Application of New Polymer Soil Amendment in Ecological Restoration of High-Steep Rocky Slope in Seasonally Frozen Soil Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Soil Sample Collection
2.1.2. Preparation of PAM-CMC
2.2. Laboratory Tests
2.2.1. Direct Shear Test
2.2.2. Water Stability Test
2.2.3. Freeze–Thaw Test
2.2.4. Erosion Resistance Test
2.2.5. Plant Growth and Height Test
2.2.6. SEM Test
3. Results
3.1. Results of Direct Shear Tests
3.2. Results of Water Stability Tests
3.2.1. Disintegration Ratio and Disintegration Rate
3.2.2. Characteristics of Disintegration Pattern
3.3. Results of Freeze–Thaw Test
3.4. Results of Erosion Resistance Tests
3.4.1. Characteristics of Surface Erosion
3.4.2. Erosion Rate
3.5. Results of Plant Growth and Plant Height Test
3.6. Microscopic Characteristics of Amended Soil
4. Discussion
4.1. Effect of PAM-CMC on Shear Resistance of Soil
4.2. Effect of PAM-CMC on Water Stability of Soil
4.3. Effect of PAM-CMC on the Freeze–Thaw Resistance of Soil
4.4. Effect of PAM-CMC on Erosion Resistance of Soil
4.5. Effects of PAM-CMC on Plant Growth and Plant Height
4.6. Selection of Optimal PAM-CMC Content and Field Application
5. Conclusions
- (1)
- The addition of PAM-CMC was conducive to the improvement of soil shear resistance. When the content of PAM-CMC was ≤3%, it significantly improved the cohesion and internal friction angle of the soil, and when the content of PAM-CMC was 4%, the cohesion of the soil could still be significantly improved, while the improvement of the internal friction angle was not obvious, so, in terms of the soil’s resistance to shear, the optimal amount of PAM-CMC application was 4%.
- (2)
- The water stability, freeze–thaw resistance, and erosion resistance of the soil were significantly improved with an increasing PAM-CMC concentration. The frost heave rate, thaw settlement coefficient, and erosion rate of the soil decreased exponentially with the PAM-CMC content. It is important to note that the water stability of the soil could only be further improved with an appropriate curing time (≥3 days). In the results of the study on the water stability, freeze–thaw resistance, and erosion resistance of the soil, the optimum application rates of PAM-CMC were 3%, 3%, and 4%, respectively.
- (3)
- PAM-CMC affected the preliminary seed germination, which, in turn, slowed down the growth of the plants, but the addition of PAM-CMC prolonged the survival longevity of the plants, which, in combination with previous studies, can be explained by the fact that PAM-CMC improves the soil’s water retention and moisture retention capacity; however, too much PAM-CMC is capable of affecting the height of plant growth. Therefore, the optimum application rate of PAM-CMC is 3% to ensure the late growth of vegetation.
- (4)
- By comprehensively analyzing the results of this study, the optimum application rate of PAM-CMC in this study was determined to be 3%, which not only improved the shear strength, water stability, freeze–thaw resistance, and erosion resistance of the soil but also facilitated the long-term growth of vegetation. Therefore, for field applications, the 3% PAM-CMC soil remains optimal.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Chen, J.; Zhou, T.; Liu, D.; Yang, Q.; Xiao, H.; Liu, D.; Chen, J.; Xia, Z.; Xu, W. Effects of freeze-thaw cycling on the engineering properties of vegetation concrete. J. Environ. Manag. 2023, 345, 118810. [Google Scholar] [CrossRef] [PubMed]
- Niyomukiza, J.B.; Eisazadeh, A.; Tangtermsirikul, S. Recent advances in slope stabilization using porous vegetation concrete in landslide-prone regions: A review. J. Build. Eng. 2023, 76, 107129. [Google Scholar] [CrossRef]
- He, F.; Liu, Z.; Shi, K.-Y. Modeling of a Slope Reinforced by an Anchored Geomat System to Investigate Global Loading Behavior and Slope Stability. Int. J. Geomech. 2023, 23, 04023116. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, D.; Huang, Y. Interfacial shear behaviors of geocell-granular solidified sediment considering the particle breakage and geocell sizes. J. Clean. Prod. 2024, 442, 140977. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.; Wang, Y.; Liu, W.; Hou, D.; Zheng, W.; Zhang, X. Experimental study on instability mechanism and critical intensity of rainfall of high-steep rock slopes under unsaturated conditions. Int. J. Min. Sci. Technol. 2023, 33, 1243–1260. [Google Scholar] [CrossRef]
- Ji, Z.-M.; Chen, T.-L.; Wu, F.-Q.; Li, Z.-H.; Niu, Q.-H.; Wang, K.-Y. Assessment and prevention on the potential rockfall hazard of high-steep rock slope: A case study of Zhongyuntai mountain in Lianyungang, China. Nat. Hazards 2022, 115, 2117–2139. [Google Scholar] [CrossRef]
- Lv, Q.; Liu, Y.; Yang, Q. Stability analysis of earthquake-induced rock slope based on back analysis of shear strength parameters of rock mass. Eng. Geol. 2017, 228, 39–49. [Google Scholar] [CrossRef]
- Cui, Y.; Xu, C.; Xue, L.; Dong, J.; Jiang, T. Experimental study on the reasonable proportions of rock-like materials for water-induced strength degradation in rock slope model test. Sci. Rep. 2023, 13, 9288. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Li, T.B.; Chen, J.N.; Liu, C.N.; Zhou, X.H.; Xia, L. Characteristics and applications of ecological soil substrate for rocky slope vegetation in cold and high-altitude areas. Sci. Total Environ. 2017, 609, 446–455. [Google Scholar] [CrossRef]
- Wang, G.; Kong, X.; Zhang, Y.; Zhao, Q.; Feng, X. Stability and Micro-mechanisms of Lignin-Improved Soil in a Drying-Wetting Environment. KSCE J. Civ. Eng. 2022, 26, 3314–3324. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Kiani-Harchegani, M.; Hazbavi, Z.; Sadeghi, P.; Angulo-Jaramillo, R.; Lassabatere, L.; Younesi, H. Field measurement of effects of individual and combined application of biochar and polyacrylamide on erosion variables in loess and marl soils. Sci. Total Environ. 2020, 728, 138866. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Yan, C.; Li, B.; Bao, H.; Lan, H.; Liang, Z.; Shi, Y.; Ren, J. Performance test and effect evaluation of guar gum-stabilized loess as a sustainable slope protection material. J. Clean. Prod. 2023, 408, 137085. [Google Scholar] [CrossRef]
- Sun, X.; Miao, L.; Chen, R.; Wang, H.; Xia, J. Surface rainfall erosion resistance and freeze-thaw durability of bio-cemented and polymer-modified loess slopes. J. Environ. Manag. 2022, 301, 113883. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Liu, J.; Xiao, H.; Song, Z.; Ma, K.; Deng, Y. Soil stabilization using synthetic polymer for soil slope ecological protection. Eng. Geol. 2023, 321, 107155. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Lin, C.; Ma, X.F.; Song, Z.Z.; Chen, Z.H.; Jiang, C.H.; Qi, C.Q. Polyvinyl acetate-based soil stabilization for rock slope ecological restoration. J. Environ. Manag. 2022, 324, 116209. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Qian, G.; Liu, J.; Yao, J. Application of Polymer Curing Agent in Ecological Protection Engineering of Weak Rock Slopes. Appl. Sci. 2019, 9, 1585. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, R.; Han, P.; Sun, H.; Sun, H.; Li, C.; Yang, L. Soil water repellency of the artificial soil and natural soil in rocky slopes as affected by the drought stress and polyacrylamide. Sci. Total Environ. 2018, 619–620, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, W.; Li, C.; Pu, Y.; Sun, H. Effects of polyacrylamide on soil erosion and nutrient losses from substrate material in steep rocky slope stabilization projects. Sci. Total Environ. 2016, 554–555, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Tadayonnejad, M.; Mosaddeghi, M.R.; Dashtaki, S.G. Changing soil hydraulic properties and water repellency in a pomegranate orchard irrigated with saline water by applying polyacrylamide. Agric. Water Manag. 2017, 188, 12–20. [Google Scholar] [CrossRef]
- Goncalves, H.L.; Fregolente, P.B.L.; Fregolente, L.V.; Soares, J.P.J.F. Application of polyacrylamide-based hydrogels for water removal from biodiesel in isothermal experiments. Fuel 2021, 306, 121713. [Google Scholar] [CrossRef]
- Xia, L.; Zhao, B.; Luo, T.; Xu, Y.; Guo, S.; Xu, W.; Xia, D. Effects of Polyacrylamide, Biochar, and Palm Fiber on Soil Erosion at the Early Stage of Vegetation Concrete Slope Construction. Sustainability 2023, 15, 5744. [Google Scholar] [CrossRef]
- Guo, S.; Xu, P.; Zhang, P.; Wang, S. Numerical Investigation of the Anti-infiltration and Anti-Erosion Performance of Composite Layers Mixed With Polyacrylamide and Basalt Fibre for the Protection of Silt Subgrade Slopes. Front. Earth Sci. 2022, 10, 815602. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Ming, X.; Chen, B.; Li, Z. Enhancing anti-washout behavior of cement paste by polyacrylamide gelation: From floc properties to mechanism. Cem. Concr. Compos. 2023, 136, 104887. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Liu, K.; Liu, Y.; Xu, T.; Du, H.; Si, C. Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT:PSS/cellulose nanofibrils hydrogels for wearable strain sensors. Carbohydr. Polym. 2023, 305, 120567. [Google Scholar] [CrossRef] [PubMed]
- Bidast, S.; Golchin, A.; Baybordi, A.; Zamani, A.; Naidu, R. The effects of non-stabilised and Na-carboxymethylcellulose-stabilised iron oxide nanoparticles on remediation of Co-contaminated soils. Chemosphere 2020, 261, 128123. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Yin, W.; Liu, L.; Li, P.; Fang, Z.; Fang, Y.; Chiang, P.; Wu, J. Enhanced Cr(VI) stabilization in soil by carboxymethyl cellulose-stabilized nanosized Fe(0) (CMC-nFe(0)) and mixed anaerobic microorganisms. J. Environ. Manag. 2020, 257, 109951. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.; Liu, M.; Zhan, F.; Guo, M. Factors on the preparation of carboxymethylcellulose hydrogel and its degradation behavior in soil. Carbohydr. Polym. 2004, 58, 185–189. [Google Scholar] [CrossRef]
- Yuan, J.; Ye, C.; Pei, X.; Pei, Z.; Xie, Z.; Luo, L.; Yu, B. Runoff and soil loss characteristics on sandy soil slope with new chemical sand-fixing agent under simulated rainfall. Environ. Earth Sci. 2023, 82, 1–17. [Google Scholar] [CrossRef]
- Alam, A.B.; Fujii, Y.; Dipu, N.H.; Chakma, T.; Neogi, P.; Ullah, A.W.; Abdullah, R.A. Potential of carboxymethyl cellulose solution to increase the shale stability. Sci. Rep. 2023, 13, 17388. [Google Scholar] [CrossRef]
- Yuan, J.; Ye, C.; Luo, L.; Pei, X.; Yang, Q.; Chen, J.; Liao, B. Sand fixation property and erosion control through new cellulose-based curing agent on sandy slopes under rainfall. Bull. Eng. Geol. Environ. 2020, 79, 4051–4061. [Google Scholar] [CrossRef]
- Yang, Q.-W.; Pei, X.-J.; Huang, R.-Q. Impact of polymer mixtures on the stabilization and erosion control of silty sand slope. J. Mt. Sci. 2019, 16, 470–485. [Google Scholar] [CrossRef]
- Zhao, D.; Yang, J.; Liu, Z.; Fang, C.; Gao, R. Microcementation Mechanism of Sandy Loess Reinforced with a Cellulose Curing Agent. J. Eng. Sci. Technol. Rev. 2024, 17, 119–127. [Google Scholar] [CrossRef]
- GB/T 50123-2019; Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for Soil Test Method. China Planning Press: Beijing, China, 2019.
- Kim, J.; Yin, T.; Suo, Z. Polyacrylamide hydrogels. V. Some strands in a polymer network bear loads, but all strands contribute to swelling. J. Mech. Phys. Solids 2022, 168, 105017. [Google Scholar] [CrossRef]
- Lee, B.-M.; Jeong, C.-U.; Hong, S.-K.; Yun, J.-M.; Choi, J.-H. Eco-friendly fabrication of porous carbon monoliths from water-soluble carboxymethyl cellulose for supercapacitor applications. J. Ind. Eng. Chem. 2020, 82, 367–373. [Google Scholar] [CrossRef]
- Smagin, A.V.; Sadovnikova, N.B. Hygroscopy as an Indicator of Specific Surface Area in Polymer Materials. Polymers 2024, 16, 593. [Google Scholar] [CrossRef] [PubMed]
- Smagin, A.V.; Sadovnikova, N.B.; Belyaeva, E.A. Hygroscopicity of Gel-Forming Composite Materials: Thermodynamic Assessment and Technological Significance. J. Compos. Sci. 2022, 6, 269. [Google Scholar] [CrossRef]
- Ze, Z.; Vadim, P.; Svetlana, N.; Zhongqiong, Z.; Junjie, W. Disintegration characteristics of a cryolithogenic clay loam with different water content: Moscow covering loam (prQIII), case study. Eng. Geol. 2019, 258, 105159. [Google Scholar] [CrossRef]
- Liu, W.; Song, X.; Huang, F.; Hu, L. Experimental study on the disintegration of granite residual soil under the combined influence of wetting–drying cycles and acid rain. Geomat. Nat. Hazards Risk 2019, 10, 1912–1927. [Google Scholar] [CrossRef]
- Sulaiman, H.; Taha, M.R.; Abd Rahman, N.; Mohd Taib, A. Performance of soil stabilized with biopolymer materials—Xanthan gum and guar gum. Phys. Chem. Earth 2022, 128, 103276. [Google Scholar] [CrossRef]
- Wang, L.; Yao, Y.; Li, J.; Liu, K.; Wu, F. A State-of-the-Art Review of Organic Polymer Modifiers for Slope Eco-Engineering. Polymers 2023, 15, 2878. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Z.; Kanungo, D.P.; Song, Z.; Bai, Y.; Wang, Y.; Li, D.; Qian, W. Topsoil reinforcement of sandy slope for preventing erosion using water-based polyurethane soil stabilizer. Eng. Geol. 2019, 252, 125–135. [Google Scholar] [CrossRef]
- Velempini, T.; Pillay, K.; Mbianda, X.Y.; Arotiba, O.A. Carboxymethyl cellulose thiol-imprinted polymers: Synthesis, characterization and selective Hg(II) adsorption. J. Environ. Sci. 2019, 79, 280–296. [Google Scholar] [CrossRef] [PubMed]
- Benslimane, A.; Bahlouli, I.M.; Bekkour, K.; Hammiche, D. Thermal gelation properties of carboxymethyl cellulose and bentonite-carboxymethyl cellulose dispersions: Rheological considerations. Appl. Clay Sci. 2016, 132–133, 702–710. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, F.; Liu, J. Weather-Classification-MARS-Based Photovoltaic Power Forecasting for Energy Imbalance Market. IEEE Trans. Ind. Electron. 2019, 66, 8692–8702. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, K.; Tang, Z. Effect of fly ash- and polyacrylamide-consolidated soil layer on A. splendens growth in a desert in North China. Catena 2022, 210, 105935. [Google Scholar] [CrossRef]
- Kebede, B.; Tsunekawa, A.; Haregeweyn, N.; Mamedov, A.I.; Tsubo, M.; Fenta, A.A.; Meshesha, D.T.; Masunaga, T.; Adgo, E.; Abebe, G.; et al. Effectiveness of Polyacrylamide in Reducing Runoff and Soil Loss under Consecutive Rainfall Storms. Sustainability 2020, 12, 1597. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Q.; Xu, H.; Wang, Y.; Tang, L. Influences of different modifiers on the disintegration of improved granite residual soil under wet and dry cycles. Int. J. Min. Sci. Technol. 2022, 32, 831–845. [Google Scholar] [CrossRef]
- Li, X.-A.; Wang, L.; Yan, Y.-L.; Hong, B.; Li, L.-C. Experimental study on the disintegration of loess in the Loess Plateau of China. Bull. Eng. Geol. Environ. 2018, 78, 4907–4918. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, M.; Zhang, X.; Pei, W.; Bi, J. Experimental study on the freezing–thawing deformation of a silty clay. Cold Reg. Sci. Technol. 2018, 151, 19–27. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Di, H.; Liu, D.; Wang, X.; Zhao, Y. Influence of anionic polyacrylamide on the freeze–thaw resistance of silty clay. Cold Reg. Sci. Technol. 2024, 219, 104111. [Google Scholar] [CrossRef]
- Bozyigit, I.; Zingil, H.O.; Altun, S. Performance of eco-friendly polymers for soil stabilization and their resistance to freeze–thaw action. Constr. Build. 2023, 379, 131133. [Google Scholar] [CrossRef]
- Lee, S.S.; Gantzer, C.J.; Thompson, A.L.; Anderson, S.H. Polyacrylamide efficacy for reducing soil erosion and runoff as influenced by slope. J. Soil. Water Conserv. 2011, 66, 172–177. [Google Scholar] [CrossRef]
- Bordoloi, S.; Ng, C.W.W. The effects of vegetation traits and their stability functions in bio-engineered slopes: A perspective review. Eng. Geol. 2020, 275, 105742. [Google Scholar] [CrossRef]
- Clark, E.V.; Zipper, C.E. Vegetation influences near-surface hydrological characteristics on a surface coal mine in eastern USA. Catena 2016, 139, 241–249. [Google Scholar] [CrossRef]
- Cea, D.; Bonomelli, C.; Mártiz, J.; Gil, P.M. Response of Potted Citrus Trees Subjected to Water Deficit Irrigation with the Application of Superabsorbent Polyacrylamide Polymers. Agronomy 2022, 12, 1546. [Google Scholar] [CrossRef]
- Shang, H.; Yang, X.; Liu, H. Temperature-responsive hydrogel prepared from carboxymethyl cellulose-stabilized N-vinylcaprolactam with potential for fertilizer delivery. Carbohydr. Polym. 2023, 313, 120875. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Deng, Y.; Lan, H.; Zhang, F.; Zhang, H.; Wang, C.; Tan, Y.; Yu, R. Experimental Investigation of the Compactability and Cracking Behavior of Polyacrylamide-Treated Saline Soil in Gansu Province, China. Polymers 2019, 11, 90. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, M.; Han, K.; Zhao, H.; Zhang, H.; Ma, Q.; Wu, L.J.J.o.C.P. Feasibility of agricultural utilization of river sludge as a planting substrate following treatment with polyacrylamide. J. Clean. Prod. 2022, 367, 132964. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, W.; Guo, M.; Kang, H.; Lou, Y.; Guo, W.; Feng, L.; Chen, Z. Revegetation-induced changes in vegetation diversity improve soil properties of gully heads. Sci. Total Environ. 2023, 889, 164214. [Google Scholar] [CrossRef]
- Li, R.; Kan, S.; Zhu, M.; Chen, J.; Ai, X.; Chen, Z.; Zhang, J.; Ai, Y. Effect of different vegetation restoration types on fundamental parameters, structural characteristics and the soil quality index of artificial soil. Soil Tillage Res. 2018, 184, 11–23. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, K.; Wang, P.; Shi, W.; Liu, J.; Li, Y. Effects of root traits on soil detachment capacity driven by farmland abandonment. Catena 2024, 239, 107951. [Google Scholar] [CrossRef]
- Vergani, C.; Giadrossich, F.; Buckley, P.; Conedera, M.; Pividori, M.; Salbitano, F.; Rauch, H.S.; Lovreglio, R.; Schwarz, M. Root reinforcement dynamics of European coppice woodlands and their effect on shallow landslides: A review. Earth-Sci. Rev. 2017, 167, 88–102. [Google Scholar] [CrossRef]
- Zhao, C.; Mou, W.; Liu, J.; Li, C.; Lei, L.; Ta, F.; Lai, S.; Feng, Y.; Zhou, Z. Vegetation restoration restrains rill erosion on slag heaps in high-altitude goldfields. Sci. Total Environ. 2024, 912, 169528. [Google Scholar] [CrossRef]
- Löbmann, M.T.; Geitner, C.; Wellstein, C.; Zerbe, S. The influence of herbaceous vegetation on slope stability—A review. Earth-Sci. Rev. 2020, 209, 103328. [Google Scholar] [CrossRef]
- Huang, L.; Chen, R.Y.; Xue, W.; Yu, F.H. Effects of scale and contrast of spatial heterogeneity in plant-soil feedbacks on plant growth. Sci. Total Environ. 2023, 878, 163159. [Google Scholar] [CrossRef] [PubMed]
Liquid Limit (%) | Plastic Limit (%) | Optimum Water Content (%) | Maximum Dry Density (g/cm3) | Specific Gravity | Natural Water Content (%) |
---|---|---|---|---|---|
30.9 | 22.2 | 18.9 | 1.6 | 1.8 | 18.1 |
Purity (%) | Density (g/cm3) | pH | Viscosity (mPa·s) | Wh (%) | |
---|---|---|---|---|---|
CMC | >95 | 0.591 | 6.5 | 52.7 | 11.5 |
PAM | >95 | 0.989 | 7 | 15.7 | 8.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Yu, C.; Liu, H.; Zhang, J.; Zhang, Y.; Wang, J.; Chen, Y. Application of New Polymer Soil Amendment in Ecological Restoration of High-Steep Rocky Slope in Seasonally Frozen Soil Areas. Polymers 2024, 16, 1821. https://doi.org/10.3390/polym16131821
Lu Z, Yu C, Liu H, Zhang J, Zhang Y, Wang J, Chen Y. Application of New Polymer Soil Amendment in Ecological Restoration of High-Steep Rocky Slope in Seasonally Frozen Soil Areas. Polymers. 2024; 16(13):1821. https://doi.org/10.3390/polym16131821
Chicago/Turabian StyleLu, Zengkang, Chenglong Yu, Huanan Liu, Jiquan Zhang, Yichen Zhang, Jie Wang, and Yancheng Chen. 2024. "Application of New Polymer Soil Amendment in Ecological Restoration of High-Steep Rocky Slope in Seasonally Frozen Soil Areas" Polymers 16, no. 13: 1821. https://doi.org/10.3390/polym16131821
APA StyleLu, Z., Yu, C., Liu, H., Zhang, J., Zhang, Y., Wang, J., & Chen, Y. (2024). Application of New Polymer Soil Amendment in Ecological Restoration of High-Steep Rocky Slope in Seasonally Frozen Soil Areas. Polymers, 16(13), 1821. https://doi.org/10.3390/polym16131821