Stability and Biaxial Behavior of Fresh Cheese Coated with Nanoliposomes Encapsulating Grape Seed Tannins and Polysaccharides Using Immersion and Spray Methods
Abstract
:1. Introduction
- L: The characteristic dimension of the atomizer, nozzle hole diameter.
- U: The initial relative velocity of the injected suspension and ambient air.
- σ: The surface tension of the coating.
- ρs, ρa: The densities of the coating suspension and air, respectively.
- μs, μa: The dynamic viscosities of the coating suspension and air.
- = velocity in the z-direction [ms−1];
- = biaxial extensional strain rate [s−1];
- velocity in the r-direction [ms−1];
- z = axial coordinate [m];
- = Hencky strain rate [s−1];
- velocity in the θ-direction [ms−1].
- biaxial extensional viscosity [Pa s];
- = biaxial compression stress [Pa];
- = biaxial extensional strain rate.
- Ro = initial radius of the sample [m];
- F = force [N].
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Nanoliposomes Encapsulating Tannins (NTs)
2.4. Encapsulation Efficiency (EE)
- [TE]: The initial concentration of encapsulated tannins, [mg of epicatechin/g of sample].
- [TL]: The concentration of free tannins in suspension, [mg of epicatechin/g of sample].
2.5. Stability Study of NT
2.6. Film-Forming Suspensions Based on Polysaccharides (FSs)
2.7. Formation of Multilayer Edible Coatings (MECs)
2.8. Preparation of Fresh Cheese
2.9. Comparison with Commercial Samples
2.10. Proximate Composition
2.11. Dipping Coating Process
2.12. Spray Coating Process
2.13. Lubricated Compression Test
2.14. Weight Loss (WL)
- : The initial weight of the cheese.
- : The weight of the cheese at time t.
2.15. Peroxide Index (PI)
- PI: Peroxide index expressed in Meq. O2/kg of cheese.
- : The volume of sodium thiosulfate spent on the sample.
- : The volume of sodium thiosulfate spent on the blank.
- N: The normality of sodium thiosulfate.
- m: The mass of cheese used.
2.16. Statistical Analysis
3. Results
3.1. Multi-Level Factorial Design
3.2. Encapsulation Efficiency (EE)
3.3. Stability Study of NT
3.4. Proximate Analysis
3.5. Biaxial Behavior of Cheeses Coated with MEC
- : Compressive stress [Pa].
- : The slope of the line [Pa/s].
- = : Difference between the compression time and the initial time threshold [s].
3.6. Quality Parameters in Fresh Cheese
4. Discussion
4.1. Multi-Level Factorial Design
4.2. Encapsulation Efficiency (EE)
4.3. Stability Study of NT
4.4. Proximate Analysis
4.5. Biaxial Behavior of Cheeses Coated with MEC
4.6. Quality Parameters in Fresh Cheese
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barukčić, I.; Ščetar, M.; Marasović, I.; Lisak Jakopović, K.; Galić, K.; Božanić, R. Evaluation of quality parameters and shelf life of fresh cheese packed under modified atmosphere. J. Food Sci. Technol. 2020, 57, 2722–2731. [Google Scholar] [CrossRef] [PubMed]
- Vasiliauskaite, A.; Mileriene, J.; Songisepp, E.; Rud, I.; Muizniece-Brasava, S.; Ciprovica, I.; Axelsson, L.; Lutter, L.; Aleksandrovas, E.; Tammsaar, E.; et al. Application of edible coating based on liquid acid whey protein concentrate with indigenous Lactobacillus helveticus for acid-curd cheese quality improvement. Foods 2022, 11, 3353. [Google Scholar] [CrossRef] [PubMed]
- Duarte, R.V.; Casal, S.; Gomes, A.M.; Delgadillo, I.; Saraiva, J.A. Nutritional and quality evaluation of hyperbaric stored fresh cheeses. Food Chem. Adv. 2023, 2, 100212. [Google Scholar] [CrossRef]
- Sun, Q.; Yin, S.; He, Y.; Cao, Y.; Jiang, C. Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. Nanomaterials 2023, 13, 2185. [Google Scholar] [CrossRef] [PubMed]
- Baghi, F.; Gharsallaoui, A.; Dumas, E.; Ghnimi, S. Advancements in biodegradable active films for food packaging: Effects of nano/microcapsule incorporation. Foods 2022, 11, 760. [Google Scholar] [CrossRef] [PubMed]
- Resat Atilgan, M.; Bayraktar, O. Procyanidins. In Handbook of Food Bioactive Ingredients: Properties and Applications; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–43. [Google Scholar]
- Soares, S.; Brandão, E.; Guerreiro, C.; Soares, S.; Mateus, N.; De Freitas, V. Tannins in food: Insights into the molecular perception of astringency and bitter taste. Molecules 2020, 25, 2590. [Google Scholar] [CrossRef] [PubMed]
- Pires, M.A.; Pastrana, L.M.; Fuciños, P.; Abreu, C.S.; Oliveira, S.M. Sensorial perception of astringency: Oral mechanisms and current analysis methods. Foods 2020, 9, 1124. [Google Scholar] [CrossRef] [PubMed]
- Bleotu, C.; Mambet, C.; Matei, L.; Dragu, L.D. Improving wine quality and safety through nanotechnology applications. In Nanoengineering in the Beverage Industry; Academic Press: New York, NY, USA, 2020; pp. 437–458. [Google Scholar]
- Marques, M.S.; Lima, L.A.; Poletto, F.; Contri, R.V.; Guerreiro IC, K. Nanotechnology for the treatment of paediatric diseases: A review. J. Drug Deliv. Sci. Technol. 2022, 75, 103628. [Google Scholar] [CrossRef]
- Lv, J.M.; Ismail, B.B.; Ye, X.Q.; Zhang, X.Y.; Gu, Y.; Chen, J.C. Ultrasonic-assisted nanoencapsulation of kiwi leaves proanthocyanidins in liposome delivery system for enhanced biostability and bioavailability. Food Chem. 2023, 416, 135794. [Google Scholar] [CrossRef]
- Yousuf, B.; Sun, Y.; Wu, S. Lipid and lipid-containing composite edible coatings and films. Food Rev. Int. 2022, 38, 574–597. [Google Scholar] [CrossRef]
- Zhang, S.; Qamar, S.A.; Junaid, M.; Munir, B.; Badar, Q.; Bilal, M. Algal Polysaccharides-Based Nanoparticles for Targeted Drug Delivery Applications. Starch-Stärke 2022, 74, 2200014. [Google Scholar] [CrossRef]
- Zhong, Y.; Cavender, G.; Zhao, Y. Investigation of different coating application methods on the performance of edible coatings on Mozzarella cheese. LWT-Food Sci. Technol. 2014, 56, 1–8. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Salehabadi, A.; Nafchi, A.M.; Oladzadabbasabadi, N.; Jafari, S.M. Cheese packaging by edible coatings and biodegradable nanocomposites; improvement in shelf life, physicochemical and sensory properties. Trends Food Sci. Technol. 2021, 116, 218–231. [Google Scholar] [CrossRef]
- Miazaki, J.B.; dos Santos, A.R.; de Freitas, C.F.; Stafussa, A.P.; Mikcha JM, G.; de Cássia Bergamasco, R.; da Silva Scapim, M.R. Edible coatings and application of photodynamics in ricotta cheese preservation. LWT 2022, 165, 113697. [Google Scholar] [CrossRef]
- Senturk Parreidt, T.; Schmid, M.; Müller, K. Effect of dipping and vacuum impregnation coating techniques with alginate based coating on physical quality parameters of cantaloupe melon. J. Food Sci. 2018, 83, 929–936. [Google Scholar] [CrossRef]
- Suhag, R.; Kumar, N.; Petkoska, A.T.; Upadhyay, A. Film formation and deposition methods of edible coating on food products: A review. Food Res. Int. 2020, 136, 109582. [Google Scholar] [CrossRef]
- Andrade, R.D.; Skurtys, O.; Osorio, F.A. Atomizing spray systems for application of edible coatings. Compr. Rev. Food Sci. Food Saf. 2012, 11, 323–337. [Google Scholar] [CrossRef]
- Kontou, V.; Dimitreli, G.; Raphaelides, S.N. Elongational flow studies of processed cheese spreads made from traditional greek cheese varieties. LWT 2019, 107, 318–324. [Google Scholar] [CrossRef]
- Skarlatos, L.; Marinopoulou, A.; Petridis, A.; Raphaelides, S.N. Texture attributes of acid coagulated fresh cheeses as assessed by instrumental and sensory methods. Int. Dairy J. 2021, 114, 104939. [Google Scholar] [CrossRef]
- Lazárková, Z.; Šopík, T.; Talár, J.; Purevdorj, K.; Salek, R.N.; Buňková, L.; Černíková, M.; Novotný, M.; Pachlová, V.; Němečková, I.; et al. Quality evaluation of white brined cheese stored in cans as affected by the storage temperature and time. Int. Dairy J. 2021, 121, 105105. [Google Scholar] [CrossRef]
- Giliel, L.R.; de Souza, O.F.; de Medeiros, T.K.F.; de Oliveira, J.P.F.; de Medeiros, R.S.; de Albuquerque, P.B.S.; de Souza, M.P. Quality and safety of the Coalho cheese using a new edible coating based on the Ziziphus joazeiro fruit pulp. Future Foods 2021, 4, 100089. [Google Scholar] [CrossRef]
- Steffe, J. Rheological Methods in Food Process Engineering, 2nd ed.; Freeman Press: Dallas, TX, USA, 1996. [Google Scholar]
- Osorio, F.; Gahona, E.; Alvarez, F. Water absorption effects on biaxial extensional viscosity of wheat flour dough. J. Texture Stud. 2003, 34, 147–157. [Google Scholar] [CrossRef]
- Guzman, L.E.; Tejada, C.; de la Ossa, Y.J.; Rivera, C.A. Análisis comparativo de perfiles de textura de quesos frescos de leche de cabra y vaca. Biotecnol. Sect. Agropecu. Agroind. 2015, 13, 139. [Google Scholar] [CrossRef]
- Neter, J.; Wasserman, W.; Kunter, M. Applied Linear Statistical Models, 2nd ed.; Richard D. Irwin, Inc.: Homewood, IL, USA, 1985; pp. 491–505. [Google Scholar]
- Ho, J.Y.; Rabbi, K.F.; Sett, S.; Wong, T.N.; Miljkovic, N. Dropwise condensation of low surface tension fluids on lubricant-infused surfaces: Droplet size distribution and heat transfer. Int. J. Heat Mass Transf. 2021, 172, 121149. [Google Scholar] [CrossRef]
- Lopez-Polo, J.; Monasterio, A.; Cantero-López, P.; Osorio, F.A. Combining edible coatings technology and nanoencapsulation for food application: A brief review with an emphasis on nanoliposomes. Food Res. Int. 2021, 145, 110402. [Google Scholar] [CrossRef] [PubMed]
- Monasterio, A.; Osorio, F.A. Physicochemical Properties of Nanoliposomes Encapsulating Grape Seed Tannins Formed with Ultrasound Cycles. Foods 2024, 13, 414. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.M.; Vakili, S.; Dehnad, D. Production of a functional yogurt powder fortified with nanoliposomal vitamin D through spray drying. Food Bioprocess Technol. 2019, 12, 1220–1231. [Google Scholar] [CrossRef]
- Babazadeh, A.; Ghanbarzadeh, B.; Hamishehkar, H. Phosphatidylcholine-rutin complex as a potential nanocarrier for food applications. J. Funct. Foods 2017, 33, 134–141. [Google Scholar] [CrossRef]
- Bianchi, S.; Kroslakova, I.; Mayer, I. Determination of molecular structures of condensed tannins from plant tissues using HPLC-UV combined with thiolysis and MALDI-TOF mass spectrometry. Bio-Protocol 2016, 6, e1975. [Google Scholar] [CrossRef]
- Dai, Y.; Ma, Y.; Liu, X.; Gao, R.; Min, H.; Zhang, S.; Hu, S. Formation Optimization, Characterization and Antioxidant Activity of Auricularia auricula-judae Polysaccharide Nanoparticles Obtained via Antisolvent Precipitation. Molecules 2022, 27, 5807037. [Google Scholar] [CrossRef]
- Ghadiri, N.; Mirghazanfari, S.M.; Hadi, V.; Hadi, S.; Mohammadimehr, M.; Ardestani, M.M.; Talatappeh, H.D.; Mohajeri, M. Physicochemical properties and antioxidant activity of polyvinyl alcohol orally disintegrating films containing sweet almond oil nanoemulsion. J. Food Meas. Charact. 2023, 17, 4045–4059. [Google Scholar] [CrossRef]
- Andrade-Pizarro, R.D.; Skurtys, O.; Osorio-Lira, F. Effect of cellulose nanofibers concentration on mechanical, optical, and barrier properties of gelatin-based edible films. Dyna 2015, 82, 219–226. [Google Scholar] [CrossRef]
- Monasterio, A.; Núñez, E.; Brossard, N.; Vega, R.; Osorio, F.A. Mechanical and Surface Properties of Edible Coatings Elaborated with Nanoliposomes Encapsulating Grape Seed Tannins and Polysaccharides. Polymers 2023, 15, 3774. [Google Scholar] [CrossRef]
- Nemati, V.; Hashempour-Baltork, F.; Sadat Gharavi-Nakhjavani, M.; Feizollahi, E.; Marangoni Júnior, L.; Mirza Alizadeh, A. Application of a Whey Protein Edible Film Incorporated with Cumin Essential Oil in Cheese Preservation. Coatings 2023, 13, 1470. [Google Scholar] [CrossRef]
- A.O.A.C. 925.45; Loss on drying (moisture) in sugars. AOAC International Publisher: Rockville, MD, USA, 2016.
- A.O.A.C. 990.03; Protein (Crude) in Animal Feed, Combustion Method. AOAC International Publisher: Rockville, MD, USA, 2016.
- A.O.A.C. 996.06; Fat (Total, Saturated and Unsaturated) in Foods, Hydrolytic Extraction Gas Chromatographic Method. AOAC International Publisher: Rockville, MD, USA, 2016.
- A.O.A.C. 923.03; Ash of flour. Direct method. AOAC International Publisher: Rockville, MD, USA, 2016.
- A.O.A.C. The Official Methods of Analysis of AOAC International, 20th ed.; AOAC International Publisher: Rockville, MD, USA, 2016. [Google Scholar]
- Vasiliauskaite, A.; Mileriene, J.; Kasparaviciene, B.; Aleksandrovas, E.; Songisepp, E.; Rud, I.; Serniene, L. Screening for Antifungal Indigenous Lactobacilli Strains Isolated from Local Fermented Milk for Developing Bioprotective Fermentates and Coatings Based on Acid Whey Protein Concentrate for Fresh Cheese Quality Maintenance. Microorganisms 2023, 11, 557. [Google Scholar] [CrossRef] [PubMed]
- Silva-Vera, W.; Zamorano-Riquelme, M.; Rocco-Orellana, C.; Vega-Viveros, R.; Giménez-Castillo, B.; Silva-Weiss, A.; Osorio-Lira, F. Study of spray system applications of edible coating suspensions based on hydrocolloids containing cellulose nanofibers on grape surface (Vitis vinifera L.). Food Bioprocess Technol. 2018, 11, 1575–1585. [Google Scholar] [CrossRef]
- Bousi, C.; Sismanidou, O.X.; Marinopoulou, A.; Raphaelides, S. Effect of sugar addition on the elongational and shearing deformation behavior of sesame paste systems. LWT 2022, 153, 112479. [Google Scholar] [CrossRef]
- Elfadaly, S.S.; Mattar, A.A.; Sorour, M.A.; Karam-Allah AA, K.; Soliman, T.N. Preparation and Characterization of Whey Protein Edible Coating with Potato and Mango Peels extract: Application in Processed Cheese. Egypt. J. Chem. 2023, 66, 401–416. [Google Scholar]
- Sánchez-González, J.A.; Pérez Cueva, J.A. Vida útil sensorial del queso mantecoso por pruebas aceleradas. Sci. Agropecu. 2016, 7, 215–222. [Google Scholar] [CrossRef]
- UNE-ISO 3960-2017; Animal and vegetable fats and oils—Determination of peroxide value—Iodometric (visual) endpoint determination. Asociación Española de Normalización: Madrid, Spain, 2017.
- Nanda, A.; Mohapatra, B.B.; Mahapatra, A.P.K.; Mahapatra, A.P.K.; Mahapatra, A.P.K. Multiple comparison test by Tukey’s honestly significant difference (HSD): Do the confident level control type I error. Int. J. Stat. Appl. Math. 2021, 6, 59–65. [Google Scholar] [CrossRef]
- Baek, Y.; Jeong, E.W.; Lee, H.G. Encapsulation of resveratrol within size-controlled nanoliposomes: Impact on solubility, stability, cellular permeability, and oral bioavailability. Colloids Surf. B Biointerfaces 2023, 224, 113205. [Google Scholar] [CrossRef]
- Sethi, M.; Rana, R.; Sambhakar, S.; Chourasia, M.K. Nanocosmeceuticals: Trends and Recent Advancements in Self Care. AAPS PharmSciTech 2024, 25, 51. [Google Scholar] [CrossRef]
- Arratia-Quijada, J.; Nuño, K.; Ruíz-Santoyo, V.; Andrade-Espinoza, B.A. Nano-encapsulation of probiotics: Need and critical considerations to design new non-dairy probiotic products. J. Funct. Foods 2024, 116, 106192. [Google Scholar] [CrossRef]
- Giosafatto, C.V.L.; Porta, R. Advanced Biomaterials for Food Edible Coatings. Int. J. Mol. Sci. 2023, 24, 9929. [Google Scholar] [CrossRef]
- Rosales TK, O.; da Silva FF, A.; Bernardes, E.S.; Paulo Fabi, J. Plant-derived polyphenolic compounds: Nanodelivery through polysaccharide-based systems to improve the biological properties. In Critical Reviews in Food Science and Nutrition; Taylor & Francis: Oxford, UK, 2023; pp. 1–25. [Google Scholar]
- Munin, A.; Edwards-Lévy, F. Encapsulation of natural polyphenolic compounds: A review. Pharmaceutics 2011, 3, 793–829. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yang, J.; Wang, C.; Wu, L.; Liu, Y. Screening bifunctional flavonoids of anti-cholinesterase and anti-glucosidase by in vitro and in silico studies: Quercetin, kaempferol and myricetin. Food Biosci. 2023, 51, 102312. [Google Scholar] [CrossRef]
- Joseph, T.M.; Kar Mahapatra, D.; Esmaeili, A.; Piszczyk, Ł.; Hasanin, M.S.; Kattali, M.; Thomas, S. Nanoparticles: Taking a unique position in medicine. Nanomaterials 2023, 13, 574. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, P.; Dutta, S.; Moses, J.A.; Anandharamakrishnan, C. Nanoliposomal encapsulation of chia oil for sustained delivery of α-linolenic acid. Int. J. Food Sci. Technol. 2021, 56, 4206–4214. [Google Scholar] [CrossRef]
- Chen, M.; Li, R.; Gao, Y.; Zheng, Y.; Liao, L.; Cao, Y.; Li, J.; Zhou, W. Encapsulation of hydrophobic and low-soluble polyphenols into nanoliposomes by ph-driven method: Naringenin and naringin as model compounds. Foods 2021, 10, 963. [Google Scholar] [CrossRef]
- Bian, T.; Gardin, A.; Gemen, J.; Houben, L.; Perego, C.; Lee, B.; Klajn, R. Electrostatic co-assembly of nanoparticles with oppositely charged small molecules into static and dynamic superstructures. Nat. Chem. 2021, 13, 940–949. [Google Scholar] [CrossRef]
- D’Onofrio, M.; Munari, F.; Assfalg, M. Alpha-synuclein—nanoparticle interactions: Understanding, controlling and exploiting conformational plasticity. Molecules 2020, 25, 5625. [Google Scholar] [CrossRef] [PubMed]
- Lúcio, M.; Lopes, C.M.; Fernandes, E.; Gonẹalves, H.; Oliveira, M.E.C.R. Organic nanocarriers for brain drug delivery. In Nanoparticles for Brain Drug Delivery; Jenny Stanford Publishing: Dubai, United Arab Emirates, 2021; pp. 75–160. [Google Scholar]
- Fan, C.; Feng, T.; Wang, X.; Xia, S.; Swing, C.J. Liposomes for encapsulation of liposoluble vitamins (A, D, E and K): Comparation of loading ability, storage stability and bilayer dynamics. Food Res. Int. 2023, 163, 112264. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, S.M.; Cicek, P.V. Microfluidic mixing: A physics-oriented review. Micromachines 2023, 14, 1827. [Google Scholar] [CrossRef] [PubMed]
- Souri, P.; Emamifar, A.; Davati, N. Physical and antimicrobial properties of nano-ZnO-loaded nanoliposomes prepared by thin layer hydration-sonication and heating methods. Food Bioprocess Technol. 2023, 16, 1822–1836. [Google Scholar] [CrossRef]
- Siva, S.; Bodkhe, G.A.; Cong, C.; Kim, S.H.; Kim, M. Electrohydrodynamic-printed ultrathin Ti3C2Tx-MXene field-effect transistor for probing aflatoxin B1. Chem. Eng. J. 2024, 479, 147492. [Google Scholar] [CrossRef]
- Medina, M.; Nuñez, M. Cheeses from ewe and goat milk. In Cheese; Academic Press: Cambridge, MA, USA, 2017; pp. 1069–1091. [Google Scholar]
- Li, Y.; Wang, F.; Xu, J.; Wang, T.; Zhan, J.; Ma, R.; Tian, Y. Improvement in the optical properties of starch coatings via chemical-physical combination strategy for fruits preservation. Food Hydrocoll. 2023, 137, 108405. [Google Scholar] [CrossRef]
- Nájera, A.I.; Nieto, S.; Barron LJ, R.; Albisu, M. A review of the preservation of hard and semi-hard cheeses: Quality and safety. Int. J. Environ. Res. Public Health 2021, 18, 9789. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Zhang, F.; Song, Y.; Lou, Y.; Zhao, A.; Liu, Y.; Wang, B. Physicochemical and textural characteristics and volatile compounds of semihard goat cheese as affected by starter cultures. J. Dairy Sci. 2021, 104, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Stergiadis, S.; Nørskov, N.P.; Purup, S.; Givens, I.; Lee, M.R. Comparative nutrient profiling of retail goat and cow milk. Nutrients 2019, 11, 2282. [Google Scholar] [CrossRef]
- Deshwal, G.K.; Ameta, R.; Sharma, H.; Singh, A.K.; Panjagari, N.R.; Baria, B. Effect of ultrafiltration and fat content on chemical, functional, textural and sensory characteristics of goat milk-based Halloumi type cheese. LWT 2020, 126, 109341. [Google Scholar] [CrossRef]
- Pawlos, M.; Znamirowska-Piotrowska, A.; Kowalczyk, M.; Zaguła, G.; Szajnar, K. Possibility of Using Different Calcium Compounds for the Manufacture of Fresh Acid Rennet Cheese from Goat’s Milk. Foods 2023, 12, 3703. [Google Scholar] [CrossRef]
- Gruskiene, R.; Bockuviene, A.; Sereikaite, J. Microencapsulation of bioactive ingredients for their delivery into fermented milk products: A review. Molecules 2021, 26, 4601. [Google Scholar] [CrossRef]
- Benevides, S.D.; Wurlitzer, N.J.; Dionisio, A.P.; dos Santos Garruti, D.; Nunes GM, V.C.; Chagas, B.A.; de Sousa PH, M. Alternative Protein and Fiber-based Cheese and Hamburger Analogues: Meeting Consumer Demand for Differentiated Plant-based Products. Chem. Eng. Trans. 2023, 102, 25–30. [Google Scholar]
- Xiao, Q. Coating and film-forming properties. In Food Hydrocolloids: Functionalities and Applications; Springer: Singapore, 2021; pp. 267–306. [Google Scholar]
- Manzoor, M.; Singh, J.; Bandral, J.D.; Gani, A.; Shams, R. Food hydrocolloids: Functional, nutraceutical and novel applications for delivery of bioactive compounds. Int. J. Biol. Macromol. 2020, 165, 554–567. [Google Scholar] [CrossRef]
- Zhu, Y.; Bhandari, B.; Prakash, S. Tribo-rheometry behaviour and gel strength of κ-carrageenan and gelatin solutions at concentrations, pH and ionic conditions used in dairy products. Food Hydrocoll. 2018, 84, 292–302. [Google Scholar] [CrossRef]
- Carvalho, A.F.; Kulyk, B.; Fernandes, A.J.; Fortunato, E.; Costa, F.M. A review on the applications of graphene in mechanical transduction. Adv. Mater. 2022, 34, 2101326. [Google Scholar] [CrossRef]
- Chatziantoniou, S.E.; Thomareis, A.S.; Kontominas, M.G. Effect of different stabilizers on rheological properties, fat globule size and sensory attributes of novel spreadable processed whey cheese. Eur. Food Res. Technol. 2019, 245, 2401–2412. [Google Scholar] [CrossRef]
- Atik, D.S.; Huppertz, T. Melting of natural cheese: A review. Int. Dairy J. 2023, 142, 105648. [Google Scholar] [CrossRef]
- Siyar, Z.; Motamedzadegan, A.; Mohammadzadeh Milani, J.; Rashidinejad, A. The effect of the liposomal encapsulated saffron extract on the physicochemical properties of a functional ricotta cheese. Molecules 2021, 27, 120. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, J.; Holmes, M. Human capability in the perception of extensional and shear viscosity. J. Texture Stud. 2017, 48, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Burgos, L.S.; Pece Azar NB, D.C.; Maldonado, S. Textural, rheological and sensory properties of spreadable processed goat cheese. Int. J. Food Stud. 2020, 9, 62–74. [Google Scholar] [CrossRef]
- Briceño-Ahumada, Z.; Mikhailovskaya, A.; Staton, J.A. The role of continuous phase rheology on the stabilization of edible foams: A review. Phys. Fluids 2022, 34, 031302. [Google Scholar] [CrossRef]
- Hesarinejad, M.A.; Lorenzo, J.M.; Rafe, A. Influence of gelatin/guar gum mixture on the rheological and textural properties of restructured ricotta cheese. Carbohydr. Polym. Technol. Appl. 2021, 2, 100162. [Google Scholar] [CrossRef]
- Mouzakitis, C.K.; Sereti, V.; Matsakidou, A.; Kotsiou, K.; Biliaderis, C.G.; Lazaridou, A. Physicochemical properties of zein-based edible films and coatings for extending wheat bread shelf life. Food Hydrocoll. 2022, 132, 107856. [Google Scholar] [CrossRef]
- Salehi, F. Effect of coatings made by new hydrocolloids on the oil uptake during deep-fat frying: A review. J. Food Process. Preserv. 2020, 44, e14879. [Google Scholar] [CrossRef]
- Rinaldi, S.; Palocci, G.; Di Giovanni, S.; Iacurto, M.; Tripaldi, C. Chemical characteristics and oxidative stability of buffalo mozzarella cheese produced with fresh and frozen curd. Molecules 2021, 26, 1405. [Google Scholar] [CrossRef]
- Kaur, J.; Singh, J.; Rasane, P.; Gupta, P.; Kaur, S.; Sharma, N.; Sowdhanya, D. Natural additives as active components in edible films and coatings. Food Biosci. 2023, 53, 102689. [Google Scholar] [CrossRef]
Factors | Low | High | Levels | Units | Answer | Units |
---|---|---|---|---|---|---|
Tween-80 | 1 | 1 | 3 | [%] | [kg/m3] | |
GLY | 5 | 5 | 3 | [%] | [mN/m] | |
OD | [Dimensionless] |
Days | MPS [nm] | PDI | Diffusion Coefficient [µm2/s] | Z-Potential [mV] | Conductivity [mS/cm] | Transmittance [%] |
---|---|---|---|---|---|---|
0 | 450 ± 3 d | 0.299 ± 0.10 d | 1.088 ± 0.04 a | 30.47 ± 1.89 b | 2.98 ± 0.04 c | 0.069 ± 0.01 a |
1 | 434 ± 2 c | 0.248 ± 0.04 b | 1.129 ± 0.05 a | 25.58 ± 2.65 a | 2.94 ± 0.09 c | 0.071 ± 0.02 a |
2 | 356 ± 5 c | 0.260 ± 0.05 c | 1.375 ± 0.04 b | 36.31 ± 2.32 b | 2.83 ± 0.08 bc | 0.066 ± 0.03 a |
3 | 337 ± 3 b | 0.265 ± 0.04 c | 1.453 ± 0.07 c | 29.38 ± 3.12 ab | 2.62 ± 0.02 b | 0.071 ± 0.01 a |
4 | 349 ± 4 c | 0.238 ± 0.09 ab | 1.405 ± 0.05 c | 42.66 ± 6.57 c | 2.61 ± 0.07 b | 0.071 ± 0.02 a |
5 | 345 ± 3 c | 0.226 ± 0.09 a | 1.420 ± 0.02 c | 40.05 ± 2.62 c | 2.62 ± 0.09 b | 0.069 ± 0.02 a |
6 | 331 ± 5 a | 0.259 ± 0.03 c | 1.479 ± 0.06 c | 28.59 ± 3.03 ab | 1.84 ± 0.06 a | 0.067 ± 0.04 a |
7 | 319 ± 3 a | 0.218 ± 0.05 a | 1.537 ± 0.06 d | 47.89 ± 5.23 c | 2.86 ± 0.03 bc | 0.062 ± 0.04 a |
8 | 320 ± 4 a | 0.216 ± 0.08 a | 1.528 ± 0.01 d | 27.93 ± 1.02 ab | 2.61 ± 0.07 b | 0.065 ± 0.01 a |
9 | 324 ± 3 a | 0.254 ± 0.02 c | 1.511 ± 0.02 d | 27.86 ± 1.14 ab | 3.01 ± 0.03 c | 0.066 ± 0.03 a |
10 | 329 ± 4 a | 0.263 ± 0.06 c | 1.227 ± 0.09 a | 28.57 ± 0.65 ab | 2.69 ± 0.07 b | 0.063 ± 0.03 a |
11 | 321 ± 3 a | 0.220 ± 0.04 a | 1.528 ± 0.09 d | 38.03 ± 1.72 a | 2.74 ± 0.09 b | 0.065 ± 0.02 a |
12 | 324 ± 3 a | 0.240 ± 0.06 b | 1.432 ± 0.02 c | 30.19 ± 0.29 ab | 3.02 ± 0.02 c | 0.063 ± 0.02 a |
13 | 327 ± 2 a | 0.243 ± 0.04 b | 1.451 ± 0.04 c | 32.65 ± 2.46 b | 3.02 ± 0.01 c | 0.064 ± 0.01 a |
14 | 329 ± 3 a | 0.241 ± 0.03 b | 1.585 ± 0.09 d | 34.74 ± 1.62 b | 2.99 ± 0.03 c | 0.064 ± 0.01 a |
15 | 332 ± 2 a | 0.242 ± 0.05 b | 1.476 ± 0.02 c | 37.96 ± 0.08 c | 3.00 ± 0.03 c | 0.063 ± 0.02 a |
Sample | Moisture [%] | Protein [%] | Lipids [%] | Ashes [%] | Carbohydrates [%] |
---|---|---|---|---|---|
FC | 57.8 ± 0.4 d | 17.9 ± 1.3 c | 3.6 ± 0.2 ab | 3.1 ± 0.1 c | 17.5 ± 1.5 b |
FC-NT/HPMC | 54.9 ± 0.3 c | 19.8 ± 0.3 d | 3.0 ± 0.3 a | 2.8 ± 0.1 b | 19.4 ± 0.4 b |
FC-NT/KC | 54.2 ± 0.3 c | 16.1 ± 0.2 b | 4.6 ± 0.1 b | 2.6 ± 0.1 a | 22.4 ± 0.2 c |
GC | 47.9 ± 0.2 a | 22.2 ± 0.2 e | 25.2 ± 0.8 d | 3.1 ± 0.1 c | 1.7 ± 0.8 a |
VC | 49.3 ± 0.4 b | 2.1 ± 0.1 a | 7.4 ± 0.3 c | 7.2 ± 0.1 d | 33.9 ± 0.4 d |
Sample | Velocity [mm/s] | A [Pa/s] | R2 | t0 [s] | θ (t − t0) < tR [s] |
---|---|---|---|---|---|
FC | 1 | 862.43 | 0.962 | 0.02 | θ < (8.32 − t0) |
FC-NT-HPMC-I | 1 | 685.21 | 0.958 | 0.02 | θ < (8.40 − t0) |
FC-NT-HPMC-A | 1 | 1036.8 | 0.919 | 0.02 | θ < (8.10 − t0) |
FC-NT-KC-I | 1 | 769.06 | 0.941 | 0.02 | θ < (8.45 − t0) |
FC-NT-KC-A | 1 | 1083.2 | 0.895 | 0.02 | θ < (8.50 − t0) |
GC | 1 | 1385.8 | 0.995 | 0.02 | θ < (5.96 − t0) |
VC | 1 | 1664.8 | 0.946 | 0.02 | θ < (7.28 − t0) |
Days | |||||||
---|---|---|---|---|---|---|---|
Sample | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
FC | 2.2 ± 0.2 b | 3.2 ± 0.2 b | 3.7 ± 0.3 b | 5.1 ± 0.4 b | 5.7 ± 0.4 c | 6.5 ± 0.2 c | 9.1 ± 0.4 c |
FC-NT-HPMC-I | 0.7 ± 0.3 a | 0.8 ± 0.2 a | 1.4 ± 0.2 a | 1.7 ± 0.3 a | 1.9 ± 0.2 a | 1.8 ± 0.5 a | 2.8 ± 0.5 ab |
FC-NT-HPMC-A | 0.8 ± 0.5 a | 1.4 ± 0.2 a | 1.6 ± 0.2 a | 1.7 ± 0.3 a | 1.8 ± 0.2 a | 1.9 ± 0.4 a | 2.2 ± 0.4 a |
FC-NT-KC-I | 1.0 ± 0.3 a | 1.4 ± 0.5 a | 1.8 ± 0.2 a | 2.0 ± 0.3 a | 2.1 ± 0.2 a | 3.0 ± 0.3 b | 3.1 ± 0.5 ab |
FC-NT-KC-A | 1.2 ± 0.2 ab | 1.3 ± 0.3 a | 1.9 ± 0.4 a | 2.1 ± 0.2 a | 2.3 ± 0.3 a | 3.2 ± 0.4 b | 3.9 ± 0.6 b |
GC | 2.2 ± 0.4 b | 3.0 ± 0.3 b | 3.4 ± 0.2 b | 4.2 ± 0.5 b | 4.7 ± 0.3 b | 6.2 ± 0.2 c | 9.4 ± 0.4 c |
VC | 2.1 ± 0.5 b | 3.0 ± 0.3 b | 3.7 ± 0.3 b | 4.8 ± 0.4 b | 6.9 ± 0.2 d | 7.9 ± 0.5 d | 9.7 ± 0.3 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monasterio, A.; Núñez, E.; Verdugo, V.; Osorio, F.A. Stability and Biaxial Behavior of Fresh Cheese Coated with Nanoliposomes Encapsulating Grape Seed Tannins and Polysaccharides Using Immersion and Spray Methods. Polymers 2024, 16, 1559. https://doi.org/10.3390/polym16111559
Monasterio A, Núñez E, Verdugo V, Osorio FA. Stability and Biaxial Behavior of Fresh Cheese Coated with Nanoliposomes Encapsulating Grape Seed Tannins and Polysaccharides Using Immersion and Spray Methods. Polymers. 2024; 16(11):1559. https://doi.org/10.3390/polym16111559
Chicago/Turabian StyleMonasterio, Angela, Emerson Núñez, Valeria Verdugo, and Fernando A. Osorio. 2024. "Stability and Biaxial Behavior of Fresh Cheese Coated with Nanoliposomes Encapsulating Grape Seed Tannins and Polysaccharides Using Immersion and Spray Methods" Polymers 16, no. 11: 1559. https://doi.org/10.3390/polym16111559
APA StyleMonasterio, A., Núñez, E., Verdugo, V., & Osorio, F. A. (2024). Stability and Biaxial Behavior of Fresh Cheese Coated with Nanoliposomes Encapsulating Grape Seed Tannins and Polysaccharides Using Immersion and Spray Methods. Polymers, 16(11), 1559. https://doi.org/10.3390/polym16111559