Carbon Recycling of High Value Bioplastics: A Route to a Zero-Waste Future
Abstract
:1. Introduction
2. Current State of Bioplastics
- (a)
- Is the material bio-sourced and hence based on renewable resources?
- (b)
- Is it biodegradable according to valid norms and certificates, e.g., EN 13432, in relevant environments where established plastics are recalcitrant (soil, freshwater, seawater)?
- (c)
- Is it both industrial and home compostable (i.e., can it be put in an organic waste bin or a garden compost heap)?
- (d)
- Is it biosynthesized in vivo, or does its synthesis (mostly polymerization of building blocks) require the use of (precarious) chemicals, solvents, catalysts, harsh processing conditions, etc.?
- (e)
- Is it biocompatible, and hence, does it not exert any detrimental effects to living beings and the environment? Eco-toxicity tests according to established protocols answer this question.
3. A Circular Economy for Bioplastics
3.1. Bioplastics Waste Hierarchy
3.2. Principles of a Circular Economy
- The elimination of waste and pollution. The production of waste is a direct result of design decisions made during product development. By introducing the design criterion that at the end of a plastic’s first use, its material must reenter the economy, and the product will be designed for reuse, repair, remanufacturing, or recycling.
- The circulation of products and materials at their highest value. This principle closely relates to the waste hierarchy, in which products should be kept in use for as long as possible, and when this use is exhausted, the material itself should be reused or recycled. To maintain materials at their highest value, the smallest loops within conventional circular economy diagrams should be followed. These are also typically the loops with the lowest energy demand. A circular economy for bio-sourced, biodegradable plastics is provided in Figure 5.
- Transition from extraction to regeneration. Through their reliance on petrochemical feedstocks, poor design choices, consumer practices, and a lack of recycling infrastructure, conventional plastics degrade local and global environments. By moving to biodegradable, bio-sourced plastics, carbon can be sequestered from the atmosphere, thus reducing overall emissions. By innocuously biodegrading into CO2 and H2O, further harm to local environments is also avoided, thus allowing nature to regenerate itself from the harm caused by fossil-based plastics.
3.3. Environmental Considerations
3.4. Socio-Economic Factors
3.5. Legislation
3.6. Labeling
4. Recycling Technologies
4.1. Mechanical Recycling
4.2. Thermochemical Recycling
4.3. Solvolysis
- The reactant (either solvent or catalyst) diffuses through the bulk fluid to the plastic surface. Depending on the solvent, plastic type, and reaction conditions, there may be further diffusion into the plastic itself.
- A chemical reaction occurs, which cleaves a polymeric bond.
- The resultant decomposition products (and possibly, the catalyst) diffuse out of the plastic and away from the plastic surface.
4.4. Biological Recycling
5. Biodegradation
5.1. Industrial Composting
5.2. Home Composting
5.3. Biodegradation in Terrestrial Environments
5.4. Biodegradation in Biogas Facilities
5.5. Biodegradation in Freshwater
5.6. Biodegradation in Seawater
Environment | Plastic | Form | Conditions | Outcome | Reference |
---|---|---|---|---|---|
Industrial composting | PLA | Rigid film, 80 × 30 × 0.3 mm | KNEER composting system, 54 to 64 °C | ~5% degraded at 14 days, ~85% degraded at 70 days | [250] |
PLA | Bottle, 473 mL, 208 × 52 × 0.3 mm | Cow manure, wood shavings, and food waste, 60 °C | ~94% degraded at 14 days, ~100% degraded at 28 days | [251] | |
PLA | Rigid film, 40 × 30 × 0.3 mm | Leaves (40%), branches (30%), grass (30%), 52–59 °C | Complete decomposition in 70 days | [252] | |
PLA | 5 × 5 × 0.035 mm film | Mature compost, 52 to 58 °C | ~70% CO2 evolution at 30 days | [253] | |
P3HB | 5 × 5 × 0.035 mm film | Mature compost, 52 to 58 °C | >90% CO2 evolution at 30 days | [253] | |
PBAT | 5 × 5 × 0.035 mm film | Mature compost, 52 to 58 °C | ~30% CO2 evolution at 30 days | [253] | |
Thermoplastic cellulose acetate | 100 cm2 surface area | Biowaste mixture, 45 to 78 °C, mixed and moisturized every 7 days | 19% degraded in 3 weeks | [253] | |
PLA/a-PHB blend (15 mol% a-PHB) | Rigid film, 40 × 30 × 0.3 mm | Leaves (40%), branches (30%), grass (30%), 52–59 °C | Complete decomposition in 70 days | [252] | |
Thermoplastic cellulose acetate with 5 wt.% double hydroxide sorbate filler | 100 cm2 surface area | Biowaste mixture, 45 to 78 °C, mixed and moisturized every 7 days | 18% degraded in 3 weeks | [254] | |
Mixture of polyester starch, PLA, and PHA in varying proportions | Various | Industrial composting site, 66.1 to 73.4 °C, turning 1/week | 85% degraded in 49 days, 98% degraded in 128 days | [255] | |
Home composting | PLA | Powder, particle size < 0.3 mm | 30 °C, 45 days | Max. 20% degraded | [249] |
PLA | 20 × 20 mm, | 10% mature compost, 54% vegetable residue, 36% wood chip, 20 to 30 °C | No significant change after 78 weeks | [256] | |
P(3HB-co-3HV) (20% 3HV) | Dog-bone shaped tensile test pieces | Home compost, ~20 °C | ~70% degraded at 150 days | [257] | |
PLA/aPHA blend at 9:1, 7:3, and 5:5 by weight | Powder, particle size < 0.3 mm | 30 °C, 45 days | 9:1—30% degraded 7:3—70% degraded 5:5—85% degraded | [249] | |
Potato starch | Food tray | 8 to 18 °C, Nov to May in UK | Up to 100% in 90 days | [258] | |
Anaerobic digestion (biogas production) | PLA | Powder | Wastewater sludge feed, 38 °C | ~80% degraded in 500 days | [56] |
PLA | Powder, particle size 0.5 to 1.5 mm | Wastewater sludge feed, 38 °C | 4% degraded in 60 days | [259] | |
TPS | Powder | Wastewater sludge feed, 38 °C | ~85% degraded in 30 days | [56] | |
TPS | Powder, particle size 0.5 to 1.5 mm | Wastewater sludge feed, 38 °C | 48% degraded in 60 days | [259] | |
P3HB | Powder | Wastewater sludge feed, 38 °C | ~80% degraded in 30 days | [56] | |
P(3HB-co-4HB) | Powder, particle size 0.5 to 1.5 mm | Wastewater sludge feed, 38 °C | 73% degraded in 60 days | [259] | |
Thermoplastic cellulose acetate | 100 cm2 surface area | 38–40 °C, anaerobic digestion | 37% degraded in 2 weeks | [254] | |
Thermoplastic cellulose acetate with 5 wt.% double hydroxide sorbate filler | 100 cm2 surface area | 38–40 °C, anaerobic digestion | 50% degraded in 2 weeks | [254] | |
Terrestrial biodegradation | PLA | Powder | 25 °C, 60% moisture | 14% degraded in 4 weeks | [260] |
PLA—Sisal Fiber composite | Rigid film, 30 × 30 × 1 mm | Alluvial-type soil, 30% moisture | 10% degraded in 98 days | [261] | |
P3HB | Film discs, 30 mm diameter, 0.035 to 0.045 mm thick | 21 and 28 °C, 50% moisture | After 5 weeks, 60% degraded at 21 °C, 95% degraded at 28 °C | [262] | |
P3HB | Film | 19 to 27 °C, 33% moisture | 82% degraded after 80 days | [263] | |
P(3HB-co-3HV) (12% 3HV) | Film discs, 30 mm diameter, 0.035 to 0.045 mm thick | 21 and 28 °C, 50% moisture | After 5 weeks, 90% degraded at 21 °C, 100% degraded at 28 °C | [262] | |
P(3HB-co-3HV) (8% 3HV) | 10 × 10 × 0.2 mm film | 11 to 30 °C. 17 to 23% moisture | 60% degraded in 112 days | [264] | |
TPS | 10 × 10 × 0.5 mm film | 43% top soil, 43% farm soil, 14% sand, 18 to 22 °C | 23.2 to 26% degraded after 280 days | [265] | |
Freshwater biodegradation | PLA | Rigid film, 50 × 10 × 0.3 mm | 69.5 to 70.5 °C | ~90% degraded at 3 days, ~100% degraded at 7 days | [250] |
PLA | Rigid film, 20 × 30 mm | Freshwater river and freshwater link | ~5% degraded after 1 year in both environments | [266] | |
PHA (Danimer Scientific’s Nodax PHA; P(3-hydroxybutyrate-co-3-hydroxyhexanoate)) | Powder | With activated sludge, 25 °C | ~85% degraded in 50 days | [267] | |
P3HB | Film disc | Freshwater lake, 19 °C | ~96% degraded in 49 days | [268] | |
PBAT | Rigid film, 20 × 30 mm | Freshwater river and freshwater link | River—~95% degraded, lake—~23% degraded after 1 year | [266] | |
PBAT/PLA | Powder | With activated sludge, 25 °C | ~40% degraded in 250 days | [267] | |
Seawater biodegradation | PLA | Flexible bag and rigid bottle, both pulverized | 25 °C | Bag—4.5% degraded, bottle—3.1% degraded, both after 180 days | [269] |
PLA | Film, 50 mm diameter, 0.2 mm thickness | 14 to 22 °C | <1% degraded after 260 days | [270] | |
PHA (P(3HB-co-3HV); Mirel 2200 and 4100) | Film | 25 °C | 45.1% degraded after 180 days | [269] | |
P3HB | Film | 30 °C | 90% degraded after 100 days | [271] | |
P(3HB-co-3HV) (8% 3HV) | Powder | 25 °C | 90% degraded in 210 days | [272] | |
P(3HB-co-3HV) (12% 3HV) | Film | 17 to 20 °C | 60% degraded in 42 days | [273] |
6. Future Perspectives and Challenges
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rothman, R.; Ryan, A.J. The History and Future of Plastics. In Plastic Pollution in the Global Ocean, 1st ed.; Horton, A.A., Ed.; World Scientific Publishing Co.: Hackensack, NJ, USA, 2023; Volume 1, pp. 21–46. [Google Scholar]
- Jaganmohan, M. Annual Production of Plastics Worldwide from 1950 to 2022. Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/#:~:text=The%20worldwide%20production%20of%20plastics,production%20has%20soared%20since%201950s (accessed on 6 March 2024).
- Bibas, R.; Lanzi, E.; Dellink, R.; Mavroeidi, E.; Valriberas, D.O. Global Plastics Outlook: Policy Scenarios to 2060; OECD Publishing: Berlin, Germany, 2022. [Google Scholar]
- Singh, N.B.; Chaudhary, R.G. Industrial solid waste: An overview. In Advanced Materials from Recycled Waste; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–25. [Google Scholar] [CrossRef]
- British Plastics Federation. Plastics: Recycling and Sustainability. Available online: https://www.bpf.co.uk/Sustainability/Plastics_and_Sustainability.aspx#:~:text=Plastics%20provide%20unparalleled%20benefits%20as,reduce%20waste%20and%20saves%20energy (accessed on 6 March 2024).
- Meng, F.; Brandão, M.; Cullen, J.M. Replacing Plastics with Alternatives Is Worse for Greenhouse Gas Emissions in Most Cases. Environ. Sci. Technol. 2024, 58, 2716–2727. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development. Plastic Leakage and Greenhouse Gas Emissions Are Increasing. Available online: https://www.oecd.org/environment/plastics/increased-plastic-leakage-and-greenhouse-gas-emissions.htm (accessed on 6 March 2024).
- Alexiadou, P.; Foskolos, I.; Frantzis, A. Ingestion of macroplastics by odontocetes of the Greek Seas, Eastern Mediterranean: Often deadly! Mar. Pollut. Bull. 2019, 146, 67–75. [Google Scholar] [CrossRef]
- Frias, J.P.G.L.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef]
- Prenner, S.; .Allesch, A.; Staudner, M.; Rexeis, M.; Schwingshackl, M.; Huber-Humer, M.; Part, F. Static modelling of the material flows of micro- and nanoplastic particles caused by the use of vehicle tyres. Environ. Pollut. 2021, 290, 118102. [Google Scholar] [CrossRef]
- Knight, L.J.; Parker-Jurd, F.N.F.; Al-Sid-Cheikh, M.; Thompson, R.C. Tyre wear particles: An abundant yet widely unreported microplastic? Environ. Sci. Pollut. Res. 2020, 27, 18345–18354. [Google Scholar] [CrossRef]
- Kole, P.J.; Löhr, A.J.; Van Belleghem, F.; Ragas, A. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Grigoratos, T.; Mathissen, M.; Quik, J.; Tromp, P.; Gustaffson, M.; Franco, V.; Dilara, P. Contribution of Road Vehicle Tyre Wear to Microplastics and Ambient Air Pollution. Sustainability 2024, 16, 522. [Google Scholar] [CrossRef]
- Garrard, S. Microplastics Discovered in the Body Tissues of Whales, Dolphins and Seals—Sparking Concerns for Human Health Too. The Conversation, 2023. Available online: https://theconversation.com/microplastics-discovered-in-the-body-tissues-of-whales-dolphins-and-seals-sparking-concerns-for-human-health-too-211466 (accessed on 7 March 2024).
- Issac, M.N.; Kandasubramanian, B. Effect of microplastics in water and aquatic systems. Environ. Sci. Pollut. Res. 2021, 28, 19544–19562. [Google Scholar] [CrossRef]
- Trotter, B.; Ramsperger, A.F.R.M.; Raab, P.; Haberstroh, J.; Laforsch, C. Plastic waste interferes with chemical communication in aquatic ecosystems. Sci. Rep. 2019, 9, 5889. [Google Scholar] [CrossRef]
- Wu, X.; Pan, J.; Li, M.; Li, Y.; Bartlam, M.; Wang, Y. Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res. 2019, 165, 114979. [Google Scholar] [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.; Baiocci, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Kopatz, V.; Wen, K.; Kovacs, T.; Keimowitz, A.; Pichler, V.; Widder, J.; Vethaak, A.; Holloczki, O.; Kenner, L. Micro- and Nanoplastics Breach the Blood–Brain Barrier (BBB): Biomolecular Corona’s Role Revealed. Nanomaterials 2023, 13, 1404. [Google Scholar] [CrossRef]
- Danopoulos, E.; Twiddy, M.; West, R.; Rotchell, J.M. A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells. J. Hazard. Mater. 2022, 427, 127861. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Phoneix, V.; Le Roux, G.; Jimenez, P.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Wang, Y.; Okochi, H.; Tani, Y.; Hayami, H.; Minami, Y.; Katsumi, N.; Takeuchi, M.; Sorimachi, A.; Fuji, Y.; Kajino, M.; et al. Airborne hydrophilic microplastics in cloud water at high altitudes and their role in cloud formation. Environ. Chem. Lett. 2023, 21, 3055–3062. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Kang, S.-C.; Gao, T.-G. Microplastics have light-absorbing ability to enhance cryospheric melting. Adv. Clim. Chang. Res. 2022, 13, 455–458. [Google Scholar] [CrossRef]
- Singh, N.B.; Desimone, M.F.; Chaudhary, R.G.; Gurnule, W.B. Management of nanomaterial wastes. In Nanomaterials Recycling; Elsevier: Amsterdam, The Netherlands, 2022; pp. 125–144. [Google Scholar] [CrossRef]
- Thomas, J.; Patil, R.S.; Patil, M.; John, J. Addressing the Sustainability Conundrums and Challenges within the Polymer Value Chain. Sustainability 2023, 15, 15758. [Google Scholar] [CrossRef]
- Ambrose, J. War on Plastic Waste Faces Setback as Cost of Recycled Material Soars. The Guardian, 13 October 2019. Available online: https://www.theguardian.com/environment/2019/oct/13/war-on-plastic-waste-faces-setback-as-cost-of-recycled-material-soars (accessed on 12 March 2024).
- Times, F. Commodities. Financial Times. Available online: https://markets.ft.com/data/commodities/tearsheet/summary?c=Brent+Crude+Oil (accessed on 12 March 2024).
- Revenue, H.M. Increase to Plastic Packaging Tax Rates from 1 April 2024. London, November 2023. Available online: https://www.gov.uk/government/publications/changes-to-plastic-packaging-tax-rates-from-1-april-2024/increase-to-plastic-packaging-tax-rates-from-1-april-2024 (accessed on 12 March 2024).
- Peszko, G. Plastic Taxes: A Guide to New Legislation in Europe. Available online: https://www.internationaltaxreview.com/article/2ba9a65l5p74ycisjwagw/plastic-taxes-a-guide-to-new-legislation-in-europe (accessed on 12 March 2024).
- Plastics Recyclers Europe. Plastics Recycling Industry Figures 2022; Plastics Europe: Brussels, Belgium, 2024; Available online: https://www.plasticsrecyclers.eu/wp-content/uploads/2024/01/Plastics-Recycling-Industry-in-Europe-2022-data.pdf (accessed on 6 March 2024).
- British Plastics Federation, Recycling Roadmap. London, January 2021. Available online: https://www.bpf.co.uk/roadmap.aspx (accessed on 6 March 2024).
- Brown, E.; MacDonald, A.; Allen, S.; Allen, D. The potential for a plastic recycling facility to release microplastic pollution and possible filtration remediation effectiveness. J. Hazard. Mater. Adv. 2023, 10, 100309. [Google Scholar] [CrossRef]
- Apel, C.; Kümmerer, K.; Sudheshwar, A.; Nowack, B.; Som, C.; Colin, C.; Walter, L.; Breukelaar, J.; Meeus, M.; Ildefonso, B.; et al. Safe-and-sustainable-by-design: State of the art approaches and lessons learned from value chain perspectives. Curr. Opin. Green Sustain. Chem. 2024, 45, 100876. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Esmaeili, M.; Pircheraghi, G.; Bagheri, R.; Altstädt, V. Poly(lactic acid)/coplasticized thermoplastic starch blend: Effect of plasticizer migration on rheological and mechanical properties. Polym. Adv. Technol. 2019, 30, 839–851. [Google Scholar] [CrossRef]
- Dang, K.M.; Yoksan, R. Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydr. Polym. 2015, 115, 575–581. [Google Scholar] [CrossRef]
- Pavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Arrieta, M.P. Films Based on Thermoplastic Starch Blended with Pine Resin Derivatives for Food Packaging. Foods 2021, 10, 1171. [Google Scholar] [CrossRef]
- Westlie, A.H.; Quinn, E.C.; Parker, C.R.; Chen, E.Y.-X. Synthetic biodegradable polyhydroxyalkanoates (PHAs): Recent advances and future challenges. Prog. Polym. Sci. 2022, 134, 101608. [Google Scholar] [CrossRef]
- Volant, C.; Balnois, E.; Vignaud, G.; Magueresse, A.; Bruzaud, S. Design of Polyhydroxyalkanoate (PHA) Microbeads with Tunable Functional Properties and High Biodegradability in Seawater. J. Polym. Environ. 2022, 30, 2254–2269. [Google Scholar] [CrossRef]
- Svagan, A.J.; Åkesson, A.; Cárdenas, M.; Bulut, S.; Knudsen, J.C.; Risbo, J.; Placket, D. Transparent Films Based on PLA and Montmorillonite with Tunable Oxygen Barrier Properties. Biomacromolecules 2012, 13, 397–405. [Google Scholar] [CrossRef]
- Darnal, A.; Shahid, Z.; Deshpande, H.; Kim, J.; Muliana, A. Tuning mechanical properties of 3D printed composites with PLA:TPU programmable filaments. Compos. Struct. 2023, 318, 117075. [Google Scholar] [CrossRef]
- Muiruri, J.K.; Yeo, J.C.C.; Loh, X.J.; Chen, G.-Q.; He, C.; Li, Z. Poly(hydroxyalkanoates) (PHAs) based circular materials for a sustainable future. In Circularity of Plastics; Elsevier: Amsterdam, The Netherlands, 2023; pp. 273–303. [Google Scholar] [CrossRef]
- Havstad, M.R. Biodegradable Plastics. In Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 97–130. [Google Scholar]
- Tsuji, H. Poly(Lactic Acid). In Bio-Based Plastics; Kabasci, S., Ed.; Wiley: Hoboken, NJ, USA, 2013; pp. 171–239. [Google Scholar] [CrossRef]
- Rivas, L.F.; Casarin, S.; Nepomuceno, N.; Alencar, M.; Agnelli, J.; Medeiros, E.; Wanderely, N.A.; Oliveira, M.; Medeiros, A.; Santos, A. Reprocessability of PHB in extrusion: ATR-FTIR, tensile tests and thermal studies. Polímeros 2017, 27, 122–128. [Google Scholar] [CrossRef]
- Sun, C.; Wei, S.; Tan, H.; Huang, Y.; Zhang, Y. Progress in upcycling polylactic acid waste as an alternative carbon source: A review. Chem. Eng. J. 2022, 446, 136881. [Google Scholar] [CrossRef]
- McKeown, P.; Jones, M.D. The Chemical Recycling of PLA: A Review. Sustain. Chem. 2020, 1, 1–22. [Google Scholar] [CrossRef]
- Kumar, R.; Sadeghi, K.; Jang, J.; Seo, J. Mechanical, chemical, and bio-recycling of biodegradable plastics: A review. Sci. Total Environ. 2023, 882, 163446. [Google Scholar] [CrossRef]
- Dhaini, A.; Hardouin-Duparc, V.; Alaaeddine, A.; Carpentier, J.-F.; Guillaume, S.M. Recent advances in polyhydroxyalkanoates degradation and chemical recycling. Prog. Polym. Sci. 2024, 149, 101781. [Google Scholar] [CrossRef]
- Piemonte, V.; Gironi, F. Kinetics of Hydrolytic Degradation of PLA. J. Polym. Environ. 2013, 21, 313–318. [Google Scholar] [CrossRef]
- Piemonte, V.; Gironi, F. Lactic Acid Production by Hydrolysis of Poly(Lactic Acid) in Aqueous Solutions: An Experimental and Kinetic Study. J. Polym. Environ. 2013, 21, 275–279. [Google Scholar] [CrossRef]
- Yu, J.; Plackett, D.; Chen, L.X.L. Kinetics and mechanism of the monomeric products from abiotic hydrolysis of poly[(R)-3-hydroxybutyrate] under acidic and alkaline conditions. Polym. Degrad. Stab. 2005, 89, 289–299. [Google Scholar] [CrossRef]
- Ariffin, H.; Nishida, H.; Hassan, M.A.; Shirai, Y. Chemical recycling of polyhydroxyalkanoates as a method towards sustainable development. Biotechnol. J. 2010, 5, 484–492. [Google Scholar] [CrossRef]
- Association, E.B. Processing of Bioplastics in Biogas Production: A Forward-Looking Waste Management Solution. Available online: https://www.europeanbiogas.eu/processing-of-bioplastics-in-biogas-production-a-forward-looking-waste-management-solution/ (accessed on 30 March 2024).
- Cazaudehore, G.; Monlau, F.; Gassie, C.; Lallement, A.; Guyoneaud, R. Active microbial communities during biodegradation of biodegradable plastics by mesophilic and thermophilic anaerobic digestion. J. Hazard. Mater. 2023, 443, 130208. [Google Scholar] [CrossRef]
- Cazaudehore, G.; Guyoneaud, R.; Lallement, A.; Gassie, C.; Monlau, F. Biochemical methane potential and active microbial communities during anaerobic digestion of biodegradable plastics at different inoculum-substrate ratios. J. Environ. Manag. 2022, 324, 116369. [Google Scholar] [CrossRef]
- Bhagwat, G.; Gray, K.; Wilson, S.P.; Muniyasamy, S.; Vincent, S.G.T.; Bush, R.; Palanisami, T. Benchmarking Bioplastics: A Natural Step Towards a Sustainable Future. J. Polym. Environ. 2020, 28, 3055–3075. [Google Scholar] [CrossRef]
- Ansink, E.; Wijk, L.; Zuidmeer, F. No clue about bioplastics. Ecol. Econ. 2022, 191, 107245. [Google Scholar] [CrossRef]
- Govil, T.; Salem, D.R.; Sani, R.K. Bioplastics Production: What Have We Achieved? In Biomolecular Engineering Solutions for Renewable Specialty Chemicals: Microorganisms, Products, and Processes; Krishnaraj, R.N., Sani, R.K., Eds.; John Wiley & Sons: London, UK, 2021; pp. 287–309. [Google Scholar]
- Rahardiyan, D.; Moko, E.M.; Tan, J.S.; Lee, C.K. Thermoplastic starch (TPS) bioplastic, the green solution for single-use petroleum plastic food packaging—A review. Enzym. Microb. Technol. 2023, 168, 110260. [Google Scholar] [CrossRef]
- International Organisation for Standardisation. ISO 16620-1:2015(en); Plastics—Bio-Based Content. Available online: https://www.iso.org/standard/63766.html#:~:text=ISO%2016620%2D1%3A2015%20specifies,present%20in%20the%20plastic%20products (accessed on 30 May 2024).
- European Bioplastics. Industry Standards & Labels; European Bioplastics: Berlin, Germany, 2023. [Google Scholar]
- Beta Analytic Testing Laboratory. The World of Bioplastics. Available online: https://www.betalabservices.com/biobased/bioplastics.html#:~:text=D6866%20for%20Bioplastics-,The%20exact%20percentage%20in%20bioplastics%20that%20came%20from%20renewable%20sources,industrial%20application%20of%20radiocarbon%20dating (accessed on 30 May 2024).
- Mukherjee, A.; Koller, M. Microbial PolyHydroxyAlkanoate (PHA) Biopolymers—Intrinsically Natural. Bioengineering 2023, 10, 855. [Google Scholar] [CrossRef]
- Makarios-Laham, I.; Lee, T.-C. Biodegradability of chitin- and chitosan-containing films in soil environment. J. Environ. Polym. Degrad. 1995, 3, 31–36. [Google Scholar] [CrossRef]
- Bulatović, V.O.; Mandić, V.; Grgić, D.K.; Ivančić, A. Biodegradable Polymer Blends Based on Thermoplastic Starch. J. Polym. Environ. 2021, 29, 492–508. [Google Scholar] [CrossRef]
- Benavides, P.T.; Lee, U.; Zarè-Mehrjerdi, O. Life cycle greenhouse gas emissions and energy use of polylactic acid, bio-derived polyethylene, and fossil-derived polyethylene. J. Clean. Prod. 2020, 277, 124010. [Google Scholar] [CrossRef]
- Singhvi, M.S.; Zinjarde, S.S.; Gokhale, D.V. Polylactic acid: Synthesis and biomedical applications. J. Appl. Microbiol. 2019, 127, 1612–1626. [Google Scholar] [CrossRef]
- Sharada, D.; Naresh, U.; Shiva, K.V.; Kumar, R.J. Drop-in plastics. In Advanced Catalysis for Drop-in Chemicals; Sudarsanam, P., Li, H., Eds.; Elsevier: London, UK, 2022; pp. 31–46. [Google Scholar] [CrossRef]
- Bioplastics, E. Labels for Bioplastics. Available online: https://www.european-bioplastics.org/bioplastics/standards/labels/ (accessed on 10 April 2024).
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Siracusa, V.; Blanco, I. Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers 2020, 12, 1641. [Google Scholar] [CrossRef]
- Burelo, M.; Hernández-Varela, J.D.; Medina, D.I.; Treviño-Quintanilla, C.D. Recent developments in bio-based polyethylene: Degradation studies, waste management and recycling. Heliyon 2023, 9, e21374. [Google Scholar] [CrossRef]
- Alonso-López, O.; López-Ibáñez, S.; Beiras, R. Assessment of Toxicity and Biodegradability of Poly(vinyl alcohol)-Based Materials in Marine Water. Polymers 2021, 13, 3742–3751. [Google Scholar] [CrossRef]
- European Plastics. Plastics—The Facts 2022; European Plastics: Brussels, Belgium, 2022. [Google Scholar]
- Rahman, M.H.; Bhoi, P.R. An overview of non-biodegradable bioplastics. J. Clean. Prod. 2021, 294, 126218. [Google Scholar] [CrossRef]
- Koller, M.; Mukherjee, A. A New Wave of Industrialization of PHA Biopolyesters. Bioengineering 2022, 9, 74. [Google Scholar] [CrossRef]
- Wotschak, L.; Henke, J. ISCC PLUS Certification for the Circular Economy and Bioeconomy. TER Plastic News. Available online: https://www.iscc-system.org/news/iscc-plus-certification-for-the-circular-economy-and-bioeconomy/ (accessed on 30 May 2024).
- Jian, J.; Xiangbin, Z.; Xianbo, H. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Adv. Ind. Eng. Polym. Res. 2020, 3, 19–26. [Google Scholar] [CrossRef]
- Bioplastics, E. Bioplastics Market Development Update 2023. Available online: https://www.european-bioplastics.org/market/ (accessed on 10 April 2024).
- Geyer, R.; Kuczenski, B.; Zink, T.; Henderson, A. Common Misconceptions about Recycling. J. Ind. Ecol. 2015, 20, 1010–1017. [Google Scholar] [CrossRef]
- Zhao, X.; Boruah, B.; Chin, K.F.; Đokić, M.; Modak, J.M.; Soo, H.S. Upcycling to Sustainably Reuse Plastics. Adv. Mater. 2022, 34, 2100843. [Google Scholar] [CrossRef]
- Helm, L.T.; Murphy, E.L.; McGivern, A.; Borrelle, S.B. Impacts of plastic waste management strategies. Environ. Rev. 2023, 31, 45–65. [Google Scholar] [CrossRef]
- Farrelly, T.A.; Borrelle, S.B.; Fuller, S. The Strengths and Weaknesses of Pacific Islands Plastic Pollution Policy Frameworks. Sustainability 2021, 13, 1252. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Principles of Green Chemistry. Green Chem. Theory Pract. 1998, 29, 14821–14842. [Google Scholar]
- Anastas, P.T.; Heine, L.G.; Williamson, T.C. Green Engineering: Introduction. Am. Chem. Soc. 2001, 766. [Google Scholar]
- UN Environment Programme. Our Planet Is Choking on Plastic. Available online: https://www.unep.org/interactives/beat-plastic-pollution/ (accessed on 13 March 2024).
- Yates, M.R.; Barlow, C.Y. Life cycle assessments of biodegradable, commercial biopolymers—A critical review. Resour. Conserv. Recycl. 2013, 78, 54–66. [Google Scholar] [CrossRef]
- Schyns, Z.O.G.; Shaver, M.P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid Commun. 2021, 42, e2000415. [Google Scholar] [CrossRef]
- Ekins, P.; Domenech, T.; Drummond, P.; Bleischwitz, R.; Hughes, N.; Lotti, L. The Circular Economy: What, Why, How and Where. 2019. Available online: https://www.oecd.org/cfe/regionaldevelopment/Ekins-2019-Circular-Economy-What-Why-How-Where.pdf (accessed on 14 March 2024).
- Pearce, D.W.; Turner, R.K. Economics of Natural Resources and the Environment; John Hopkins University Press: Baltimore, MD, USA, 1990. [Google Scholar]
- Leontief, W. The economy as a circular flow. Struct. Chang. Econ. Dyn. 1991, 2, 181–212. [Google Scholar] [CrossRef]
- Samuelson, P.A. Leontief’s ‘the economy as a circular flow’: An introduction. Struct. Chang. Econ. Dyn. 1991, 2, 177–179. [Google Scholar] [CrossRef]
- Greyson, J. An economic instrument for zero waste, economic growth and sustainability. J. Clean. Prod. 2007, 15, 1382–1390. [Google Scholar] [CrossRef]
- Ellen McArthur Foundation. Towards the Circular Economy Vol. 1: An Economic and Business Rationale for an Accelerated Transition. UK, 2013. Available online: https://www.ellenmacarthurfoundation.org/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an (accessed on 6 March 2024).
- European Commission. Circular Economy Action Plan. Brussels, March 2020. Available online: https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en (accessed on 6 March 2024).
- Blum, N.U.; Haupt, M.; Bening, C.R. Why ‘Circular’ doesn’t always mean ‘Sustainable’. Resour. Conserv. Recycl. 2020, 162, 105042. [Google Scholar] [CrossRef]
- Suarez, A.; Ford, E.; Venditti, R.; Kelley, S.; Saloni, D.; Gonzalez, R. Rethinking the use of bio-based plastics to accelerate the decarbonization of our society. Resour. Conserv. Recycl. 2022, 186, 106593. [Google Scholar] [CrossRef]
- Hao, L.; Ren, S.; Li, J.; Wang, X.; Li, L.; Hao, X. Feasibility of biodegradable material polylactic acid as a substitute for polypropylene for disposable medical masks production verified by life cycle assessment. J. Clean. Prod. 2024, 448, 141492. [Google Scholar] [CrossRef]
- Nhu, T.T.; Boone, L.; Guillard, V.; Chatellard, L.; Reis, M.; Matos, M.; Dewulf, J. Environmental sustainability assessment of biodegradable bio-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from agro-residues: Production and end-of-life scenarios. J. Environ. Manag. 2024, 356, 120522. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Sun, Y.; Wang, Z.; Leeke, G.; Moretti, C.; Cheng, Z.; Wang, Y.; Li, N.; Mu, L.; et al. Replacing Traditional Plastics with Biodegradable Plastics: Impact on Carbon Emissions. Engineering 2023, 32, 152–162. [Google Scholar] [CrossRef]
- Park, D.; Lee, H.; Won, W. Unveiling the environmental gains of biodegradable plastics in the waste treatment Phase: A Cradle-to-Grave life cycle assessment. Chem. Eng. J. 2024, 487, 150540. [Google Scholar] [CrossRef]
- Hottle, T.A.; Bilec, M.M.; Landis, A.E. Biopolymer production and end of life comparisons using life cycle assessment. Resour. Conserv. Recycl. 2017, 122, 295–306. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 14044:2006(en); Environmental Management—Life Cycle Assessment—Requirements and Guidelines. Available online: https://www.iso.org/standard/38498.html (accessed on 3 June 2024).
- Koller, M.; Sandholzer, D.; Salerno, A.; Braunegg, G.; Narodoslawsky, M. Biopolymer from industrial residues: Life cycle assessment of poly(hydroxyalkanoates) from whey. Resour. Conserv. Recycl. 2013, 73, 64–71. [Google Scholar] [CrossRef]
- Walker, S.; Rothman, R. Life cycle assessment of bio-based and fossil-based plastic: A review. J. Clean. Prod. 2020, 261, 121158. [Google Scholar] [CrossRef]
- Schwarz, A.E.; Ligthart, T.N.; Bizarro, D.G.; De Wild, P.; Vreugdenhil, B.; van Harmelen, T. Plastic recycling in a circular economy; determining environmental performance through an LCA matrix model approach. Waste Manag. 2021, 121, 331–342. [Google Scholar] [CrossRef]
- Bishop, G.; Styles, D.; Lens, P.N.L. Environmental performance comparison of bioplastics and petrochemical plastics: A review of life cycle assessment (LCA) methodological decisions. Resour. Conserv. Recycl. 2021, 168, 105451. [Google Scholar] [CrossRef]
- Spierling, S.; Knüpffer, E.; Behnsen, H.; Mudersbach, M.; Krieg, H.; Springer, S.; Albrecht, S.; Hermann, C.; Endres, J.H. Bio-based plastics—A review of environmental, social and economic impact assessments. J. Clean. Prod. 2018, 185, 476–491. [Google Scholar] [CrossRef]
- Narodoslawsky, M. LCA of PHA Production—Identifying the Ecological Potential of Bio-plastic. Chem. Biochem. Eng. Q. 2015, 29, 299–305. [Google Scholar] [CrossRef]
- Shahzad, K.; Kettl, K.-H.; Titz, M.; Koller, M.; Schnitzer, H.; Narodoslawsky, M. Comparison of ecological footprint for biobased PHA production from animal residues utilizing different energy resources. Clean Technol. Environ. Policy 2013, 15, 525–536. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Tsiropoulos, I.; Faaij, A.P.C.; Lundquist, L.; Schenker, U.; Briois, J.F.; Patel, M.K. Life cycle impact assessment of bio-based plastics from sugarcane ethanol. J. Clean. Prod. 2015, 90, 114–127. [Google Scholar] [CrossRef]
- Mouhoubi, R.; Lasschuijt, M.; Carrasco, S.R.; Gojzewski, H.; Wurm, F.R. End-of-life biodegradation? how to assess the composting of polyesters in the lab and the field. Waste Manag. 2022, 154, 36–48. [Google Scholar] [CrossRef]
- Vanapalli, K.R.; Samal, B.; Dubey, B.K.; Bhattacharya, J. Emissions and Environmental Burdens Associated with Plastic Solid Waste Management. In Plastics to Energy, 1st ed.; Al-Salem, S.M., Ed.; Elsevier: New York, NY, USA, 2019; pp. 313–342. [Google Scholar] [CrossRef]
- Brizga, J.; Hubacek, K.; Feng, K. The Unintended Side Effects of Bioplastics: Carbon, Land, and Water Footprints. One Earth 2020, 3, 45–53. [Google Scholar] [CrossRef]
- Bishop, G.; Styles, D.; Lens, P.N.L. Land-use change and valorisation of feedstock side-streams determine the climate mitigation potential of bioplastics. Resour. Conserv. Recycl. 2022, 180, 106185. [Google Scholar] [CrossRef]
- Atiwesh, G.; Mikhael, A.; Parrish, C.C.; Banoub, J.; Le, T.-A.T. Environmental impact of bioplastic use: A review. Heliyon 2021, 7, e07918. [Google Scholar] [CrossRef]
- Benoit, C.; Mazijn, B. Guidelines for Social Life Cycle Assessment of Products; United Nations Environment Programme and Society of Environmental Toxicology and Chemistry: Nairobi, Kenya, 2009. [Google Scholar]
- Ciroth, A.; Hunkeler, D.; Huppes, G.; Klopffer, W.; Rudenauer, I.; Steen, B.; Swarr, T. Environmental Life Cycle Costing; CRC Press: New York, NY, USA, 2008; Volume 1. [Google Scholar]
- International Organization for Standardization. ISO/DIS 14075(en); Environmental Management—Principles and Framework for Social Life Cycle Assessment. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:14075:dis:ed-1:v1:en (accessed on 9 April 2024).
- Swarr, T.E.; Hunkeler, D.; Klöpffer, W.; Pesonen, H.-L.; Ciroth, A.; Brent, A.C.; Pagan, R. Environmental life-cycle costing: A code of practice. Int. J. Life Cycle Assess. 2011, 16, 389–391. [Google Scholar] [CrossRef]
- Norris, C.B. Data for social LCA. Int. J. Life Cycle Assess. 2014, 19, 261–265. [Google Scholar] [CrossRef]
- Arcese, G.; Lucchetti, M.C.; Massa, I.; Valente, C. State of the art in S-LCA: Integrating literature review and automatic text analysis. Int. J. Life Cycle Assess. 2018, 23, 394–405. [Google Scholar] [CrossRef]
- Ren, J.; Manzardo, A.; Mazzi, A.; Zuliani, F.; Scipioni, A. Prioritization of bioethanol production pathways in China based on life cycle sustainability assessment and multicriteria decision-making. Int. J. Life Cycle Assess. 2015, 20, 842–853. [Google Scholar] [CrossRef]
- Álvarez-Chávez, C.R.; Edwards, S.; Moure-Eraso, R.; Geiser, K. Sustainability of bio-based plastics: General comparative analysis and recommendations for improvement. J. Clean. Prod. 2012, 23, 47–56. [Google Scholar] [CrossRef]
- Manik, Y.; Leahy, J.; Halog, A. Social life cycle assessment of palm oil biodiesel: A case study in Jambi Province of Indonesia. Int. J. Life Cycle Assess. 2013, 18, 1386–1392. [Google Scholar] [CrossRef]
- German, L.; Schoneveld, G.C.; Pacheco, P. Local Social and Environmental Impacts of Biofuels: Global Comparative Assessment and Implications for Governance. Ecol. Soc. 2011, 16. [Google Scholar] [CrossRef]
- Falcone, P.M.; Imbert, E. Social life cycle approach as a tool for promoting the market uptake of bio-based products from a consumer perspective. Sustainability 2018, 10, 1031. [Google Scholar] [CrossRef]
- Ekener-Petersen, E.; Hoglund, J.; Finnveden, G. Social and Socioeconomic Impacts from Vehicle Fuels; f3 The Swedish Knowledge Centre for Renewable Transportation Fuels: Göteborg, Sweden, 2013. [Google Scholar]
- Lindner, J.P.; Gehring, F.; Albrecht, S.; Krieg, H.; Leistner, P. Life Cycle Assessment of Recycling Processes During Development. Chem. Ing. Tech. 2016, 88, 409–416. [Google Scholar] [CrossRef]
- Rajendran, N.; Han, J. Techno-economic analysis and life cycle assessment of poly (butylene succinate) production using food waste. Waste Manag. 2023, 156, 168–176. [Google Scholar] [CrossRef]
- Prieto, C.V.G.; Ramos, F.D.; Estrada, V.; Villar, M.A.; Diaz, M.S. Optimization of an integrated algae-based biorefinery for the production of biodiesel, astaxanthin and PHB. Energy 2017, 139, 1159–1172. [Google Scholar] [CrossRef]
- Brown, T.R.; Zhang, Y.; Hu, G.; Brown, R.C. Techno-economic analysis of biobased chemicals production via integrated catalytic processing. Biofuels Bioprod. Biorefining 2012, 6, 73–87. [Google Scholar] [CrossRef]
- Manandhar, A.; Shah, A. Techno-Economic Analysis of Bio-Based Lactic Acid Production Utilizing Corn Grain as Feedstock. Processes 2020, 8, 199–210. [Google Scholar] [CrossRef]
- Ioannidou, S.M.; Ladakis, D.; Moutousidi, E.; Dheskali, E.; Kookos, I.K.; Câmara-Salim, I.; Moreira, M.T.; Koutinas, A. Techno-economic risk assessment, life cycle analysis and life cycle costing for poly(butylene succinate) and poly(lactic acid) production using renewable resources. Sci. Total Environ. 2022, 806, 150594. [Google Scholar] [CrossRef]
- Patria, R.D.; Rehman, S.; Yuen, C.-B.; Lee, D.-J.; Vuppaladadiyam, A.K.; Leu, S.-Y. Energy-environment-economic (3E) hub for sustainable plastic management—Upgraded recycling, chemical valorization, and bioplastics. Appl. Energy 2024, 357, 122543. [Google Scholar] [CrossRef]
- Restianti, Y.Y.; Gheewala, S.H. Environmental and Life Cycle Cost Assessment of Cassava Ethanol in Indonesia. J. Sustain. Energy Environ. 2012, 3, 1–6. [Google Scholar]
- Filiciotto, L.; Rothenberg, G. Biodegradable Plastics: Standards, Policies, and Impacts. ChemSusChem 2021, 14, 56–72. [Google Scholar] [CrossRef]
- United Nations Development Programme. Background on the Goals. Available online: https://www.undp.org/sdg-accelerator/background-goals#:~:text=The%20Sustainable%20Development%20Goals%20(SDGs,Rio%20de%20Janeiro%20in%202012 (accessed on 10 April 2024).
- Koller, M.; Mukherjee, A. Polyhydroxyalkanoate (PHA) Bio-polyesters—Circular Materials for Sustainable Development and Growth. Chem. Biochem. Eng. Q. 2023, 36, 273–293. [Google Scholar] [CrossRef]
- United Nations Industrial Development Organisation. Addressing the Challenge of Marine Plastic Litter Using Circular Economy Methods; United Nations Industrial Development Organisation: Vienna, Austria, 2019. [Google Scholar]
- Basel Convention. Technical Guidelines for the Identification and Environmentally Sound Management of Plastic Wastes and for Their Disposal: Matters Related to Work Program. 2020. Available online: https://www.basel.int/Implementation/Plasticwaste/Technicalguidelines/Overview/tabid/7992/Default.aspx (accessed on 3 June 2024).
- United Nations Environment Programme. Third Session of Negotiations on an International Plastics Treaty Advance in Nairobi. Available online: https://www.unep.org/news-and-stories/press-release/third-session-negotiations-international-plastics-treaty-advance (accessed on 10 April 2024).
- Forum, W.E.; Foundation, E.M.; McKinsey & Company. The New Plastics Economy—Rethinking the Future of Plastics. 2016. Available online: https://www.ellenmacarthurfoundation.org/publications (accessed on 10 April 2024).
- The European Parliament. Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the impact of certain plastic products on the environment. Off. J. Eur. Union 2019. [Google Scholar]
- European Commission. Commission Delegated Regulation (EU) 2020/2174. Off. J. Eur. Union 1–9 (Eur. Comm.) 2020. [Google Scholar]
- European Council, E. EUCO 10/20 Conclusions of the Meeting of the European Council (17, 18, 19, 20 and 21 July 2020). July 2020. Available online: https://www.consilium.europa.eu/media/45136/210720-euco-final-conclusions-de.pdf (accessed on 6 March 2024).
- European Commission. Biobased, Biodegradable and Compostable Plastics. The EU Policy Framework on Biobased, Biodegradable and Compostable Plastics. Brussels, November 2022. Available online: https://environment.ec.europa.eu/topics/plastics/biobased-biodegradable-and-compostable-plastics_en (accessed on 6 March 2024).
- Shah, K.U.; Gangadeen, I. Integrating bioplastics into the US plastics supply chain: Towards a policy research agenda for the bioplastic transition. Front. Environ. Sci. 2023, 11, 1245846. [Google Scholar] [CrossRef]
- The White House Office of Science and Technology Policy. Bold Goals for U.S. Biotechnology and Biomanufacturing: Harnessing Research and Development to Further Societal Goals. Washington, DC, USA, March 2023. Available online: https://www.whitehouse.gov/wp-content/uploads/2023/03/Bold-Goals-for-U.S.-Biotechnology-and-Biomanufacturing-Harnessing-Research-and-Development-To-Further-Societal-Goals-FINAL.pdf (accessed on 6 March 2024).
- Lowenthal, A.S. Break Free from Plastic Pollution Act. 116th US Congress; US Congress: Washington, DC, USA, 2020; pp. 1–127. [Google Scholar]
- Sicotte, D.M. From cheap ethane to a plastic planet: Regulating an industrial global production network. Energy Res. Soc. Sci. 2020, 66, 101479. [Google Scholar] [CrossRef]
- Board, T.T.E. Editorial: China is putting the U.S. to shame in the fight against plastic trash. Los Angeles Times, 27 January 2020. [Google Scholar]
- Yamada, S.; Fukumoto, Y. China aims to go as big in bioplastics as it did in solar panels. Nikkei Asia, 13 February 2021. [Google Scholar]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- ASTM International. ASTM D7611/D7611M-20; Standard Practice for Coding Plastic Manufactured Articles for Resin Identification. Available online: https://compass.astm.org/document/?contentCode=ASTM%7CD7611_D7611M-20%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm.org&fromLogin=true (accessed on 3 June 2024).
- Ding, Q.; Zhu, H. The Key to Solving Plastic Packaging Wastes: Design for Recycling and Recycling Technology. Polymers 2023, 15, 1485. [Google Scholar] [CrossRef]
- Kabir, E.; Kaur, R.; Lee, J.; Kim, K.-H.; Kwon, E.E. Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. J. Clean. Prod. 2020, 258, 120536. [Google Scholar] [CrossRef]
- Costa, A.; Encarnação, T.; Tavares, R.; Bom, T.T.; Mateus, A. Bioplastics: Innovation for Green Transition. Polymers 2023, 15, 517. [Google Scholar] [CrossRef]
- Niaounakis, M. Recycling of biopolymers—The patent perspective. Eur. Polym. J. 2019, 114, 464–475. [Google Scholar] [CrossRef]
- Gundupalli, S.P.; Hait, S.; Thakur, A. A review on automated sorting of source-separated municipal solid waste for recycling. Waste Manag. 2017, 60, 56–74. [Google Scholar] [CrossRef]
- Smulian, M. Bollegraaf and GREYPARROT Vow to ‘Transform’ Waste Management. Available online: https://www.mrw.co.uk/news/bollegraaf-and-greyparrot-vow-to-transform-waste-management-07-02-2024/ (accessed on 10 April 2024).
- de Mello Soares, C.T.; Ek, M.; Östmark, E.; Gällstedt, M.; Karlsson, S. Recycling of multi-material multilayer plastic packaging: Current trends and future scenarios. Resour. Conserv. Recycl. 2022, 176, 105905. [Google Scholar] [CrossRef]
- Watkins, E.; Gionfra, S.; Schweitzer, J.-P.; Pantzar, M.; Janssens, C.; Brink, P.T. EPR in the EU Plastics Strategy and the Circular Economy: A Focus on Plastic Packaging; Institute for European Environmental Policy: Brussels, Belgium, 2017. [Google Scholar]
- Gu, F.; Guo, J.; Zhang, W.; Summers, P.A.; Hall, P. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study. Sci. Total Environ. 2017, 601–602, 1192–1207. [Google Scholar] [CrossRef]
- Fredi, G.; Dorigato, A. Recycling of bioplastic waste: A review. Adv. Ind. Eng. Polym. Res. 2021, 4, 159–177. [Google Scholar] [CrossRef]
- Shen, L.; Worrell, E. Plastic Recycling. In Handbook of Recycling: State-of-the-Art for Practitioners, Analysts, and Scientists; Worrell, E., Reuter, M.A., Eds.; Elsevier: Oxford, UK, 2014; pp. 179–190. [Google Scholar]
- Shen, L.; Worrell, E.; Patel, M.K. Open-loop recycling: A LCA case study of PET bottle-to-fibre recycling. Resour. Conserv. Recycl. 2010, 55, 34–52. [Google Scholar] [CrossRef]
- Lamberti, F.M.; Román-Ramírez, L.A.; Wood, J. Recycling of Bioplastics: Routes and Benefits. J. Polym. Environ. 2020, 28, 2551–2571. [Google Scholar] [CrossRef]
- Vu, D.H.; Åkesson, D.; Taherzadeh, M.J.; Ferreira, J.A. Recycling strategies for polyhydroxyalkanoate-based waste materials: An overview. Bioresour. Technol. 2020, 298, 122393. [Google Scholar] [CrossRef]
- Ramos-Hernández, T.; Robledo-Ortíz, J.R.; González-López, M.E.; del Campo, A.S.M.; González-Núñez, R.; Rodrigue, D.; Pérez Fonseca, A.A. Mechanical recycling of PLA: Effect of weathering, extrusion cycles, and chain extender. J. Appl. Polym. Sci. 2023, 140, e53759. [Google Scholar] [CrossRef]
- de Andrade, M.F.C.; Fonseca, G.; Morales, A.R.; Mei, L.H.I. Mechanical recycling simulation of polylactide using a chain extender. Adv. Polym. Technol. 2018, 37, 2053–2060. [Google Scholar] [CrossRef]
- Beltrán, F.R.; Infante, C.; de la Orden, M.U.; Urreaga, J.M. Mechanical recycling of poly(lactic acid): Evaluation of a chain extender and a peroxide as additives for upgrading the recycled plastic. J. Clean. Prod. 2019, 219, 46–56. [Google Scholar] [CrossRef]
- Zaverl, M.; Seydibeyoğlu, M.Ö.; Misra, M.; Mohanty, A. Studies on recyclability of polyhydroxybutyrate-valerate bioplastic: Multiple melt processing and performance evaluations. J. Appl. Polym. Sci. 2012, 125, E324–E331. [Google Scholar] [CrossRef]
- Zembouai, I.; Bruzaud, S.; Kaci, M.; Benhamida, A.; Corre, Y.-M.; Grohens, Y. Mechanical Recycling of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Polylactide Based Blends. J. Polym. Environ. 2014, 22, 449–459. [Google Scholar] [CrossRef]
- Niaounakis, M. Recycling. In Biopolymers: Processing and Products; William Andrew Publishing: Oxford, UK, 2015; pp. 481–530. [Google Scholar]
- Dogu, O.; Pelucchi, M.; Van de Vijver, R.; Van Steenberge, P.H.M.; D’hooge, D.R.; Cuoci, A.; Mehl, M.; Frassoldati, A.; Faravelli, T.; Van Geem, K. The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: State-of-the-art, challenges, and future directions. Prog. Energy Combust. Sci. 2021, 84, 100901. [Google Scholar] [CrossRef]
- Kaminsky, W. Chemical recycling of plastics by fluidized bed pyrolysis. Fuel Commun. 2021, 8, 100023. [Google Scholar] [CrossRef]
- Company, D.C. Scaling up Circular Polymers. Available online: https://engage.dow.com/ThePulse2_AdvancedRecycling?elqTrackId=b25f7cf775cc4d979dd072793d010356&elq=00000000000000000000000000000000&elqaid=11427&elqat=2&elqCampaignId=#:~:text=We’re%20expanding%20our%20initial,plastic%20at%20Dow’s%20Terneuzen%20site (accessed on 11 April 2024).
- Energy, P. A Global Solution. Available online: https://plasticenergy.com/about/ (accessed on 11 April 2024).
- Industries, K. Pioneering the Largest Waste Plastic to Oil Recovery and CHP Plant Worldwide. Available online: https://kleanindustries.com/resource-recovery-projects/plastic-pyrolysis-recycling/spr-japan/ (accessed on 11 April 2024).
- Dai, L.; Zhou, N.; Lv, Y.; Cheng, Y.; Wang, Y.; Liu, Y.; Cobb, K.; Chen, P.; Lei, H.; Ruan, R. Pyrolysis technology for plastic waste recycling: A state-of-the-art review. Prog. Energy Combust. Sci. 2022, 93, 101021. [Google Scholar] [CrossRef]
- Qureshi, M.S.; Oasmaa, A.; Pinkola, H.; Deviatkin, I.; Tenhunen, A.; Mannila, J.; Minkkinen, H.; Pohjakallio, M.; Laine-Ylijoki, J. Pyrolysis of plastic waste: Opportunities and challenges. J. Anal. Appl. Pyrolysis 2020, 152, 104804. [Google Scholar] [CrossRef]
- Sharuddin, S.D.A.; Abnisa, F.; Daud, W.M.A.W.; Aroua, M.K. A review on pyrolysis of plastic wastes. Energy Conserv. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Papari, S.; Bamdad, H.; Berruti, F. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review. Materials 2021, 14, 2586–2618. [Google Scholar] [CrossRef]
- Yansaneh, O.Y.; Zein, S.H. Recent Advances on Waste Plastic Thermal Pyrolysis: A Critical Overview. Processes 2022, 10, 332–366. [Google Scholar] [CrossRef]
- Fan, Y.; Nishida, H.; Mori, T.; Shirai, Y.; Endo, T. Thermal degradation of poly(l-lactide): Effect of alkali earth metal oxides for selective l,l-lactide formation. Polymer 2004, 45, 1197–1205. [Google Scholar] [CrossRef]
- Viretto, A.; Sonnier, R.; Taguet, A.; Otazaghine, B.; Ferry, L.; Lopez-Cuesta, J.M.; Lagrève, C. Thermal degradation of polyesters filled with magnesium dihydroxide and magnesium oxide. Fire Mater. 2016, 40, 445–463. [Google Scholar] [CrossRef]
- Noda, M.; Okuyama, H. Thermal Catalytic Depolymerization of Poly(L-Lactic Acid) Oligomer into LL-Lactide: Effects of Al, Ti, Zn and Zr Compounds as Catalysts. Chem. Pharm. Bull. 1999, 47, 467–471. [Google Scholar] [CrossRef]
- Santhoshkumar, A.; Anand, R. Microwave-assisted fast pyrolysis of hazardous waste engine oil into green fuels. In Advances in Eco-Fuels for a Sustainable Environment; Azad, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 119–155. [Google Scholar] [CrossRef]
- Undri, A.; Rosi, L.; Frediani, M.; Frediani, P. Conversion of poly(lactic acid) to lactide via microwave assisted pyrolysis. J. Anal. Appl. Pyrolysis 2014, 110, 55–65. [Google Scholar] [CrossRef]
- Ramier, J.; Grande, D.; Langlois, V.; Renard, E. Toward the controlled production of oligoesters by microwave-assisted degradation of poly(3-hydroxyalkanoate)s. Polym. Degrad. Stab. 2012, 97, 322–328. [Google Scholar] [CrossRef]
- Elhami, V.; Neuendorf, L.M.; Kock, T.; Kockmann, N.; Schuur, B. Separation of Crotonic Acid and 2-Pentenoic Acid Obtained by Pyrolysis of Bio-Based Polyhydroxyalkanoates Using a Spinning Band Distillation Column. ACS Sustain. Chem. Eng. 2023, 11, 4699–4706. [Google Scholar] [CrossRef]
- Kim, K.J.; Doi, Y.; Abe, H. Effect of metal compounds on thermal degradation behavior of aliphatic poly(hydroxyalkanoic acid)s. Polym. Degrad. Stab. 2008, 93, 776–785. [Google Scholar] [CrossRef]
- Babaei, M.; Jalilian, M.; Shahbaz, K. Chemical recycling of Polyethylene terephthalate: A mini-review. J. Environ. Chem. Eng. 2024, 12, 112507. [Google Scholar] [CrossRef]
- Fehér, Z.; Kiss, J.; Kisszékelyi, P.; Molnár, J.; Huszthy, P.; Kárpáti, L.; Kupai, J. Optimisation of PET glycolysis by applying recyclable heterogeneous organocatalysts. Green Chem. 2022, 24, 8447–8459. [Google Scholar] [CrossRef]
- Yagihashi, M.; Funazukuri, T. Recovery of Lactic Acid from Poly(lactic acid) under Hydrothermal Conditions of Dilute Aqueous Sodium Hydroxide Solution. Ind. Eng. Chem. Res. 2010, 49, 1247–1251. [Google Scholar] [CrossRef]
- Miller, N. Recycling PHA for Second life (RePHASe). Birmingham Plastics Network Research Spotlight. Available online: https://www.birmingham.ac.uk/research/plastics/spotlights/recycling-pha-for-second-life (accessed on 12 April 2024).
- Song, X.; Wang, H.; Yang, X.; Liu, F.; Yu, S.; Liu, S. Hydrolysis of poly(lactic acid) into calcium lactate using ionic liquid [Bmim][OAc] for chemical recycling. Polym. Degrad. Stab. 2014, 110, 65–70. [Google Scholar] [CrossRef]
- Li, Y.; Strathmann, T.J. Kinetics and mechanism for hydrothermal conversion of polyhydroxybutyrate (PHB) for wastewater valorization. Green Chem. 2019, 21, 5586–5597. [Google Scholar] [CrossRef]
- Piemonte, V.; Sabatini, S.; Gironi, F. Chemical Recycling of PLA: A Great Opportunity Towards the Sustainable Development? J. Polym. Environ. 2013, 21, 640–647. [Google Scholar] [CrossRef]
- Lamberti, F.; Roma, L.; Mckeown, P.; Jones, M.; Wood, J. Kinetics of Alkyl Lactate Formation from the Alcoholysis of Poly(Lactic Acid). Processes 2020, 8, 738. [Google Scholar] [CrossRef]
- Román-Ramírez, L.A.; Mckeown, P.; Jones, M.D.; Wood, J. Poly(lactic acid) Degradation into Methyl Lactate Catalyzed by a Well-Defined Zn(II) Complex. ACS Catal 2019, 9, 409–416. [Google Scholar] [CrossRef]
- English, L.E.; Jones, M.D.; Liptrot, D.J. N-Heterocyclic Phosphines as Precatalysts for the Highly Selective Degradation of Poly(lactic acid). ChemCatChem 2022, 14, e202101904. [Google Scholar] [CrossRef]
- Petrus, R.; Bykowski, D.; Sobota, P. Solvothermal Alcoholysis Routes for Recycling Polylactide Waste as Lactic Acid Esters. ACS Catal. 2016, 6, 5222–5235. [Google Scholar] [CrossRef]
- Jašek, V.; Fučík, J.; Ivanova, L.; Veseley, D.; Figala, S.; Mravcova, L.; Sedlacek, P.; Krajčovi, J.; Prikryl, R. High-Pressure Depolymerization of Poly(lactic acid) (PLA) and Poly(3-hydroxybutyrate) (PHB) Using Bio-Based Solvents: A Way to Produce Alkyl Esters Which Can Be Modified to Polymerizable Monomers. Polymers 2022, 14, 5236–5268. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, R.; Wang, Z.; Deng, Y.; Chen, G.-Q. Application of (R)-3-Hydroxyalkanoate Methyl Esters Derived from Microbial Polyhydroxyalkanoates as Novel Biofuels. Biomacromolecules 2009, 10, 707–711. [Google Scholar] [CrossRef]
- Yang, X.; Odelius, K.; Hakkarainen, M. Microwave-Assisted Reaction in Green Solvents Recycles PHB to Functional Chemicals. ACS Sustain. Chem. Eng. 2014, 2, 2198–2203. [Google Scholar] [CrossRef]
- Song, X.; Liu, F.; Wang, H.; Wang, C.; Yu, S.; Liu, S. Methanolysis of microbial polyester poly(3-hydroxybutyrate) catalyzed by Brønsted-Lewis acidic ionic liquids as a new method towards sustainable development. Polym. Degrad. Stab. 2018, 147, 215–221. [Google Scholar] [CrossRef]
- Merchan, A.L.; Fischöder, T.; Hee, J.; Lehnertz, M.S.; Osterthun, O.; Pielsticker, S.; Schleier, J.; Tiso, T.; Blank, L.M.; Klankermayer, J.; et al. Chemical recycling of bioplastics: Technical opportunities to preserve chemical functionality as path towards a circular economy. Green Chem. 2022, 24, 9428–9449. [Google Scholar] [CrossRef]
- Allen, R.D.; James, M.I. Chemical Recycling of PET. In Circular Economy of Polymers: Topics in Recycling Technologies; Collias, D.I., James, M.I., Layman, J.M., Eds.; American Chemical Society: Columbus, OH, USA, 2021; Volume 1391, pp. 61–80. [Google Scholar] [CrossRef]
- Lee, S.-H.; Song, W.-S. Effect of Enzymatic Hydrolysis on Polylactic Acid Fabrics by Lipases from Different Origins. J. Korean Soc. Cloth. Text. 2012, 36, 653–662. [Google Scholar] [CrossRef]
- Karamanlioglu, M.; Preziosi, R.; Robson, G.D. Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): A review. Polym. Degrad. Stab. 2017, 137, 122–130. [Google Scholar] [CrossRef]
- Castro-Aguirre, E.; Auras, R.; Selke, S.; Rubino, M.; Marsh, T. Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions. Polym. Degrad. Stab. 2017, 137, 251–271. [Google Scholar] [CrossRef]
- Donate, R.; Monzón, M.; Alemán-Domínguez, M.E.; Ortega, Z. Enzymatic degradation study of PLA-based composite scaffolds. Rev. Adv. Mater. Sci. 2020, 59, 170–175. [Google Scholar] [CrossRef]
- Rodríguez-Contreras, A.; Calafell-Monfort, M.; Marqués-Calvo, M.S. Enzymatic degradation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by commercial lipases. Polym. Degrad. Stab. 2012, 97, 597–604. [Google Scholar] [CrossRef]
- Kaihara, S.; Osanai, Y.; Nishikawa, K.; Toshima, K.; Doi, Y.; Matsumura, S. Enzymatic Transformation of Bacterial Polyhydroxyalkanoates into Repolymerizable Oligomers Directed towards Chemical Recycling. Macromol. Biosci. 2005, 5, 644–652. [Google Scholar] [CrossRef]
- Chapman, J.; Ismail, A.; Dinu, C. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks. Catalysts 2018, 8, 238. [Google Scholar] [CrossRef]
- British Plastics Federation. Packaging Waste Directive & Compostable Packaging. Available online: https://www.bpf.co.uk/topics/Standards_for_compostability.aspx (accessed on 3 June 2024).
- Meereboer, K.W.; Misra, M.; Mohanty, A.K. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem. 2020, 22, 5519–5558. [Google Scholar] [CrossRef]
- Taib, N.-A.A.B.; Rahman, R.; Huda, D.; Kuok, K.K.; Hamdan, S.; Bakri, M.K.B.; Julaihi, M.R.M.B.; Khan, A. A review on poly lactic acid (PLA) as a biodegradable polymer. Polym. Bull. 2023, 80, 1179–1213. [Google Scholar] [CrossRef]
- Boey, J.Y.; Mohamad, L.; Khok, Y.S.; Tay, G.S.; Baidurah, S. A Review of the Applications and Biodegradation of Polyhydroxyalkanoates and Poly(lactic acid) and Its Composites. Polymers 2021, 13, 1544. [Google Scholar] [CrossRef]
- Qi, X.; Ren, Y.; Wang, X. New advances in the biodegradation of Poly(lactic) acid. Int. Biodeterior. Biodegrad. 2017, 117, 215–223. [Google Scholar] [CrossRef]
- Khan, B.; Niazi, M.B.K.; Samin, G.; Jahan, Z. Thermoplastic Starch: A Possible Biodegradable Food Packaging Material—A Review. J. Food Process Eng. 2017, 40, e12447. [Google Scholar] [CrossRef]
- Zhong, Y.; Godwin, P.; Jin, Y.; Xiao, H. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Adv. Ind. Eng. Polym. Res. 2020, 3, 27–35. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, D.; Wei, N. Enzyme discovery and engineering for sustainable plastic recycling. Trends Biotechnol. 2022, 40, 22–37. [Google Scholar] [CrossRef]
- Rahmati, F.; Sethi, D.; Shu, W.; Asgari-Lajayer, B.; Mosaferi, M.; Thomson, A.; Price, G.W. Advances in microbial exoenzymes bioengineering for improvement of bioplastics degradation. Chemosphere 2024, 355, 141749. [Google Scholar] [CrossRef]
- Lackner, M.; Mukherjee, A.; Koller, M. What Are ‘Bioplastics’? Defining Renewability, Biosynthesis, Biodegradability, and Biocompatibility. Polymers 2023, 15, 4695. [Google Scholar] [CrossRef]
- Folino, A.; Pangallo, D.; Calabrò, P.S. Assessing bioplastics biodegradability by standard and research methods: Current trends and open issues. J. Environ. Chem. Eng. 2023, 11, 109424. [Google Scholar] [CrossRef]
- OWS, N. Industrial Composting. Available online: https://normecows.com/degradation-toxicity/industrial-composting/ (accessed on 29 March 2024).
- Austria, T.U. Solution: OK Compost INDUSTRIAL. Available online: https://en.tuv.at/ok-compost-industrial-en/ (accessed on 29 March 2024).
- European Bioplastics. Industrial Composting. Available online: https://www.european-bioplastics.org/bioplastics/waste-management/composting/ (accessed on 3 June 2024).
- DIN CERTCO. Your Product Made of Bioplastic—Proven Biodegradable in the Domestic Compost. Available online: https://www.dincertco.de/din-certco/en/main-navigation/products-and-services/certification-of-products/environmental-field/products-made-of-compostable-materials-for-home-and-garden-composting/ (accessed on 29 March 2024).
- European Bioplastics. Home Composting of Compostable Bioplastics. July 2018. Available online: https://docs.european-bioplastics.org/publications/pp/EUBP_PP_Home_composting.pdf (accessed on 3 June 2024).
- Guliyev, V.; Tanunchai, B.; Udovenko, M.; Menyailo, O.; Glaser, B.; Purahong, W.; Buscot, F.; Blagodatskaya, E. Degradation of Bio-Based and Biodegradable Plastic and Its Contribution to Soil Organic Carbon Stock. Polymers 2023, 15, 660. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 14853:2016(en); Plastics—Determination of the Ultimate Anaerobic Biodegradation of Plastic Materials in an Aqueous System—Method by Measurement of Biogas Production. Available online: https://www.iso.org/standard/67804.html#:~:text=ISO%2014853%3A2016%20specifies%20a,degree%20of%20biodegradation%20to%20occur (accessed on 3 June 2024).
- Austria, T.U. Solution: OK Biodegradable. Available online: https://en.tuv.at/ok-biodegradable-en/ (accessed on 30 March 2024).
- Ribba, L.; Lopretti, M.; de Oca-Vásquez, G.M.; Batista, D.; Goyanes, S.; Vega-Baudrit, J.R. Biodegradable plastics in aquatic ecosystems: Latest findings, research gaps, and recommendations. Environ. Res. Lett. 2022, 17, 033003. [Google Scholar] [CrossRef]
- ASTM International. ASTM D6691 Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in the Marine Environment by a Defined Microbial Consortium or Natural Sea Water Inoculum. Available online: https://compass.astm.org/document/?contentCode=ASTM%7CD6691-17%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm.org&fromLogin=true (accessed on 3 June 2024).
- Van Rossum, T. Marine biodegradability review of plastics. Water Cycle 2021, 2, 38–43. [Google Scholar] [CrossRef]
- Hyodo, N.; Gan, H.; Ilangovan, N.; Kimura, S.; Kasuya, K.; Isobe, N.; Iwata, T. Coastal and deep-sea biodegradation of polyhydroxyalkanoate microbeads. Sci. Rep. 2024, 14, 10302. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 19679:2020(en); Plastics—Determination of Aerobic Biodegradation of Non-Floating Plastic Materials in a Seawater/Sediment Interface—Method by Analysis of Evolved Carbon Dioxide. Available online: https://www.iso.org/standard/78889.html (accessed on 3 June 2024).
- International Organization for Standardization. ISO 18830:2016(en); Plastics—Determination of Aerobic Biodegradation of Non-Floating Plastic Materials in a Seawater/Sandy Sediment Interface—Method by Measuring the Oxygen Demand in Closed Respirometer. Available online: https://www.iso.org/standard/63515.html (accessed on 3 June 2024).
- International Organization for Standardization. ISO 22404:2019(en); Plastics—Determination of the Aerobic Biodegradation of Non-Floating Materials Exposed to Marine Sediment—Method by Analysis of Evolved Carbon Dioxide. Available online: https://www.iso.org/standard/73123.html (accessed on 3 June 2024).
- Normec OWS. Marine Degradation. Available online: https://normecows.com/degradation-toxicity/marine-degradation/ (accessed on 30 March 2024).
- Chen, H. Biodegradable plastics in the marine environment: A potential source of risk? Water Emerg. Contam. Nanoplastics 2022, 1, 16. [Google Scholar] [CrossRef]
- Han, G.; Yoon, J.; Lee, C.; Lee, E.; Yoon, K.; Kwak, H.W.; Jin, H.-J. Biodegradation behavior of amorphous polyhydroxyalkanoate-incorporated poly(l-lactic acid) under modulated home-composting conditions. Polym. Test. 2023, 126, 108155. [Google Scholar] [CrossRef]
- Musioł, M.; Sikorska, W.; Adamus, G.; Janeczek, H.; Richert, J.; Malinowski, R.; Jiang, G.; Kowalczuk, M. Forensic engineering of advanced polymeric materials. Part III—Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions. Waste Manag. 2016, 52, 69–76. [Google Scholar] [CrossRef]
- Danyluk, C.; Erickson, R.; Burrows, S.; Auras, R. Industrial Composting of Poly-Lactic Acid Bottles. J. Test. Eval. 2010, 38, 717–723. [Google Scholar] [CrossRef]
- Sikorska, W.; Musiol, M.; Nowak, B.; Pajak, J.; Labuzek, S.; Kowalczuk, M.; Adamus, G. Degradability of polylactide and its blend with poly[(R,S)-3-hydroxybutyrate] in industrial composting and compost extract. Int. Biodeterior. Biodegrad. 2015, 101, 32–41. [Google Scholar] [CrossRef]
- Tabasi, R.Y.; Ajji, A. Selective degradation of biodegradable blends in simulated laboratory composting. Polym. Degrad. Stab. 2015, 120, 435–442. [Google Scholar] [CrossRef]
- Gadaleta, G.; de Gisi, S.; Chong, Z.K.; Heerenklage, J.; Notarnicola, M.; Kuchta, K.; Cafiero, L.; Oliveiro, M.; Sorrentino, A.; Picuno, C. Degradation of thermoplastic cellulose acetate-based bioplastics by full-scale experimentation of industrial anaerobic digestion and composting. Chem. Eng. J. 2023, 462, 142301. [Google Scholar] [CrossRef]
- Gastaldi, E.; Buendia, F.; Greuet, P.; Benbrahim Bouchou, Z.; Benihya, A.; Cesar, G.; Domenek, S. Degradation and environmental assessment of compostable packaging mixed with biowaste in full-scale industrial composting conditions. Bioresour. Technol. 2024, 400, 130670. [Google Scholar] [CrossRef]
- Solano, G.; Rojas-Gätjens, D.; Rojas-Jimenez, K.; Chavarría, M.; Romero, R.M. Biodegradation of plastics at home composting conditions. Environ. Chall. 2022, 7, 100500. [Google Scholar] [CrossRef]
- Mergaert, J.; Anderson, C.; Wouters, A.; Swings, J.; Kersters, K. Biodegradation of polyhydroxyalkanoates. FEMS Microbiol. Rev. 1992, 103, 317–322. [Google Scholar] [CrossRef]
- Song, J.H.; Murphy, R.J.; Narayan, R.; Davies, G.B.H. Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2127–2139. [Google Scholar] [CrossRef]
- Jin, Y.; Cai, F.; Song, C.; Liu, G.; Chen, C. Degradation of biodegradable plastics by anaerobic digestion: Morphological, micro-structural changes and microbial community dynamics. Sci. Total Environ. 2022, 834, 155167. [Google Scholar] [CrossRef]
- Adhikari, D.; Mukai, M.; Kubota, K.; Kai, T.; Kaneko, N.; Araki, K.S.; Kubo, M. Degradation of Bioplastics in Soil and Their Degradation Effects on Environmental Microorganisms. J. Agric. Chem. Environ. 2016, 05, 23–34. [Google Scholar] [CrossRef]
- Wu, C. Preparation, characterization, and biodegradability of renewable resource-based composites from recycled polylactide bioplastic and sisal fibers. J. Appl. Polym. Sci. 2012, 123, 347–355. [Google Scholar] [CrossRef]
- Volova, T.G.; Prudnikova, S.V.; Vinogradova, O.N.; Syrvacheva, D.A.; Shishatskaya, E.I. Microbial Degradation of Polyhydroxyalkanoates with Different Chemical Compositions and Their Biodegradability. Microb. Ecol. 2017, 73, 353–367. [Google Scholar] [CrossRef]
- Pérez-Arauz, A.O.; Aguilar-Rabiela, A.E.; Vargas-Torres, A.; Rodríguez-Hernández, A.-I.; Chavarría-Hernández, N.; Vergara-Porras, B.; López-Cuellar, M.R. Production and characterization of biodegradable films of a novel polyhydroxyalkanoate (PHA) synthesized from peanut oil. Food Packag. Shelf Life 2019, 20, 100297. [Google Scholar] [CrossRef]
- Woolnough, C.A.; Yee, L.H.; Charlton, T.S.; Foster, L.J.R. A Tuneable Switch for Controlling Environmental Degradation of Bioplastics: Addition of Isothiazolinone to Polyhydroxyalkanoates. PLoS ONE 2013, 8, e75817. [Google Scholar] [CrossRef]
- Gómez, E.F.; Michel, F.C. Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polym. Degrad. Stab. 2013, 98, 2583–2591. [Google Scholar] [CrossRef]
- Hu, L.; He, L.; Cai, L.; Wang, Y.; Wu, G.; Zhang, D.; Pan, X.; Wang, Y.-Z. Deterioration of single-use biodegradable plastics in high-humidity air and freshwaters over one year: Significant disparities in surface physicochemical characteristics and degradation rates. J. Hazard. Mater. 2024, 465, 133170. [Google Scholar] [CrossRef]
- Šašinková, D.; Serbruyns, L.; Julinová, M.; FayyazBakhsh, A.; De Wilde, B.; Koutný, M. Evaluation of the biodegradation of polymeric materials in the freshwater environment—An attempt to prolong and accelerate the biodegradation experiment. Polym. Degrad. Stab. 2022, 203, 110085. [Google Scholar] [CrossRef]
- Volova, T.G.; Boyandin, A.N.; Prudnikova, S.V.; Gladyshev, M.I.; Gitelson, I.I. Biodegradation of Polyhydroxyalkanoates in Natural Water Environments. J. Sib. Fed. Univ. Biol. 2015, 2, 168–186. [Google Scholar] [CrossRef]
- Greene, J. Marine Biodegradation of PLA, PHA, and Bio-Additive Polyethylene Based on ASTM D7081; ACADEMIA: San Francisco, CA, USA, 2011. [Google Scholar]
- Delacuvellerie, A.; Brusselman, A.; Cyriaque, V.; Benali, S.; Moins, S.; Raquez, J.-M.; Gobert, S.; Wattiez, R. Long-term immersion of compostable plastics in marine aquarium: Microbial biofilm evolution and polymer degradation. Mar. Pollut. Bull. 2023, 189, 114711. [Google Scholar] [CrossRef]
- Thellen, C.; Coyne, M.; Froio, D.; Auerbach, M.; Wirsen, C.; Ratto, J.A. A Processing, Characterization and Marine Biodegradation Study of Melt-Extruded Polyhydroxyalkanoate (PHA) Films. J. Polym. Environ. 2008, 16, 1–11. [Google Scholar] [CrossRef]
- Deroiné, M.; César, G.; Le Duigou, A.; Davies, P.; Bruzaud, S. Natural Degradation and Biodegradation of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) in Liquid and Solid Marine Environments. J. Polym. Environ. 2015, 23, 493–505. [Google Scholar] [CrossRef]
- Rutkowska, M.; Krasowska, K.; Heimowska, A.; Adamus, G.; Sobota, M.; Musiol, M.; Janeczek, H.; Sikorska, W.; Krzan, A.; Žagar, E.; et al. Environmental Degradation of Blends of Atactic Poly[(R,S)-3-hydroxybutyrate] with Natural PHBV in Baltic Sea Water and Compost with Activated Sludge. J. Polym. Environ. 2008, 16, 183–191. [Google Scholar] [CrossRef]
Stakeholder Group | Social Issue |
---|---|
Workers | Freedom of association/collective bargaining Child labor Fair salary Working hours Forced labor Equal opportunities/discrimination Worker health and safety Social benefits |
Consumers | Feedback mechanisms End-of-life responsibility Consumer health and safety Consumer privacy Transparency |
Local community | Access to material and immaterial resources Delocalization and migration Cultural heritage Local employment Safe, secure, and healthy living conditions Respect of indigenous rights Community engagement |
Society | Technology development Public commitments to sustainability Contribution to economic development Prevention and mitigation of armed conflicts Corruption |
Value chain actors | Supplier relationships Fair competition Promotion of social responsibility Respect of intellectual property rights |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keith, M.; Koller, M.; Lackner, M. Carbon Recycling of High Value Bioplastics: A Route to a Zero-Waste Future. Polymers 2024, 16, 1621. https://doi.org/10.3390/polym16121621
Keith M, Koller M, Lackner M. Carbon Recycling of High Value Bioplastics: A Route to a Zero-Waste Future. Polymers. 2024; 16(12):1621. https://doi.org/10.3390/polym16121621
Chicago/Turabian StyleKeith, Matthew, Martin Koller, and Maximilian Lackner. 2024. "Carbon Recycling of High Value Bioplastics: A Route to a Zero-Waste Future" Polymers 16, no. 12: 1621. https://doi.org/10.3390/polym16121621
APA StyleKeith, M., Koller, M., & Lackner, M. (2024). Carbon Recycling of High Value Bioplastics: A Route to a Zero-Waste Future. Polymers, 16(12), 1621. https://doi.org/10.3390/polym16121621