Mechanical Properties of Raw Filaments and Printed Specimens: Effects of Fiber Reinforcements and Process Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Setup
2.2. Preparation and Execution
3. Results and Discussion
3.1. Tests on Filaments
3.2. Tests on Printed Specimens
3.2.1. Effect of Layer Thickness (A, B, C)
3.2.2. Effects of Nozzle Diameter (C, D)
3.2.3. Effects of Orientation (E, G)
3.2.4. Effects of Nozzle Temperature (I, J, L, M)
3.2.5. Effects of Infill Density (F, N, O, P)
3.2.6. Effects of Infill Pattern (N, Q, R)
3.2.7. Effects of Raster Angle (G, S)
4. Conclusions
- The layer thickness exhibited a clear correlation with the strength of the components. Specifically, the smaller the layer thickness, the higher the strength. This is due to the fact that smaller layer thicknesses increase the pressure of the current layer on the previously laid layer, thereby reducing the gaps between the beads and the layers.
- The nozzle diameter had a minor effect on part behavior, but larger diameters increased stiffness due to larger contact areas and fewer heating cycles
- The fracture behavior of the flat and on-edge built specimens exhibited significant differences. The on-edge built part had a higher stiffness but showed early failure, making the flat orientation preferable.
- The different nozzle temperatures exhibited a correlation with the stiffness of the components. As the temperature increases, the stiffness of the specimens decreases due to varying degrees of crystallization. The SEM images indicate that higher temperatures result in smaller gaps, but this effect is less significant for loads along the bead deposition direction than the degree of crystallization.
- The infill density exhibited a clear correlation with the mechanical properties of the specimens. Specifically, the strength and stiffness decreased as the percent infill density decreased. Compared to the usual behavior of cellular materials, the mechanical properties only decrease linearly with density, which indicates a high potential for lightweight design.
- The evaluation of the three infill patterns revealed that the pattern-oriented completely in the loading direction performed the best. Strength and stiffness deteriorate as soon as the beads incline more than 0° to the loading direction.
- Both raster angles displayed the typical stress–strain curve. The 0° specimen had a steeper rise but broke at a lower strain compared to the ±45° specimen, which had a flatter curve but stretched further. SEM images demonstrate a significant improvement in the bond between fiber and matrix due to the processing procedure. The conductivity of the glass fibers results in a perfect fusion of the individual beads, making them indistinguishable from each other in the SEM images.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dave, H.K.; Davim, J.P. Fused Deposition Modeling Based 3D Printing; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-68023-7. [Google Scholar]
- Dey, A.; Yodo, N. A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics. JMMP 2019, 3, 64. [Google Scholar] [CrossRef]
- Algarni, M.; Ghazali, S. Comparative Study of the Sensitivity of PLA, ABS, PEEK, and PETG’s Mechanical Properties to FDM Printing Process Parameters. Crystals 2021, 11, 995. [Google Scholar] [CrossRef]
- Tekinalp, H.L.; Kunc, V.; Velez-Garcia, G.M.; Duty, C.E.; Love, L.J.; Naskar, A.K.; Blue, C.A.; Ozcan, S. Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos. Sci. Technol. 2014, 105, 144–150. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-56126-0. [Google Scholar]
- Bikas, H.; Lianos, A.K.; Stavropoulos, P. A design framework for additive manufacturing. Int. J. Adv. Manuf. Technol. 2019, 103, 3769–3783. [Google Scholar] [CrossRef]
- Knoop, F. Untersuchung der Mechanischen und Geometrischen Eigenschaften von Bauteilen Hergestellt im Fused Deposition Modeling Verfahren. Ph.D. Thesis, Shaker Verlag, Düren, Germany, 2020. [Google Scholar]
- Chacón, J.M.; Caminero, M.A.; García-Plaza, E.; Núñez, P.J. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 2017, 124, 143–157. [Google Scholar] [CrossRef]
- Kloke, A. Untersuchung der Werkstoff-, Prozess- und Bauteileigenschaften beim Fused Deposition Modeling Verfahren. Ph.D. Thesis, Shaker Verlag, Aachen, Germany, 2016. [Google Scholar]
- Yang, L.; Li, S.; Li, Y.; Yang, M.; Yuan, Q. Experimental Investigations for Optimizing the Extrusion Parameters on FDM PLA Printed Parts. J. Mater. Eng. Perform. 2019, 28, 169–182. [Google Scholar] [CrossRef]
- Kiński, W.; Pietkiewicz, P. Influence of the Printing Nozzle Diameter on Tensile Strength of Produced 3D Models in FDM Technology. Agric. Eng. 2020, 24, 31–38. [Google Scholar] [CrossRef]
- Huang, B.; Meng, S.; He, H.; Jia, Y.; Xu, Y.; Huang, H. Study of processing parameters in fused deposition modeling based on mechanical properties of acrylonitrile-butadiene-styrene filament. Polym. Eng. Sci. 2019, 59, 120–128. [Google Scholar] [CrossRef]
- Alafaghani, A.; Qattawi, A.; Alrawi, B.; Guzman, A. Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach. Procedia Manuf. 2017, 10, 791–803. [Google Scholar] [CrossRef]
- Sood, A.K.; Ohdar, R.K.; Mahapatra, S.S. Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 2010, 31, 287–295. [Google Scholar] [CrossRef]
- Kiendl, J.; Gao, C. Controlling toughness and strength of FDM 3D-printed PLA components through the raster layup. Compos. Part. B Eng. 2020, 180, 107562. [Google Scholar] [CrossRef]
- Abeykoon, C.; Sri-Amphorn, P.; Fernando, A. Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. Int. J. Lightweight Mater. Manuf. 2020, 3, 284–297. [Google Scholar] [CrossRef]
- Harpool, T.D. Observing the Effect of Infill Shapes on the Tensile Characteristics of 3D Printed Plastic Parts. Ph.D. Thesis, Wichita State University, Wichita, KS, USA, 2016. [Google Scholar]
- Moradi, M.; Meiabadi, S.; Kaplan, A. 3D Printed Parts with Honeycomb Internal Pattern by Fused Deposition Modelling; Experimental Characterization and Production Optimization. Met. Mater. Int. 2019, 25, 1312–1325. [Google Scholar] [CrossRef]
- Calignano, F.; Lorusso, M.; Roppolo, I.; Minetola, P. Investigation of the Mechanical Properties of a Carbon Fibre-Reinforced Nylon Filament for 3D Printing. Machines 2020, 8, 52. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Aminzadeh, A.; Aberoumand, M.; Moradi, M. Mechanical Characterization of Fused Deposition Modeling (FDM) 3D Printed Parts. In Fused Deposition Modeling Based 3D Printing: Materials Forming, Machining and Tribology; Springer International Publishing: Cham, Switzerland, 2021; pp. 131–150. [Google Scholar] [CrossRef]
- Akhoundi, B.; Nabipour, M.; Hajami, F.; Shakoori, D. An Experimental Study of Nozzle Temperature and Heat Treatment (Annealing) Effects on Mechanical Properties of High-Temperature Polylactic Acid in Fused Deposition Modeling. Polym. Eng. Sci. 2020, 60, 979–987. [Google Scholar] [CrossRef]
- Ghabezi, P.; Sam-Daliri, O.; Flanagan, T.; Walls, M.; Harrison, N.M. Circular economy innovation: A deep investigation on 3D printing of industrial waste polypropylene and carbon fibre composites. Resour. Conserv. Recycl. 2024, 206, 107667. [Google Scholar] [CrossRef]
- Nikam, M.; Pawar, P.; Patil, A.; Patil, A.; Mokal, K.; Jadhav, S. Sustainable fabrication of 3D printing filament from recycled PET plastic. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Prusa Research. Prusament PLA. Available online: https://prusament.com/materials/pla/ (accessed on 8 February 2023).
- Prusa Research. ColorFabb Woodfill Filament 600 g. Available online: https://www.prusa3d.com/product/colorfabb-woodfill-filament-600g/ (accessed on 8 February 2023).
- UltiMaker. UltiMaker ABS TDS. Available online: https://support.ultimaker.com/s/article/1667410781022 (accessed on 10 February 2023).
- Polymaker. PolyMax™ PC. Available online: https://polymaker.com/product/polymax-pc/ (accessed on 10 February 2023).
- Formfutura. ABSpro Flame Retardant. Available online: https://formfutura.com/product/abspro-flame-retardant/ (accessed on 13 February 2023).
- add:north. Adura™-Grey. Available online: https://addnorth.com/product/Adura%E2%84%A2/Adura%E2%84%A2%20-%202.85mm%20-%20500g%20-%20Grey (accessed on 14 February 2023).
- 3DXTECH. FibreX™ Nylon+GF30 3D Filament|Glass Fiber Reinforced. Available online: https://www.3dxtech.com/product/fibrex-nylon-gf30/ (accessed on 8 February 2023).
- DIN EN ISO 527-3:2019-02; Plastics-Determination of Tensile Properties—Part 3: Test Conditions for Films and Sheets. DIN e.V. and Beuth Verlag GmbH: Berlin, Germany, 2019.
- DIN EN ISO 527-2:2012-06; Plastics-Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. DIN e.V. and Beuth Verlag GmbH: Berlin, Germany, 2012.
- DIN EN ISO 527-4:2022-03; Plastics-Determination of Tensile Properties—Part 4: Test Conditions for Isotropic and Orthotropic Fibre-Reinforced Plastic Composites. DIN e.V. and Beuth Verlag GmbH: Berlin, Germany, 2022.
- Kuciel, S.; Mazur, K.; Hebda, M. The Influence of Wood and Basalt Fibres on Mechanical, Thermal and Hydrothermal Properties of PLA Composites. J. Polym. Env. 2020, 28, 1204–1215. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties, 2nd ed.; 1. paperback ed. (with corr.), Transferred to Digital Print; Cambridge University Press: Cambridge, UK, 2010; ISBN 9780521499118. [Google Scholar]
PLA | PLA + Wood | ABS | PC | ABS + PC | Nylon | Nylon + GF | ||
---|---|---|---|---|---|---|---|---|
Properties | Unit | |||||||
Trade name | - | Prusament PLA | woodFill | Ultimaker ABS | PolyMax PC | ABSpro | Adura | FibreX PA6 + GF30 |
Manufacturer | - | Prusa Research | Colorfabb | Ultimaker | Polymaker | Formfutura | AddNorth | 3DX Tech |
City | Prague, Czech Republic | Belfeld, the Netherlands | Utrecht, the Netherlands | Changshu, China | Nijmegen, the Netherlands | Ölsremma, Sweden | Michigan (MI), USA | |
Price per 100 g | EUR | 2.48 | 5.37 | 5.13 | 5.99 | 7.58 | 8.98 | 12.00 |
Diameter | mm | 1.75 | 1.75 | 2.85 | 2.85 | 2.85 | 2.85 | 2.85 |
Material properties | ||||||||
Density | g/cm3 | 1.24 | 1.15 | 1.10 | 1.18–1.20 | 1.18 | 1.10 | 1.35 |
Fiber material | - | - | Wood | - | - | - | - | Glass |
Hygroscopy | - | Low | Low | Low | High | High | High | High |
Fiber content | - | - | 30% | - | - | - | - | 30% |
Mechanical properties | ||||||||
Test standard | - | ISO 527 | ISO 527 | ISO 527 | ASTM D638 | ISO 527 | ISO 527 | ISO 527 |
Tensile strength | MPa | 50 | 46 | 39 | 60 | 65.1 | 50 | 62.8 |
Tensile modulus | MPa | 2.300 | 3.290 | 1.682 | 2.048 | 2.440 | 1.720 | 4.261 |
Elongation at break | % | 2.70 | 4.80 | 4.80 | 12.24 | 6.60 | 46 | 6 |
Process requirements | ||||||||
Nozzle requirements | - | no specifications | >0.4 mm | no specifications | no specifications | no specifications | no specifications | steal nozzle, >0.4 mm |
Nozzle temperature | °C | 200–220 | 195–220 | 250 | 250–270 | 240–260 | 245–270 | 220–280 |
Build plate temperature | °C | 40–60 | 50–60 | 80 | 90–105 | 110 | >50 | 80–110 |
Source | [24] | [25] | [26] | [27] | [28] | [29] | [30] |
ID | Material | Orientation | Layer Thickness (mm) | Infill Density | Infill Pattern | Raster Angle | Nozzle Diameter (mm) | Nozzle Temperature (°C) |
---|---|---|---|---|---|---|---|---|
A | ABS + PC | On-edge | 0.1 | 100% | Rectilinear | 0° | 0.4 | 260 |
B | ABS + PC | On-edge | 0.2 | 100% | Rectilinear | 0° | 0.4 | 260 |
C | ABS + PC | On-edge | 0.3 | 100% | Rectilinear | 0° | 0.4 | 260 |
D | ABS + PC | On-edge | 0.3 | 100% | Rectilinear | 0° | 0.6 | 260 |
E | Nylon + GF | On-edge | 0.3 | 100% | Rectilinear | 0° | 0.6 | 260 |
F | PLA | Flat | 0.3 | 100% | Rectilinear | 0° | 0.6 | 215 |
G | Nylon + GF | Flat | 0.3 | 100% | Rectilinear | 0° | 0.6 | 260 |
I | PLA | Flat | 0.3 | 100% | Rectilinear | 0° | 0.6 | 215 |
J | PLA | Flat | 0.3 | 100% | Rectilinear | 0° | 0.6 | 230 |
L | PLA | Flat | 0.3 | 100% | Rectilinear | 0° | 0.6 | 205 |
M | PLA | Flat | 0.3 | 100% | Rectilinear | 0° | 0.6 | 190 |
N | PLA | Flat | 0.3 | 40% | Rectilinear | 0° | 0.6 | 215 |
O | PLA | Flat | 0.3 | 60% | Rectilinear | 0° | 0.6 | 215 |
P | PLA | Flat | 0.3 | 80% | Rectilinear | 0° | 0.6 | 215 |
Q | PLA | Flat | 0.3 | 40% | Honeycomb | - | 0.6 | 215 |
R | PLA | Flat | 0.3 | 40% | Grid | - | 0.6 | 215 |
S | Nylon + GF | Flat | 0.3 | 100% | Rectilinear | ±45° | 0.6 | 260 |
Parameter | Value |
---|---|
Layer thickness (mm) | 0.1, 0.2, 0.3 |
Nozzle diameter (mm) | 0.4, 0.6 |
Orientation | Flat, On-edge |
Nozzle temperature (°C) | 190, 205, 215, 230, 260 |
Infill density | 40%, 60%, 80%, 100% |
Infill pattern | Rectilinear, Grid, Honeycomb |
Raster angle | 0°, ±45° |
Material | Yield Strength σy (MPa) | Young‘s Modulus E (MPa) |
---|---|---|
PLA | 38.4 (4.2) | 2.873 (332) |
PLA + Wood | 19.0 (1.1) | 1.827 (65) |
ABS | 19.6 (4.0) | 1.461 (240) |
PC | 37.3 (9.2) | 1.757 (247) |
ABS + PC | 33.5 (4.5) | 2.095 (123) |
Nylon | 26.8 (2.3) | 1.794 (111) |
Nylon + GF | 46.4 (6.4) | 4.664 (301) |
ID | Tensile Strength σu (MPa) | Yield Strength σy (MPa) | Elongation at Break (%) | Tensile Modulus E (MPa) |
---|---|---|---|---|
A | 66.3 (0.3) | 56.7 (3.8) | 4.62 (0.48) | 2.159 (93) |
B | 61.0 (0.4) | 49.8 (1.6) | 4.03 (0.19) | 2.208 (43) |
C | 56.1 (0.5) | 45.1 (3.3) | 5.50 (-) | 2.022 (74) |
D | 57.7 (1.0) | 44.9 (0.4) | 3.12 (0.11) | 2.340 (32) |
E | 60.3 (1.3) | 35.0 (2.5) | 2.03 (0.29) | 4.339 (196) |
F | 63.5 (0.5) | 61.9 (1.4) | 2.48 (0.08) | 2.845 (91) |
G | 56.9 (0.7) | 54.2 (1.1) | 1.78 (0.06) | 3.647 (109) |
I | 64.5 (2.8) | 64.5 (2.8) | 2.68 (0.22) | 2.405 (237) |
J | 65.0 (2.5) | 65.0 (2.5) | 2.74 (0.25) | 2.328 (258) |
L | 63.3 (0.5) | 62.9 (0.5) | 2.60 (0.05) | 2.524 (155) |
M | 64.4 (1.1) | 63.0 (0.7) | 2.76 (0.23) | 2.587 (87) |
N | 39.0 (0.1) | 37.1 (0.7) | 2.35 (0.03) | 1.839 (21) |
O | 50.2 (0.5) | 49.8 (0.3) | 3.85 (0.45) | 2.152 (131) |
P | 58.2 (0.3) | 56.8 (0.7) | 2.54 (0.20) | 2.607 (47) |
Q | 32.8 (0.2) | 30.6 (0.6) | 2.46 (0.08) | 1.725 (42) |
R | 29.7 (0.6) | 29.7 (0.6) | 1.79 (0.04) | 1.634 (36) |
S | 50.8 (1.1) | 42.6 (1.3) | 3.83 (0.11) | 2.419 (41) |
ID | Infill Density | Average Weight (g) | Volume (cm3) | Density (g/cm3) |
---|---|---|---|---|
F | 100% | 12.53 | 10.204 | 1.23 |
P | 80% | 11.33 | 10.204 | 1.11 |
O | 60% | 9.7 | 10.204 | 0.95 |
N | 40% | 7.93 | 10.204 | 0.78 |
Filament | - | - | - | 1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieweger, D.; Diel, S.; Schweiger, H.-G.; Tetzlaff, U. Mechanical Properties of Raw Filaments and Printed Specimens: Effects of Fiber Reinforcements and Process Parameters. Polymers 2024, 16, 1576. https://doi.org/10.3390/polym16111576
Vieweger D, Diel S, Schweiger H-G, Tetzlaff U. Mechanical Properties of Raw Filaments and Printed Specimens: Effects of Fiber Reinforcements and Process Parameters. Polymers. 2024; 16(11):1576. https://doi.org/10.3390/polym16111576
Chicago/Turabian StyleVieweger, Daniel, Sergej Diel, Hans-Georg Schweiger, and Ulrich Tetzlaff. 2024. "Mechanical Properties of Raw Filaments and Printed Specimens: Effects of Fiber Reinforcements and Process Parameters" Polymers 16, no. 11: 1576. https://doi.org/10.3390/polym16111576
APA StyleVieweger, D., Diel, S., Schweiger, H. -G., & Tetzlaff, U. (2024). Mechanical Properties of Raw Filaments and Printed Specimens: Effects of Fiber Reinforcements and Process Parameters. Polymers, 16(11), 1576. https://doi.org/10.3390/polym16111576