Li, H.; Zhou, Y.; Jiang, L.; Wang, J. Self-Exfoliation of Flake Graphite for Bioinspired Compositing with Aramid Nanofiber toward Integration of Mechanical and Thermoconductive Properties. Nano-Micro Lett. 2022, 14, 168. [Google Scholar] [CrossRef]
- Wang, Z.G.; Jin, Y.F.; Hong, R.; Du, J.; Dai, K.; Zheng, G.Q.; Gao, J.; Xu, L.; Xu, J.Z.; Li, Z.M. Dual-Functional Thermal Management Materials for Highly Thermal Conduction and Effectively Heat Generation. Compos. Part B Eng. 2022, 242, 110084. [Google Scholar] [CrossRef]
- Wang, X.; Cao, W.; Su, Z.; Zhao, K.; Dai, B.; Gao, G.; Zhao, J.; Zhao, K.; Wang, Z.; Sun, T.; et al. Fabrication of High Thermal Conductivity Nanodiamond/Aramid Nanofiber Composite Films with Superior Multifunctional Properties. ACS Appl. Mater. Interfaces 2023, 15, 2710–27143. [Google Scholar] [CrossRef]
- Zhou, J.; Thaiboonrod, S.; Fang, J.; Cao, S.; Miao, M.; Feng, X. In-Situ Growth of Polypyrrole on Aramid Nanofibers for Electromagnetic Interference Shielding Films with High Stability. Nano Res. 2022, 15, 8536–8545. [Google Scholar] [CrossRef]
- Zeng, Z.; Chen, M.; Pei, Y.; Seyed Shahabadi, S.I.; Che, B.; Wang, P.; Lu, X. Ultralight and Flexible Polyurethane/Silver Nanowire Nanocomposites with Unidirectional Pores for Highly Effective Electromagnetic Shielding. ACS Appl. Mater. Interfaces 2017, 9, 32211–32219. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Liu, S.L.; Wu, H.B.; Sowade, E.; Baumann, R.R.; Wang, Y.; Gu, F.Q.; Liu, C.R.L.; Feng, Z.S. Structural Regulation of Silver Nanowires and Their Application in Flexible Electronic Thin Films. Mater. Des. 2018, 154, 266–274. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, Y.; Wang, N.; Gao, H.; Zhang, L.; Zhao, Y.; Liu, L. Silver Nanowire-Infused Carbon Aerogel: A Multifunctional Nanocellulose-Derived Material for Personal Thermal Management. Carbohydr. Polym. 2024, 324, 121470. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Kang, S.; Ma, J.; Shao, L.; Wei, A.; Liang, C.; Gu, J.; Yang, B.; Dong, D.; Wei, L.; et al. High-Performance and Rapid-Response Electrical Heaters Based on Ultraflexible, Heat-Resistant, and Mechanically Strong Aramid Nanofiber/Ag Nanowire Nanocomposite Papers. ACS Nano 2019, 13, 7578–7590. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, H.; Li, H.; Wang, Z.; Sun, M.; Yang, B.; Wang, Y.; Wang, L.; Xu, L. High-Strength Magnetic Hydrogels with Photoweldability Made by Stepwise Assembly of Magnetic-Nanoparticle-Integrated Aramid Nanofiber Composites. ACS Nano 2023, 17, 9622–9632. [Google Scholar] [CrossRef]
- Feng, L.; Wei, P.; Song, Q.; Zhang, J.; Fu, Q.; Jia, X.; Yang, J.; Shao, D.; Li, Y.; Wang, S.; et al. Superelastic, Highly Conductive, Superhydrophobic, and Powerful Electromagnetic Shielding Hybrid Aerogels Built from Orthogonal Graphene and Boron Nitride Nanoribbons. ACS Nano 2022, 16, 17049–17061. [Google Scholar] [CrossRef]
- Deng, Z.; Jiang, P.; Wang, Z.; Xu, L.; Yu, Z.Z.; Zhang, H. Bin Scalable Production of Catecholamine-Densified MXene Coatings for Electromagnetic Shielding and Infrared Stealth. Small 2023, 19, 2304278. [Google Scholar] [CrossRef]
Sample | T−5 wt% (°C) | Tmax (°C) | Residue at 800 °C (wt%) |
---|---|---|---|
ANFs | 195 | 560 | 40.6 |
PPTA | 548 | 598 | 39.7 |
Sample | T−5 wt% (°C) | Tmax1 (°C) | Tmax2 (°C) | Residue at 800 °C (wt%) |
---|---|---|---|---|
NM | 387.4 | 398.0 | none | 7.64 |
NANF | 366.9 | 393.9 | 561.3 | 13.59 |
NAAANF | 373.7 | 393.8 | 560.7 | 20.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Cai, G.; Song, J.; Zhang, Y.; Yu, B.; Zhai, S.; Chen, K.; Zhang, H.; Yu, Y.; Qi, D. Large-Scale Fabrication of Tunable Sandwich-Structured Silver Nanowires and Aramid Nanofiber Films for Exceptional Electromagnetic Interference (EMI) Shielding. Polymers 2024, 16, 61. https://doi.org/10.3390/polym16010061
Jiang X, Cai G, Song J, Zhang Y, Yu B, Zhai S, Chen K, Zhang H, Yu Y, Qi D. Large-Scale Fabrication of Tunable Sandwich-Structured Silver Nanowires and Aramid Nanofiber Films for Exceptional Electromagnetic Interference (EMI) Shielding. Polymers. 2024; 16(1):61. https://doi.org/10.3390/polym16010061
Chicago/Turabian StyleJiang, Xinbo, Guoqiang Cai, Jiangxiao Song, Yan Zhang, Bin Yu, Shimin Zhai, Kai Chen, Hao Zhang, Yihao Yu, and Dongming Qi. 2024. "Large-Scale Fabrication of Tunable Sandwich-Structured Silver Nanowires and Aramid Nanofiber Films for Exceptional Electromagnetic Interference (EMI) Shielding" Polymers 16, no. 1: 61. https://doi.org/10.3390/polym16010061
APA StyleJiang, X., Cai, G., Song, J., Zhang, Y., Yu, B., Zhai, S., Chen, K., Zhang, H., Yu, Y., & Qi, D. (2024). Large-Scale Fabrication of Tunable Sandwich-Structured Silver Nanowires and Aramid Nanofiber Films for Exceptional Electromagnetic Interference (EMI) Shielding. Polymers, 16(1), 61. https://doi.org/10.3390/polym16010061