The Effect of Build Angle and Artificial Aging on the Accuracy of SLA- and DLP-Printed Occlusal Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Manufacturing
2.1.1. CAD
2.1.2. Additive Manufacturing
2.1.3. Subtractive Manufacturing
2.1.4. Post-Processing
2.2. Digitization
2.3. Artificial Aging
2.4. Evaluation of the Accuracy
2.5. Statistical Analyses
3. Results
3.1. Quantitative Analyses
3.2. Qualitative Analyses
3.3. Material Usage Analysis
4. Discussion
4.1. Results
4.2. Clinical Significance
4.3. Limitations
5. Conclusions
- Subtractive manufacturing shows better trueness and precision than additive manufacturing.
- DLP shows better trueness than SLA, whereby the 0° and 30°are significantly more accurate than the other build angles.
- Artificial aging demonstrates a significant influence on trueness for SLA.
- There are significantly larger positive deviations at all build angles after aging; SLA may have a higher fracture risk due to aggravating fit.
- After aging, the magnitudes of positive deviations are also posterior for all printed resins and evenly distributed for those subtractively manufactured.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wilkinson, T. Chapter 20—Occlusal Splints and Management of the Occlusion. In Functional Occlusion in Restorative Dentistry and Prosthodontics; Klineberg, I., Eckert, S.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 245–252. [Google Scholar] [CrossRef]
- Nassif, M.; Haddad, C.; Habli, L.; Zoghby, A. Materials and manufacturing techniques for occlusal splints: A literature review. J. Oral Rehabil. 2023, 50, 1348–1354. [Google Scholar] [CrossRef] [PubMed]
- Gil-Martinez, A.; Paris-Alemany, A.; López-De-Uralde-Villanueva, I.; La Touche, R. Management of pain in patients with temporomandibular disorder (TMD): Challenges and solutions. J. Pain Res. 2018, 11, 571–587. [Google Scholar] [CrossRef] [PubMed]
- Benli, M.; Husain, N.A.-H.; Ozcan, M. Mechanical and chemical characterization of contemporary occlusal splint materials fabricated with different methods: A systematic review. Clin. Oral Investig. 2023, 27, 7115–7141. [Google Scholar] [CrossRef] [PubMed]
- Väyrynen, V.O.E.; Tanner, J.; Vallittu, P.K. The anisotropicity of the flexural properties of an occlusal device material processed by stereolithography. J. Prosthet. Dent. 2016, 116, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Nekora, A.; Evlioglu, G.; Ceyhan, A.; Keskin, H.; Issever, H. Patient responses to vacuum formed splints compared to heat cured acrylic splints: Pilot study. J. Maxillofac. Oral Surg. 2009, 8, 31–33. [Google Scholar] [CrossRef] [PubMed]
- Kovaleski, W.C.; De Boever, J. Influence of occlusal splints on jaw position and musculature in patients with temporomandibular joint dysfunction. J. Prosthet. Dent. 1975, 33, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Okeson, J.P. Management of Temporomandibular Disorders and Occlusion, 3rd ed.; CV Mosby: Missouri, MO, USA, 1993; Volume 113, pp. 453–458. [Google Scholar]
- Capp, N.J. Occlusion and splint therapy. Br. Dent. J. 1999, 186, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Dedem, P.; Türp, J. Digital Michigan splint—From intraoral scanning to plasterless manufacturing. Int. J. Comput. Dent. 2016, 19, 63–76. [Google Scholar] [PubMed]
- Lauren, M.; McIntyre, F. A new computer-assisted method for design and fabrication of occlusal splints. Am. J. Orthod. Dentofac. Orthop. 2008, 133 (Suppl. 4), S130–S135. [Google Scholar] [CrossRef]
- Schmeiser, F.; Baumert, U.; Stawarczyk, B. Two-body wear of occlusal splint materials from subtractive computer-aided manufacturing and three-dimensional printing. Clin. Oral Investig. 2022, 26, 5857–5866. [Google Scholar] [CrossRef]
- Gibreel, M.; Perea-Lowery, L.; Vallittu, P.K.; Lassila, L. Characterization of occlusal splint materials: CAD-CAM versus conventional resins. J. Mech. Behav. Biomed. Mater. 2021, 124, 104813. [Google Scholar] [CrossRef] [PubMed]
- Berli, C.; Thieringer, F.M.; Sharma, N.; Müller, J.A.; Dedem, P.; Fischer, J.; Rohr, N. Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices. J. Prosthet. Dent. 2020, 124, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Grymak, A.; Waddell, J.N.; Aarts, J.M.; Ma, S.; Choi, J.J.E. Evaluation of wear behaviour of various occlusal splint materials and manufacturing processes. J. Mech. Behav. Biomed. Mater. 2022, 126, 105053. [Google Scholar] [CrossRef] [PubMed]
- Patzelt, S.B.M.; Krügel, M.; Wesemann, C.; Pieralli, S.; Nold, J.; Spies, B.C.; Vach, K.; Kohal, R.J. In Vitro Time Efficiency, Fit, and Wear of Conventionally- versus Digitally-Fabricated Occlusal Splints. Materials 2022, 15, 1085. [Google Scholar] [CrossRef] [PubMed]
- Huettig, F.; Kustermann, A.; Kuscu, E.; Geis-Gerstorfer, J.; Spintzyk, S. Polishability and wear resistance of splint material for oral appliances produced with conventional, subtractive, and additive manufacturing. J. Mech. Behav. Biomed. Mater. 2017, 75, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Lutz, A.-M.; Hampe, R.; Roos, M.; Lümkemann, N.; Eichberger, M.; Stawarczyk, B. Fracture resistance and 2-body wear of 3-dimensional–printed occlusal devices. J. Prosthet. Dent. 2019, 121, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.-F.; Migonney, V.; Ruse, N.D.; Sadoun, M. Resin composite blocks via high-pressure high-temperature polymerization. Dent. Mater. 2012, 28, 529–534. [Google Scholar] [CrossRef]
- Salmi, M.; Paloheimo, K.S.; Tuomi, J.; Ingman, T.; Mäkitie, A. A digital process for additive manufacturing of occlusal splints: A clinical pilot study. J. R. Soc. Interface 2013, 10, 20130203. [Google Scholar] [CrossRef] [PubMed]
- Andjela, L.; Abdurahmanovich, V.M.; Vladimirovna, S.N.; Mikhailovna, G.I.; Yurievich, D.D.; Alekseevna, M.Y. A review on Vat Photopolymerization 3D-printing processes for dental application. Dent. Mater. 2022, 38, e284–e296. [Google Scholar] [CrossRef]
- van Noort, R. The future of dental devices is digital. Dent. Mater. 2012, 28, 3–12. [Google Scholar] [CrossRef]
- Revilla-León, M.; Özcan, M. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. J. Prosthodont. 2019, 28, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Barazanchi, A.; Li, K.C.; Al-Amleh, B.; Lyons, K.; Waddell, J.N. Additive Technology: Update on Current Materials and Applications in Dentistry. J. Prosthodont. 2017, 26, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Zohdi, N.; Yang, R. Material Anisotropy in Additively Manufactured Polymers and Polymer Composites: A Review. Polymers 2021, 13, 3368. [Google Scholar] [CrossRef] [PubMed]
- Reymus, M.; Fabritius, R.; Keßler, A.; Hickel, R.; Edelhoff, D.; Stawarczyk, B. Fracture load of 3D-printed fixed dental prostheses compared with milled and conventionally fabricated ones: The impact of resin material, build direction, post-curing, and artificial aging—An in vitro study. Clin. Oral Investig. 2020, 24, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.K.; Ohdar, R.K.; Mahapatra, S.S. Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 2010, 31, 287–295. [Google Scholar] [CrossRef]
- Marcel, R.; Reinhard, H.; Andreas, K. Accuracy of CAD/CAM-fabricated bite splints: Milling vs 3D printing. Clin. Oral Investig. 2020, 24, 4607–4615. [Google Scholar] [CrossRef] [PubMed]
- Wesemann, C.; Spies, B.C.; Schaefer, D.; Adali, U.; Beuer, F.; Pieralli, S. Accuracy and its impact on fit of injection molded, milled and additively manufactured occlusal splints. J. Mech. Behav. Biomed. Mater. 2021, 114, 104179. [Google Scholar] [CrossRef] [PubMed]
- Orgev, A.; Levon, J.A.; Chu, T.-M.G.; Morton, D.; Lin, W.-S. The effects of manufacturing technologies on the surface accuracy of CAD-CAM occlusal splints. J. Prosthodont. 2023, 32, 697–705. [Google Scholar] [CrossRef]
- Unkovskiy, A.; Bui, P.H.-B.; Schille, C.; Geis-Gerstorfer, J.; Huettig, F.; Spintzyk, S. Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of stereolithographically printed resin. Dent. Mater. 2018, 34, e324–e333. [Google Scholar] [CrossRef]
- Cameron, A.; Tong, K.; Kumar, S.; Evans, J.; Abuzar, M. Effect of build orientation on the trueness of occlusal splints fabricated by three-dimensional printing. J. Oral Sci. 2023, 65, 261–264. [Google Scholar] [CrossRef]
- Unkovskiy, A.; Schmidt, F.; Beuer, F.; Li, P.; Spintzyk, S.; Fernandez, P.K. Stereolithography vs. Direct Light Processing for Rapid Manufacturing of Complete Denture Bases: An In Vitro Accuracy Analysis. J. Clin. Med. 2021, 10, 1070. [Google Scholar] [CrossRef] [PubMed]
- Vasques, M.; Laganá, D. Accuracy and Internal Fit of 3D printed Occlusal Splint, according to the printing position. Clin. Lab. Res. Dentistry. 2018. [Google Scholar] [CrossRef]
- Zwerink, L.; Xi, T.; Verhulst, A.C.; Tellman, J.W.H.; Baan, F.; Maal, T.J. [Innovations in dentistry. The influence of build angle on the fit of a 3D printed occlusal splint]. Ned. Tijdschr. Voor Tandheelkd. 2020, 127, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Raffaini, J.C.; Soares, E.J.; Oliveira, R.F.D.L.; Vivanco, R.G.; Amorim, A.A.; Pereira, A.L.C.; Pires-De-Souza, F.C.P. Effect of artificial aging on mechanical and physical properties of CAD-CAM PMMA resins for occlusal splints. J. Adv. Prosthodont. 2023, 15, 227. [Google Scholar] [CrossRef]
- Paradowska-Stolarz, A.; Wezgowiec, J.; Malysa, A.; Wieckiewicz, M. Effects of Polishing and Artificial Aging on Mechanical Properties of Dental LT Clear® Resin. J. Funct. Biomater. 2023, 14, 295. [Google Scholar] [CrossRef]
- Shin, S.-H.; Doh, R.-M.; Lim, J.-H.; Kwon, J.-S.; Shim, J.-S.; Kim, J.-E. Evaluation of Dimensional Changes According to Aging Period and Postcuring Time of 3D-Printed Denture Base Prostheses: An In Vitro Study. Materials 2021, 14, 6185. [Google Scholar] [CrossRef]
- Joda, T.; Matthisson, L.; Zitzmann, N.U. Impact of Aging on the Accuracy of 3D-Printed Dental Models: An In Vitro Investigation. J. Clin. Med. 2020, 9, 1436. [Google Scholar] [CrossRef]
- Formlabs, Safety Data Sheet according to Regulation (EC) No. 1907/2006 (REACH) with Its Amendment Regulation (EU) 2015/830, 2018. Available online: https://formlabs-media.formlabs.com/datasheets/Safety_Data_Sheet_EN-EU_-_Dental_LT_Clear.pdf (accessed on 13 December 2023).
- D.D.E. SE, Safety Data Sheet according to Regulation (EC) No 1907/2006, 2021. Available online: https://www.schaeferkalk.de/fileadmin/schaeferkalk/downloads/produkte/SDS_PRECAL_CaCO3_A-6_0009_01-11-2021_GB.pdf (accessed on 10 December 2023).
- V. GmbH, Safety Data Sheet according to 1907/2006/EC, Article 31, (2021). Available online: https://www.voco.dental/en/portaldata/1/resources/products/safety-data-sheets/gb/v-print-splint_sds_gb.pdf (accessed on 13 December 2023).
- DIN ISO 5725-1:2023(en). Accuracy (Trueness and Precision) of Measurement Methods and Results, Part 1: General Principles and Definitions, 2023. Available online: https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-2:v1:en (accessed on 30 November 2023).
- Yoshidome, K.; Torii, M.; Kawamura, N.; Shimpo, H.; Ohkubo, C. Trueness and fitting accuracy of maxillary 3D printed complete dentures. J. Prosthodont. Res. 2021, 65, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Schittecatte, L.; Geertsen, V.; Bonamy, D.; Nguyen, T.; Guenoun, P. From resin formulation and process parameters to the final mechanical properties of 3D printed acrylate materials. MRS Commun. 2023, 13, 357–377. [Google Scholar] [CrossRef]
- Simeon, P.; Unkovskiy, A.; Sarmadi, B.S.; Nicic, R.; Koch, P.J.; Beuer, F.; Schmidt, F. Wear resistance and flexural properties of low force SLA- and DLP-printed splint materials in different printing orientations: An in vitro study. J. Mech. Behav. Biomed. Mater. 2024, 152, 106458. [Google Scholar] [CrossRef]
- Stansbury, J.W. Dimethacrylate network formation and polymer property evolution as determined by the selection of monomers and curing conditions. Dent. Mater. 2012, 28, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Safranski, D.L.; Gall, K. Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape memory polymer networks. Polymer 2008, 49, 4446–445510. [Google Scholar] [CrossRef]
- Revilla-León, M.; Cascos-Sánchez, R.; Zeitler, J.M.; Barmak, A.B.; Kois, J.C.; Gómez-Polo, M. Influence of print orientation and wet-dry storage time on the intaglio accuracy of additively manufactured occlusal devices. J. Prosthet. Dent. 2023, 131, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Rubayo, D.D.; Phasuk, K.; Vickery, J.M.; Morton, D.; Lin, W.-S. Influences of build angle on the accuracy, printing time, and material consumption of additively manufactured surgical templates. J. Prosthet. Dent. 2021, 126, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Tahir, N.; Abduo, J. An In Vitro Evaluation of the Effect of 3D Printing Orientation on the Accuracy of Implant Surgical Templates Fabricated By Desktop Printer. J. Prosthodont. 2022, 31, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhou, J.-L.; Zhang, R.-J.; Tan, F.-B. Evaluation of the influence of different build angles on the surface characteristics, accuracy, and dimensional stability of the complete denture base printed by digital light processing. Heliyon 2024, 10, e24095. [Google Scholar] [CrossRef] [PubMed]
- Topsakal, K.G.; Aksoy, M.; Duran, G.S. The effect of aging on the mechanical properties of 3-dimensional printed biocompatible resin materials used in dental applications: An in vitro study. Am. J. Orthod. Dentofac. Orthop. 2023, 164, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Reymus, M.; Stawarczyk, B. In vitro study on the influence of postpolymerization and aging on the Martens parameters of 3D-printed occlusal devices. J. Prosthet. Dent. 2021, 125, 817–823. [Google Scholar] [CrossRef]
- Helal, M.; Zeidan, A. Evaluation of the Effect of Thermocycling on the Trueness and the Precision of Digital Fabricated Complete Denture Bases 2023. Available online: https://www.researchsquare.com/article/rs-3601350/v1 (accessed on 9 June 2024).
- Jimenez, J.R.R.; Fuchs, F.; Schmohl, L.; Schulz-Siegmund, M.; Koenig, A. Aging Processes and Their Influence on the Mechanical Properties of Printable Occlusal Splint Materials. Polymers 2023, 15, 4574. [Google Scholar] [CrossRef]
- Herpel, C.; Kykal, J.; Rues, S.; Schwindling, F.; Rammelsberg, P.; Eberhard, L. Thermo-flexible resin for the 3D printing of occlusal splints: A randomized pilot trial. J. Dent. 2023, 133, 104514. [Google Scholar] [CrossRef]
- Wada, J.; Wada, K.; Gibreel, M.; Wakabayashi, N.; Iwamoto, T.; Vallittu, P.K.; Lassila, L. Effect of Nitrogen Gas Post-Curing and Printer Type on the Mechanical Properties of 3D-Printed Hard Occlusal Splint Material. Polymers 2022, 14, 3971. [Google Scholar] [CrossRef] [PubMed]
- ISO TR 11405; Dental Materials—Guidance on Testing of Adhesion to Tooth Structure. ISO: Rome, Italy, 1994.
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Morresi, A.L.; D’Amario, M.; Capogreco, M.; Gatto, R.; Marzo, G.; D’Arcangelo, C.; Monaco, A. Thermal cycling for restorative materials: Does a standardized protocol exist in laboratory testing? A literature review. J. Mech. Behav. Biomed. Mater. 2014, 29, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Tzonova, D.; Garcia-Borreguero, D. Special Considerations for Treatment of Sleep-Related Movement Disorders; Elsevier: Amsterdam, The Netherlands, 2013; pp. 102–108. [Google Scholar] [CrossRef]
- 3Shape, Five New Ways the 3Shape D2000 Lab Scanner Saves Dental Labs Time, 2016. Available online: https://www.3shape.com/en/press/2016/five-new-ways-the-3shape-d2000-lab-scanner-saves-dental-labs-time (accessed on 10 February 2024).
- ISO 12836:2015(en). Dentistry—Digitizing Devices for CAD/CAM Systems for Indirect Dental Restorations—Test Methods for Assessing Accuracy, 2015. Available online: https://www.iso.org/obp/ui/#iso:std:iso:12836:ed-2:v1:en (accessed on 9 June 2024).
- Kim, S.-R.; Lee, W.-S.; Kim, W.-C.; Kim, H.-Y.; Kim, J.-H. Digitization of dental alginate impression: Three-dimensional evaluation of point cloud. Dent. Mater. J. 2015, 34, 835–840. [Google Scholar] [CrossRef]
- Greco, G.B.; Popi, D.; Di Stefano, D.A. Accuracy of 3-dimensional printing of dental casts: A proposal for quality standardization. J. Prosthet. Dent. 2021, 127, 899–910. [Google Scholar] [CrossRef]
SLA (Dental LT Clear) [40] | 7,7,9-trimethyl-4,13-dioxo-3,14-dioxa-5,12-diazahexadecane-1,16-diyl bismethacrylate (50–75%) 2-hydroxylethylmethacrylate (10–20%) Reaction mass of Bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and Methyl 1,2,2,6,6-pentamethyl-4-piperidylsebacate (<10%) Diphenyl(2,4,6-trimethylbenzoyl)phosphineoxide (1–5%) Acrylic acid, monoester with propane-1,2-diol (0.1–1%) Ethylenedimethacrylate (<10%) 2-hydroxyethylacrylate (0.1–1%) Mequinol,4-methoxyphenol,hydroquionemonomethyl ether (<0.1%) |
DLP 1 (Luxaprint OrthoPlus) [41] | Dimethacrylate Resin (50–70%) EBPADMA (20–40%) Diphenyl(2,4,6-trimethylbenzoyl)phosphineoxide (1–2%) |
DLP 2 (V-Print Splint) [42] | Polyesterdimethacrylate (50–100%) BIS-EMA (25–50%) Triethyleneglycoldimethacrylate (5–10%) Hydroxypropylmethacrylate (5–10%) Diphenyl(2,4,6-trimethylbenzoyl)phosphineoxide (≤2.5%) Butylatedhydroxytoluene (≤2.5%) |
Printing Technique | Printer | Resin | Post Processing |
---|---|---|---|
SLA | Form 3 | Dental LT Clear | Washing in Formwash (Formlabs) with 99% IPA for 20 min. Drying with compressed air. Post-curing in Form Cure (Formlabs) for 20 min at 80 °C. 3 min precleaning in IPA ultrasonic bath. |
DLP 1 | 3Demax | LuxaPrint Ortho Plus | Rinsing in DMG 3Dewash with 99% IPA—Material-specific program. Drying with compressed air. Curing with DMG 3Decure: program specified for the material. |
DLP 2 | Solflex 170 | V-Print Splint | 2 min main cleaning in fresh IPA ultrasonic bath. Drying with compressed air. Post-exposure in Otoflash G171: 2000 flashes (10 per second), (NK-Optik GmbH, Baierbrunn, Germany). 2 min cooling, another sequence of 2000 flashes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saadat Sarmadi, B.; Schmidt, F.; Beuer, F.; Metin, D.S.; Simeon, P.; Nicic, R.; Unkovskiy, A. The Effect of Build Angle and Artificial Aging on the Accuracy of SLA- and DLP-Printed Occlusal Devices. Polymers 2024, 16, 1714. https://doi.org/10.3390/polym16121714
Saadat Sarmadi B, Schmidt F, Beuer F, Metin DS, Simeon P, Nicic R, Unkovskiy A. The Effect of Build Angle and Artificial Aging on the Accuracy of SLA- and DLP-Printed Occlusal Devices. Polymers. 2024; 16(12):1714. https://doi.org/10.3390/polym16121714
Chicago/Turabian StyleSaadat Sarmadi, Bardia, Franziska Schmidt, Florian Beuer, Dilan Seda Metin, Philipp Simeon, Robert Nicic, and Alexey Unkovskiy. 2024. "The Effect of Build Angle and Artificial Aging on the Accuracy of SLA- and DLP-Printed Occlusal Devices" Polymers 16, no. 12: 1714. https://doi.org/10.3390/polym16121714
APA StyleSaadat Sarmadi, B., Schmidt, F., Beuer, F., Metin, D. S., Simeon, P., Nicic, R., & Unkovskiy, A. (2024). The Effect of Build Angle and Artificial Aging on the Accuracy of SLA- and DLP-Printed Occlusal Devices. Polymers, 16(12), 1714. https://doi.org/10.3390/polym16121714