Natural Aging of Reprocessed Polypropylene Composites Filled with Sustainable Corn Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Composites and Specimens
2.3. Natural Exposure Aging
2.4. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.5. Thermogravimetric Analysis (TGA)
2.6. Tensile Test
2.7. Morphology Analysis
3. Results and Discussion
3.1. FTIR Analysis
3.2. Thermogravimetric Analysis (TGA)
3.3. Mechanical Behavior
3.4. Morphology Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Muiruri, J.K.; Soo, X.Y.D.; Liu, S.; Thitsartarn, W.; Tan, B.H.; Suwardi, A.; Li, Z.; Zhu, Q.; Loh, X.J. Bio-Polypropylene and Polypropylene-based Biocomposites: Solutions for a Sustainable Future. Asian J. Chem. 2023, 18, e202200972. [Google Scholar] [CrossRef]
- Kazemi, M.; Faisal Kabir, S.; Fini, E.H. State of the art in recycling waste thermoplastics and thermosets and their applications in construction. Resour. Conserv. Recycl. 2021, 174, 105776. [Google Scholar] [CrossRef]
- Gijsman, P.; Fiorio, R. Long term thermo-oxidative degradation and stabilization of polypropylene (PP) and the implications for its recyclability. Polym. Degrad. Stab. 2023, 208, 110260. [Google Scholar] [CrossRef]
- Grause, G.; Chien, M.-F.; Inoue, C. Changes during the weathering of polyolefins. Polym. Degrad. Stab. 2020, 181, 109364. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Mavinkere Rangappa, S.; Siengchin, S.; Puttegowda, M.; Thiagamani, S.M.K.; Rajeshkumar, G.; Hemath Kumar, M.; Oladijo, O.P.; Fiore, V.; Moure Cuadrado, M.M. Sustainable recycling technologies for thermoplastic polymers and their composites: A review of the state of the art. Polym. Compos. 2022, 43, 5831–5862. [Google Scholar] [CrossRef]
- Li, X.; Meng, L.; Zhang, Y.; Qin, Z.; Meng, L.; Li, C.; Liu, M. Research and Application of Polypropylene Carbonate Composite Materials: A Review. Polymers 2022, 14, 2159. [Google Scholar] [CrossRef]
- Zhao, W.; Kumar Kundu, C.; Li, Z.; Li, X.; Zhang, Z. Flame retardant treatments for polypropylene: Strategies and recent advances. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106382. [Google Scholar] [CrossRef]
- Chang, B.P.; Mohanty, A.K.; Misra, M. Studies on durability of sustainable biobased composites: A review. RSC Adv. 2020, 10, 17955–17999. [Google Scholar] [CrossRef]
- Shogren, R.; Wood, D.; Orts, W.; Glenn, G. Plant-based materials and transitioning to a circular economy. Sustain. Prod. Consum. 2019, 19, 194–215. [Google Scholar] [CrossRef]
- Uppal, N.; Pappu, A.; Gowri, V.K.S.; Thakur, V.K. Cellulosic fibres-based epoxy composites: From bioresources to a circular economy. Ind. Crops Prod. 2022, 182, 114895. [Google Scholar] [CrossRef]
- Shanmugam, V.; Mensah, R.A.; Försth, M.; Sas, G.; Restás, Á.; Addy, C.; Xu, Q.; Jiang, L.; Neisiany, R.E.; Singha, S.; et al. Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends. Compos. Part C Open Access 2021, 5, 100138. [Google Scholar] [CrossRef]
- Rangappa, S.M.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Ozbakkaloglu, T. Lignocellulosic fiber reinforced composites: Progress, performance, properties, applications, and future perspectives. Polym. Compos. 2022, 43, 645–691. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2018, 172, 566–581. [Google Scholar] [CrossRef]
- Krishnaiah, P.; Ratnam, C.T.; Manickam, S. Enhancements in crystallinity, thermal stability, tensile modulus and strength of sisal fibres and their PP composites induced by the synergistic effects of alkali and high intensity ultrasound (HIU) treatments. Ultrason. Sonochem. 2017, 34, 729–742. [Google Scholar] [CrossRef]
- Bisht, N.; Gope, P.C. Effect of alkali treatment on mechanical properties of rice husk flour reinforced epoxy bio-composite. Mater. Today Proc. 2018, 5, 24330–24338. [Google Scholar] [CrossRef]
- Das, S.C.; La Rosa, A.D.; Goutianos, S.; Grammatikos, S. Effect of accelerated weathering on the performance of natural fibre reinforced recyclable polymer composites and comparison with conventional composites. Compos. Part C Open Access 2023, 12, 100378. [Google Scholar] [CrossRef]
- Alam, L.; Piezel, B.; Sicot, O.; Aivazzadeh, S.; Moscardelli, S.; Van-Schoors, L. UV accelerated aging of unidirectional flax composites: Comparative study between recycled and virgin polypropylene matrix. Polym. Degrad. Stab. 2023, 208, 110268. [Google Scholar] [CrossRef]
- Kuram, E. Advances in development of green composites based on natural fibers: A review. Emerg. Mater. 2022, 5, 811–831. [Google Scholar] [CrossRef]
- Fajardo Cabrera de Lima, L.D.; Santana, R.M.; Chamorro Rodríguez, C.D. Influence of coupling agent in mechanical, physical and thermal properties of polypropylene/bamboo fiber composites: Under natural outdoor aging. Polymers 2020, 12, 929. [Google Scholar] [CrossRef]
- Tarrés, Q.; Hernández-Díaz, D.; Ardanuy, M. Interface strength and fiber content influence on corn stover fibers reinforced bio-polyethylene composites stiffness. Polymers 2021, 13, 768. [Google Scholar] [CrossRef]
- Tarrés, Q.; Ardanuy, M. Evolution of Interfacial Shear Strength and Mean Intrinsic Single Strength in Biobased Composites from Bio-Polyethylene and Thermo-Mechanical Pulp-Corn Stover Fibers. Polymers 2020, 12, 1308. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.A.B.A.; Hasan, Z.; Omran, A.A.B.; Kumar, V.V.; Elfaghi, A.M.; Ilyas, R.A.; Sapuan, S.M. Corn: Its structure, polymer, fiber, composite, properties, and applications. Polymers 2022, 14, 4396. [Google Scholar] [CrossRef]
- Sari, N.H.; Pruncu, C.I.; Sapuan, S.M.; Ilyas, R.A.; Catur, A.D.; Suteja, S.; Sutaryono, Y.A.; Pullen, G. The effect of water immersion and fibre content on properties of corn husk fibres reinforced thermoset polyester composite. Polym. Test. 2020, 91, 106751. [Google Scholar] [CrossRef]
- Lenhani, G.C.; dos Santos, D.F.; Koester, D.L.; Biduski, B.; Deon, V.G.; Machado Junior, M.; Pinto, V.Z. Application of corn fibers from harvest residues in biocomposite films. J. Polym. Environ. 2021, 29, 2813–2824. [Google Scholar] [CrossRef]
- Lamberti, F.M.; Román-Ramírez, L.A.; Wood, J. Recycling of bioplastics: Routes and benefits. J. Polym. Environ. 2020, 28, 2551–2571. [Google Scholar] [CrossRef]
- Urreaga, J.M.; Beltrán, F.R.; Acosta, J.; Aguinaco, T.; Fonseca, C.; Ochoa, A.; Oliet Palá, J.A.; González-Sánchez, C.; de la Orden, M.U. Tube shelters from agricultural plastic waste: An example of circular economy. J. Clean. Prod. 2020, 268, 122401. [Google Scholar] [CrossRef]
- Mujtaba, M.; Fernandes Fraceto, L.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; Araujo de Medeiros, G.; do Espírito Santo Pereira, A.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Bonyadinejad, G.; Salehi, M.; Herath, A. Investigating the sustainability of agricultural plastic products, combined influence of polymer characteristics and environmental conditions on microplastics aging. Sci. Total Environ. 2022, 839, 156385. [Google Scholar] [CrossRef]
- Zhao, X.; Copenhaver, K.; Wang, L.; Korey, M.; Gardner, D.J.; Li, K.; Lamm, M.E.; Kishore, V.; Bhagia, S.; Tajvidi, M.; et al. Recycling of natural fiber composites: Challenges and opportunities. Resour. Conserv. Recycl. 2022, 177, 105962. [Google Scholar] [CrossRef]
- ASTM D792; Standard for Density and Specific Gravity of Plastics. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D1238-20; Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM. D-638; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM. D-1435; Standard Practice for Outdoor Weathering of Plastics. ASTM International: West Conshohocken, PA, USA, 2020.
- Siqueira, F.F.d.S.; Alves, T.S.; Barbosa, R. Avaliação da inflamabilidade e do envelhecimento natural de compósitos de polímero verde e argila vermiculita para potencial uso na construção civil. Amb. Constr. 2021, 21, 331–347. [Google Scholar] [CrossRef]
- Campanale, C.; Savino, I.; Massarelli, C.; Uricchio, V.F. Fourier transform infrared spectroscopy to assess the degree of alteration of artificially aged and environmentally weathered microplastics. Polymers 2023, 15, 911. [Google Scholar] [CrossRef] [PubMed]
- Abbasian, M.; Ghaeminia, H.; Jaymand, M. A facile and efficient strategy for the functionalization of multiple-walled carbon nanotubes using well-defined polypropylene-grafted polystyrene. Appl. Phys. B 2018, 124, 522. [Google Scholar] [CrossRef]
- Mir Md, S.S.; Chan, M.Y.; Koay, S.C. Mechanical properties of polyester/corn husk fibre composite produced using vacuum infusion technique. Polym. Polym. Compos. 2021, 29, S1532–S1540. [Google Scholar] [CrossRef]
- Martínez-Jothar, L.; Montes-Zavala, I.; Rivera-García, N.; Díaz-Ceja, Y.; Pérez, E.; Waldo-Mendoza, M.A. Thermal degradation of polypropylene reprocessed in a co-rotating twin-screw extruder: Kinetic model and relationship between Melt Flow Index and Molecular weight. Rev. Mex. Ing. Quim. 2021, 20, 1079–1090. [Google Scholar] [CrossRef]
- Garcia-Garcia, D.; Crespo-Amorós, J.E.; Parres, F.; Samper, M.D. Influence of Ultraviolet Radiation Exposure Time on Styrene-Ethylene-Butadiene-Styrene (SEBS) Copolymer. Polymers 2020, 12, 862. [Google Scholar] [CrossRef] [PubMed]
- Nasir, A.; Yasin, T.; Islam, A. Thermo-oxidative degradation behavior of recycled polypropylene. J. Appl. Polym. Sci. 2011, 119, 3315–3320. [Google Scholar] [CrossRef]
- Soccalingame, L.; Perrin, D.; Bénézet, J.C.; Bergeret, A. Reprocessing of UV-weathered wood flour reinforced polypropylene composites: Study of a natural outdoor exposure. Polym. Degrad. Stab. 2016, 133, 389–398. [Google Scholar] [CrossRef]
- Peng, Y.; Yan, N.; Cao, J. Utilization of three bark extractives as natural photostabilizers for the photostabilization of wood flour/polypropylene composites. Fibers Polym. 2020, 21, 1488–1497. [Google Scholar] [CrossRef]
- Badji, C.; Beigbeder, J.; Garay, H.; Bergeret, A.; Bénézet, J.-C.; Desauziers, V. Natural weathering of hemp fibers reinforced polypropylene biocomposites: Relationships between visual and surface aspects, mechanical properties and microstructure based on statistical approach. Compos. Sci. Technol. 2018, 167, 440–447. [Google Scholar] [CrossRef]
- Padermshoke, A.; Kajiwara, T.; An, Y.; Takigawa, M.; Van Nguyen, T.; Masunaga, H.; Kobayashi, Y.; Ito, H.; Sasaki, S.; Takahara, A. Characterization of photo-oxidative degradation process of polyolefins containing oxo-biodegradable additives. Polymer 2022, 262, 125455. [Google Scholar] [CrossRef]
- Hao, X.; Xu, J.; Zhou, H.; Tang, W.; Li, W.; Wang, Q.; Ou, R. Interfacial adhesion mechanisms of ultra-highly filled wood fiber/polyethylene composites using maleic anhydride grafted polyethylene as a compatibilizer. Mater. Des. 2021, 212, 110182. [Google Scholar] [CrossRef]
- Stoian, S.A.; Gabor, A.R.; Albu, A.-M.; Nicolae, C.A.; Raditoiu, V.; Panaitescu, D.M. Recycled polypropylene with improved thermal stability and melt processability. J. Therm. Anal. Calorim. 2019, 138, 2469–2480. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, S.; Chen, Y.; Li, D. Thermal properties of wood-plastic composites with different compositions. Materials 2019, 12, 881. [Google Scholar] [CrossRef] [PubMed]
- Asim, M.; Paridah, M.T.; Chandrasekar, M.; Shahroze, R.M.; Jawaid, M.; Nasir, M.; Siakeng, R. Thermal stability of natural fibers and their polymer composites. Iran. Polym. J. 2020, 29, 625–648. [Google Scholar] [CrossRef]
- Tanasă, F.; Zănoagă, M.; Teacă, C.-A.; Nechifor, M.; Shahzad, A. Modified hemp fibers intended for fiber-reinforced polymer composites used in structural applications—A review. I. Methods of modification. Polym. Compos. 2020, 41, 5–31. [Google Scholar] [CrossRef]
- Poudel, R.; Karak, N. Sustainable green composite of yam and agricultural waste corn stalk fiber with good mechanical, thermal, optical, aging performance and excellent biodegradability. Compos. Sci. Technol. 2023, 244, 110276. [Google Scholar] [CrossRef]
- Yousefi, E.; Shiri, M.B.; Rezaei, M.A.; Rezaei, S.; Band, S.S.; Mosavi, A. A novel long-term water absorption and thickness swelling deep learning forecast method for corn husk fiber-polypropylene composite. Case Stud. Constr. Mater. 2022, 17, e01268. [Google Scholar] [CrossRef]
- Salazar-Cruz, B.A.; Chávez-Cinco, M.Y.; Morales-Cepeda, A.B.; Ramos-Galván, C.E.; Rivera-Armenta, J.L. Evaluation of Thermal Properties of Composites Prepared from Pistachio Shell Particles Treated Chemically and Polypropylene. Molecules 2022, 27, 426. [Google Scholar] [CrossRef] [PubMed]
- Widiastuti, I.; Prananda, R.; Putra, J.A.; Ananda, D.R.; Estriyanto, Y. Optimizing the water absorption behaviour and natural weathering resistance of compatibilized ironwood-based recycled polypropylene composites. Compos. Part C Open Access 2023, 12, 100423. [Google Scholar] [CrossRef]
- Ladhari, A.; Kucukpinar, E.; Stoll, H.; Sängerlaub, S. Comparison of properties with relevance for the automotive sector in mechanically recycled and virgin polypropylene. Recycling 2021, 6, 76. [Google Scholar] [CrossRef]
- Ibrahim, M.I.J.; Sapuan, S.M.; Zainudin, E.S.; Zuhri, M.Y.M. Preparation and characterization of cornhusk/sugar palm fiber reinforced Cornstarch-based hybrid composites. J. Mater. Res. Technol. 2020, 9, 200–211. [Google Scholar] [CrossRef]
- Bais, A.F.; Bernhard, G.; McKenzie, R.L.; Aucamp, P.J.; Young, P.J.; Ilyas, M.; Jöckel, P.; Deushi, M. Ozone-climate interactions and effects on solar ultraviolet radiation. Photochem. Photobiol. Sci. 2019, 18, 602–640. [Google Scholar] [CrossRef] [PubMed]
- Kuram, E. UV and thermal weathering of green composites: Comparing the effect of different agricultural waste as fillers. J. Compos. Mater. 2020, 54, 3683–3697. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, H.; Zhao, J.; Liu, S.; Xia, L.; Hu, P.; Lv, Y.; Huang, Y.; Kong, M.; Li, G. Acceleratory and inhibitory effects of uniaxial tensile stress on the photo-oxidation of polyethylene: Dependence of stress, time duration and temperature. Polymer 2018, 148, 316–329. [Google Scholar] [CrossRef]
- de Freitas, A.d.S.M.; Rodrigues, J.S.; Botaro, V.R.; Lemes, A.P.; Cruz, S.A.; Waldman, W.R. Formation of craze-like pattern in polypropylene UV-induced surface cracking. J. Polym. Res. 2022, 29, 506. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, S.; Xia, L.; Hu, P.; Lv, Y.; Liu, J.; Chen, Z.; Huang, Y.; Li, G. Effect of annealing-induced microstructure on the photo-oxidative degradation behavior of isotactic polypropylene. Polym. Degrad. Stab. 2019, 162, 180–195. [Google Scholar] [CrossRef]
- Nasri, K.; Toubal, L.; Loranger, É.; Koffi, D. Influence of UV irradiation on mechanical properties and drop-weight impact performance of polypropylene biocomposites reinforced with short flax and pine fibers. Compos. Part C Open Access 2022, 9, 100296. [Google Scholar] [CrossRef]
- Thá, E.L.; Matos, M.; Avelino, F.; Lomonaco, D.; Rodrigues-Souza, I.; Gagosian, V.S.C.; Cestari, M.M.; Magalhães, W.L.E.; Leme, D.M. Safety aspects of kraft lignin fractions: Discussions on the in chemico antioxidant activity and the induction of oxidative stress on a cell-based in vitro model. Int. J. Biol. Macromol. 2021, 182, 977–986. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Liu, H.-M.; Gu, L.-B.; Sun, R.-C.; Wang, X.-D. Lignin as a natural antioxidant: Property-structure relationship and potential applications. In Reactive Functional Polymers Volume One: Biopolymers, Polyesters, Polyurethanes, Resins Silicones; Springer Science + Business Media: New York, NY, USA, 2020; pp. 65–93. [Google Scholar]
- Li, K.; Zhong, W.; Li, P.; Ren, J.; Jiang, K.; Wu, W. Recent advances in lignin antioxidant: Antioxidant mechanism, evaluation methods, influence factors and various applications. Int. J. Biol. Macromol. 2023, 251, 125992. [Google Scholar] [CrossRef]
- Anushikha, S.; Gaikwad, K.K. Lignin as a UV blocking, antioxidant, and antimicrobial agent for food packaging applications. Biomass Convers. Biorefin. 2023. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, T.; Singh, H. Solid waste-based hybrid natural fiber polymeric composites. J. Reinf. Plast. Compos. 2015, 34, 1979–1985. [Google Scholar] [CrossRef]
- Brebu, M. Environmental Degradation of Plastic Composites with Natural Fillers—A Review. Polymers 2020, 12, 166. [Google Scholar] [CrossRef] [PubMed]
Systems | Test Time (Days) | Tonset–Tendset (°C) | Tdmax (°C) | ML * (%) | ||
---|---|---|---|---|---|---|
1st Stage | 2nd Stage | 3rd Stage | ||||
R-PP1x | 0 | 390–468 | - | - | 446 | 100.0 |
30 | 337–421 | - | - | 405 | 99.4 | |
120 | 327–436 | - | - | 418 | 99.4 | |
R-PP3x | 0 | 330–445 | - | - | 420 | 99.1 |
30 | 330–424 | - | - | 403 | 100.0 | |
120 | 322–435 | - | - | 403 | 99.0 | |
R-PP3x/3CHF | 0 | 293–358 | 358–481 | 481–581 | 442 | 98.0 |
30 | 304–376 | 376–451 | 451–479 | 404 | 99.9 | |
120 | 262–317 | 317–454 | 454–462 | 410 | 99.7 | |
R-PP3x/5CHF | 0 | 266–378 | 378–476 | 476–574 | 435 | 98.3 |
30 | 283–345 | 345–442 | 442–449 | 390 | 99.6 | |
120 | 277–341 | 341–435 | 435–443 | 397 | 98.8 |
Systems | Test Time (Days) | Young’s Modulus (MPa) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|---|
R-PP1x | 0 | 604.1 ± 9.0 a | 18.8 ± 1.6 b–d | 132.0 ± 25.0 a |
30 | 561.8 ± 40.3 a,b | 16.5 ± 1.2 c–f | 12.0 ± 0.9 c | |
120 | 555.8 ± 20.5 a–c | 14.6 ± 1.6 e,f | 9.4 ± 1.1 c | |
R-PP3x | 0 | 516.9 ± 10.9 b–e | 17.5 ± 1.1 c–e | 100.7 ± 15.0 b |
30 | 465.2 ± 21.4 e | 15.0 ± 0.8 d–f | 11.2 ± 1.0 c | |
120 | 454.9 ± 30.2 e | 12.9 ± 0.3 f | 8.1 ± 0.5 c | |
R-PP3x/3CHF | 0 | 537.1 ± 9.9 a–d | 22.4 ± 2.8 a,b | 20.0 ± 2.0 c |
30 | 504.9 ± 20.1 b–e | 19.4 ± 1 b,c | 14.0 ± 0.8 c | |
120 | 488.8 ± 15.8 c–e | 17.2 ± 0.4 c–e | 10.3 ± 0.9 c | |
R-PP3x/5CHF | 0 | 541.1 ± 8.4 a–d | 25.4 ± 1.2 a | 17.4 ± 2.3 c |
30 | 492.4 ± 30.9 b–e | 21.7 ± 1.5 a,b | 13.2 ± 0.4 c | |
120 | 481.6 ± 40.1 d,e | 18.9 ± 0.6 b,c | 9.9 ± 0.6 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matos, A.Z.G.; Dias, A.R.d.O.; Rosa, A.C.F.d.S.; Nascimento Junior, R.d.S.; Braz, C.J.d.F.; Carneiro da Silva, L.R.; de Oliveira, A.D.; Barbosa, R.; Alves, T.S. Natural Aging of Reprocessed Polypropylene Composites Filled with Sustainable Corn Fibers. Polymers 2024, 16, 1788. https://doi.org/10.3390/polym16131788
Matos AZG, Dias ARdO, Rosa ACFdS, Nascimento Junior RdS, Braz CJdF, Carneiro da Silva LR, de Oliveira AD, Barbosa R, Alves TS. Natural Aging of Reprocessed Polypropylene Composites Filled with Sustainable Corn Fibers. Polymers. 2024; 16(13):1788. https://doi.org/10.3390/polym16131788
Chicago/Turabian StyleMatos, Antonio Zilverlan Germano, Alisson Rodrigues de Oliveira Dias, Ana Carolina Ferreira dos Santos Rosa, Renato de Sousa Nascimento Junior, Cristiano José de Farias Braz, Lucas Rafael Carneiro da Silva, Amanda Dantas de Oliveira, Renata Barbosa, and Tatianny Soares Alves. 2024. "Natural Aging of Reprocessed Polypropylene Composites Filled with Sustainable Corn Fibers" Polymers 16, no. 13: 1788. https://doi.org/10.3390/polym16131788
APA StyleMatos, A. Z. G., Dias, A. R. d. O., Rosa, A. C. F. d. S., Nascimento Junior, R. d. S., Braz, C. J. d. F., Carneiro da Silva, L. R., de Oliveira, A. D., Barbosa, R., & Alves, T. S. (2024). Natural Aging of Reprocessed Polypropylene Composites Filled with Sustainable Corn Fibers. Polymers, 16(13), 1788. https://doi.org/10.3390/polym16131788