Viability of Total Ammoniacal Nitrogen Recovery Using a Polymeric Thin-Film Composite Forward Osmosis Membrane: Determination of Ammonia Permeability Coefficient
Abstract
:1. Introduction
2. Theory
2.1. Water Flux
2.2. Reverse Solute Flux
2.3. Forward Solute Flux
2.4. Model Calculations
3. Materials and Methods
3.1. Reagents, Solutions, and Analytical Techniques
3.2. Experimental Equipment
3.3. Modeling Procedure
3.3.1. Modeling Variables Calculations
3.3.2. Modeling Algorithm
4. Results and Discussion
4.1. Determination of the External Concentration Polarization
- The ICP and ECP in the FS were considered insignificant, as the FS was pure water and there was a low solute permeation observed. Different values of the S parameter were applied to the same fitting curve.
- The water permeability coefficient was assumed to be independent of the solute solution; therefore, the same value was set for the two solutions.
- The solute permeability coefficient and the mass transfer coefficient in the DS were also independent of the solute solution.
- The mass transfer coefficient in the DS and FS was set to the same value because the hydrodynamic properties of the two chambers were similar.
4.2. Determination of the Internal Concentration Polarization
4.3. Effect of the Initial pH on Water and Solute Permeability Coefficients
4.4. Determination of Permeability Coefficient of NH4+ Ion
4.5. Determination of Permeability Coefficient of NH3
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Roman symbols | |
AM | Effective membrane area (m2) |
CD,s | Reverse solute concentration at the DS side (mol/m3) |
CF,s | Reverse solute concentration at the FS side (mol/m3) |
CD,s,o | Initial reverse solute concentration at the DS side (mol/m3) |
CF,s,o | Initial reverse solute concentration at the FS side (mol/m3) |
Cm,F,s | Reverse solute concentration at support layer in the FS side (mol/m3) |
Cw,D,s | Reverse solute concentration at active layer in the DS side (mol/m3) |
Cw,D,s | Reverse solute concentration at active layer in the FS side (mol/m3) |
CD,x | Forward solute concentration at the DS side (mol/m3) |
CF,x | Forward solute concentration at the FS side (mol/m3) |
CD,x,o | Initial forward solute concentration at the DS side (mol/m3) |
CF,x,o | Initial forward solute concentration at the FS side (mol/m3) |
Cm,F,x | Forward solute concentration at support layer in the FS side (mol/m3) |
Cw,D,x | Forward solute concentration at the active layer in the DS side (mol/m3) |
Cw,D,x | Forward solute concentration at the active layer in the FS side (mol/m3) |
DD,s | Reverse solute diffusion coefficient in the DS (m2/s) |
DF,s | Reverse solute diffusion coefficient in the FS (m2/s) |
DF,p,s | Reverse solute diffusion coefficient inside the membrane support layer (m2/s) |
DD,x | Forward solute diffusion coefficient in the DS (m2/s) |
DF,x | Forward solute diffusion coefficient in the FS (m2/s) |
DF,p,x | Forward solute diffusion coefficient inside the membrane support layer (m2/s) |
Js | Reverse solute flux (mol/(m2·s)) |
Jw | Water flux (m3/(m2·s)) |
Jx | Forward solute flux (mol/(m2·s)) |
kD | Solute mass transfer coefficient at the DS side (m/s) |
kF | Solute mass transfer coefficient at the FS side (m/s) |
lm | Membrane support layer thickness (m) |
Lp | Water permeability coefficient (m3/(m2·s·atm)) |
Ls | Reverse solute permeability coefficient (m/s) |
Lx | Forward solute permeability coefficient (m/s) |
Rm | Ideal gases constant (8.31 J/(mol·K)) |
S | Structural parameter (m) |
T | Absolute temperature (K) |
VD,o | Initial Volume of the DS chamber (m3) |
VF,o | Initial Volume of the FS chamber (m3) |
Greek symbols | |
δ | Effective EPC thickness (m) |
ε | Membrane support porosity (-) (−) |
ϕw,D,s | Osmotic coefficient at the membrane wall in the DS (−) |
ϕw,F,s | Osmotic coefficient at the membrane wall in the FS (−) |
πw,D | Global osmotic pressure at the active layer in the DS (atm) |
πw,F | Global osmotic pressure at the active layer in the FS (atm) |
τ | Membrane support tortuosity (−) |
Abbreviations | |
DS | Draw Solution |
ECP | External Concentration Polarization |
FO | Forward Osmosis |
FS | Feed Solution |
ICP | Internal Concentration Polarization |
PRO | Pressure Retarded Osmosis |
TAN | Total Ammoniacal Nitrogen |
References
- Abou-Elanwar, A.M.; Lee, S.; Jang, I.; Lee, S.; Hong, S.; Kim, S.; Hwang, M.H.; Kim, J.; Kim, Y. Evaluation of a Novel Fertilizer-Drawn Forward Osmosis and Membrane Contactor Hybrid System for CO2 Capture Using Ammonia-Rich Wastewater. J. Memb. Sci. 2024, 700, 122654. [Google Scholar] [CrossRef]
- Cheng, D.L.; Ngo, H.H.; Guo, W.S.; Chang, S.W.; Nguyen, D.D.; Kumar, S.M. Microalgae Biomass from Swine Wastewater and Its Conversion to Bioenergy. Bioresour. Technol. 2019, 275, 109–122. [Google Scholar] [CrossRef]
- Livolsi, S.; Franz, S.; Costa, A.; Buoio, E.; Bazzocchi, C.; Bestetti, M.; Selli, E.; Chiarello, G.L. Innovative Photoelectrocatalytic Water Remediation System for Ammonia Abatement. Catal. Today 2023, 413–415, 113996. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W.; Blatchley, E.R.; Wang, X.; Ren, P. UV/Chlorine Process for Ammonia Removal and Disinfection by-Product Reduction: Comparison with Chlorination. Water Res. 2015, 68, 804–811. [Google Scholar] [CrossRef]
- Matassa, S.; Boon, N.; Verstraete, W. Resource Recovery from Used Water: The Manufacturing Abilities of Hydrogen-Oxidizing Bacteria. Water Res. 2015, 68, 467–478. [Google Scholar] [CrossRef]
- Larriba, O.; Rovira-Cal, E.; Juznic-Zonta, Z.; Guisasola, A.; Baeza, J.A. Evaluation of the Integration of P Recovery, Polyhydroxyalkanoate Production and Short Cut Nitrogen Removal in a Mainstream Wastewater Treatment Process. Water Res. 2020, 172, 115474. [Google Scholar] [CrossRef]
- Shin, C.; Szczuka, A.; Jiang, R.; Mitch, W.A.; Criddle, C.S. Optimization of Reverse Osmosis Operational Conditions to Maximize Ammonia Removal from the Effluent of an Anaerobic Membrane Bioreactor. Environ. Sci. 2021, 7, 739–747. [Google Scholar] [CrossRef]
- Aung, S.L.; Choi, J.; Cha, H.; Woo, G.; Song, K.G. Ammonia-Selective Recovery from Anaerobic Digestate Using Electrochemical Ammonia Stripping Combined with Electrodialysis. Chem. Eng. J. 2024, 479, 147949. [Google Scholar] [CrossRef]
- Darestani, M.; Haigh, V.; Couperthwaite, S.J.; Millar, G.J.; Nghiem, L.D. Hollow Fibre Membrane Contactors for Ammonia Recovery: Current Status and Future Developments. J. Environ. Chem. Eng. 2017, 5, 1349–1359. [Google Scholar] [CrossRef]
- Daguerre-Martini, S.; Vanotti, M.B.; Rodriguez-Pastor, M.; Rosal, A.; Moral, R. Nitrogen Recovery from Wastewater Using Gas-Permeable Membranes: Impact of Inorganic Carbon Content and Natural Organic Matter. Water Res. 2018, 137, 201–210. [Google Scholar] [CrossRef]
- Lee, W.; An, S.; Choi, Y. Ammonia Harvesting via Membrane Gas Extraction at Moderately Alkaline PH: A Step toward Net-Profitable Nitrogen Recovery from Domestic Wastewater. Chem. Eng. J. 2021, 405, 126662. [Google Scholar] [CrossRef]
- González-García, I.; Oliveira, V.; Molinuevo-Salces, B.; García-González, M.C.; Dias-Ferreira, C.; Riaño, B. Two-Phase Nutrient Recovery from Livestock Wastewaters Combining Novel Membrane Technologies. Biomass Convers. Biorefin. 2022, 12, 3. [Google Scholar] [CrossRef]
- Serra-Toro, A.; Vinardell, S.; Astals, S.; Madurga, S.; Llorens, J.; Mata-Álvarez, J.; Mas, F.; Dosta, J. Ammonia Recovery from Acidogenic Fermentation Effluents Using a Gas-Permeable Membrane Contactor. Bioresour. Technol. 2022, 356, 127273. [Google Scholar] [CrossRef]
- Jafarinejad, S. Forward Osmosis Membrane Technology for Nutrient Removal/Recovery from Wastewater: Recent Advances, Proposed Designs, and Future Directions. Chemosphere 2021, 263, 128116. [Google Scholar] [CrossRef]
- Piash, K.S.; Sanyal, O. Membranes Design Strategies for Forward Osmosis Membrane Substrates with Low Structural Parameters-A Review. Membranes 2023, 13, 73. [Google Scholar] [CrossRef]
- Johnson, D.J.; Suwaileh, W.A.; Mohammed, A.W.; Hilal, N. Osmotic’s Potential: An Overview of Draw Solutes for Forward Osmosis. Desalination 2018, 434, 100–120. [Google Scholar] [CrossRef]
- McCutcheon, J.R.; Elimelech, M. Influence of Concentrative and Dilutive Internal Concentration Polarization on Flux Behavior in Forward Osmosis. J. Memb. Sci. 2006, 284, 237–247. [Google Scholar] [CrossRef]
- Kegl, T.; Korenak, J.; Bukšek, H.; Petrinić, I. Modeling and Multi-Objective Optimization of Forward Osmosis Process. Desalination 2024, 580, 117550. [Google Scholar] [CrossRef]
- Bao, X.; Wu, Q.; Shi, W.; Wang, W.; Zhu, Z.; Zhang, Z.; Zhang, R.; Zhang, B.; Guo, Y.; Cui, F. Dendritic Amine Sheltered Membrane for Simultaneous Ammonia Selection and Fouling Mitigation in Forward Osmosis. J. Memb. Sci. 2019, 584, 9–19. [Google Scholar] [CrossRef]
- Kong, F.; Dong, L.; Zhang, T.; Chen, J.; Guo, C. Effect of Reverse Permeation of Draw Solute on the Rejection of Ionic Nitrogen Inorganics in Forward Osmosis: Comparison, Prediction and Implications. Desalination 2018, 437, 144–153. [Google Scholar] [CrossRef]
- Engelhardt, S.; Vogel, J.; Duirk, S.E.; Moore, F.B.; Barton, H.A. Urea and Ammonium Rejection by an Aquaporin-Based Hollow Fiber Membrane. J. Water Process Eng. 2019, 32, 100903. [Google Scholar] [CrossRef]
- Volpin, F.; Heo, H.; Hasan Johir, M.A.; Cho, J.; Phuntsho, S.; Shon, H.K. Techno-Economic Feasibility of Recovering Phosphorus, Nitrogen and Water from Dilute Human Urine via Forward Osmosis. Water Res. 2019, 150, 47–55. [Google Scholar] [CrossRef]
- Almoalimi, K.; Liu, Y.Q. Enhancing Ammonium Rejection in Forward Osmosis for Wastewater Treatment by Minimizing Cation Exchange. J. Memb. Sci. 2022, 648, 120365. [Google Scholar] [CrossRef]
- Serra-Toro, A.; Astals, S.; Madurga, S.; Mata-Álvarez, J.; Mas, F.; Dosta, J. Ammoniacal Nitrogen Recovery from Pig Slurry Using a Novel Hydrophobic/Hydrophilic Selective Membrane. J. Environ. Chem. Eng. 2022, 10, 108434. [Google Scholar] [CrossRef]
- Nikiema, B.C.W.Y.; Ito, R.; Guizani, M.; Funamizu, N. Estimation of Water Flux and Solute Movement during the Concentration Process of Hydrolysed Urine by Forward Osmosis. J. Water Environ. Technol. 2017, 15, 163–173. [Google Scholar] [CrossRef]
- Ray, H.; Perreault, F.; Boyer, T.H. Ammonia Recovery from Hydrolyzed Human Urine by Forward Osmosis with Acidified Draw Solution. Environ. Sci. Technol. 2020, 54, 11556–11565. [Google Scholar] [CrossRef]
- Tiraferri, A.; Yip, N.Y.; Straub, A.P.; Romero-Vargas Castrillon, S.; Elimelech, M. A Method for the Simultaneous Determination of Transport and Structural Parameters of Forward Osmosis Membranes. J. Memb. Sci. 2013, 444, 523–538. [Google Scholar] [CrossRef]
- Ruprakobkit, T.; Ruprakobkit, L.; Ratanatamskul, C. Sensitivity Analysis Techniques for the Optimal System Design of Forward Osmosis in Organic Acid Recovery. Comput. Chem. Eng. 2019, 123, 34–48. [Google Scholar] [CrossRef]
- Lobo, V.M.M. Mutual Diffusion Coefficients in Aqueous Electrolyte Solutions. Pure Appl. Chem. 1993, 65, 2613–2640. [Google Scholar] [CrossRef]
- Frank, M.J.W.; Kuipers, J.A.M.; Van Swaaij, W.P.M. Diffusion Coefficients and Viscosities of CO2 + H2O, CO2 + CH3OH, NH3 + H2O, and NH3 + CH3OH Liquid Mixtures. J. Chem. Eng. Data 1996, 41, 297–302. [Google Scholar] [CrossRef]
- Stillman, D.; Krupp, L.; La, Y.H. Mesh-Reinforced Thin Film Composite Membranes for Forward Osmosis Applications: The Structure–Performance Relationship. J. Memb. Sci. 2014, 468, 308–316. [Google Scholar] [CrossRef]
- Manzoor, H.; Selam, M.A.; Adham, S.; Shon, H.K.; Castier, M.; Abdel-Wahab, A. Energy Recovery Modeling of Pressure-Retarded Osmosis Systems with Membrane Modules Compatible with High Salinity Draw Streams. Desalination 2020, 493, 114624. [Google Scholar] [CrossRef]
- Kwon, D.; Kwon, S.J.; Kim, J.; Lee, J.H. Feasibility of the Highly-Permselective Forward Osmosis Membrane Process for the Post-Treatment of the Anaerobic Fluidized Bed Bioreactor Effluent. Desalination 2020, 485, 114451. [Google Scholar] [CrossRef]
- Hickenbottom, K.L.; Vanneste, J.; Elimelech, M.; Cath, T.Y. Assessing the Current State of Commercially Available Membranes and Spacers for Energy Production with Pressure Retarded Osmosis. Desalination 2016, 389, 108–118. [Google Scholar] [CrossRef]
- Kim, D.Y.; Park, H.; Park, Y.I.; Lee, J.H. Polyvinyl Alcohol Hydrogel-Supported Forward Osmosis Membranes with High Performance and Excellent PH Stability. J. Ind. Eng. Chem. 2021, 99, 246–255. [Google Scholar] [CrossRef]
- McCutcheon, J.R.; McGinnis, R.L.; Elimelech, M. Desalination by Ammonia–Carbon Dioxide Forward Osmosis: Influence of Draw and Feed Solution Concentrations on Process Performance. J. Memb. Sci. 2006, 278, 114–123. [Google Scholar] [CrossRef]
- Cheng, W.; Lu, X.; Yang, Y.; Jiang, J.; Ma, J. Influence of Composition and Concentration of Saline Water on Cation Exchange Behavior in Forward Osmosis Desalination. Water Res. 2018, 137, 9–17. [Google Scholar] [CrossRef]
- Cheng, W.; Liu, C.; Tong, T.; Epsztein, R.; Sun, M.; Verduzco, R.; Ma, J.; Elimelech, M. Selective Removal of Divalent Cations by Polyelectrolyte Multilayer Nanofiltration Membrane: Role of Polyelectrolyte Charge, Ion Size, and Ionic Strength. J. Memb. Sci. 2018, 559, 98–106. [Google Scholar] [CrossRef]
- Mehta, G.D. Further Results on the Performance of Present-Day Osmotic Membranes in Various Osmotic Regions. J. Memb. Sci. 1982, 10, 3–19. [Google Scholar] [CrossRef]
- Gray, G.T.; McCutcheon, J.R.; Elimelech, M. Internal Concentration Polarization in Forward Osmosis: Role of Membrane Orientation. Desalination 2006, 197, 1–8. [Google Scholar] [CrossRef]
- Nguyen, T.P.N.; Jun, B.M.; Lee, J.H.; Kwon, Y.N. Comparison of Integrally Asymmetric and Thin Film Composite Structures for a Desirable Fashion of Forward Osmosis Membranes. J. Memb. Sci. 2015, 495, 457–470. [Google Scholar] [CrossRef]
- Kwon, S.B.; Lee, J.S.; Kwon, S.J.; Yun, S.T.; Lee, S.; Lee, J.H. Molecular Layer-by-Layer Assembled Forward Osmosis Membranes. J. Memb. Sci. 2015, 488, 111–120. [Google Scholar] [CrossRef]
- Adha, R.S.; Nguyen, T.T.; Lee, C.; Jang, J.; Kim, I.S. An Improved Perm-Selectivity Prediction of Forward Osmosis Membrane by Incorporating the Effect of the Surface Charge on the Solute Partitioning. J. Memb. Sci. 2021, 629, 119303. [Google Scholar] [CrossRef]
- Mazlan, N.M.; Marchetti, P.; Maples, H.A.; Gu, B.; Karan, S.; Bismarck, A.; Livingston, A.G. Organic Fouling Behaviour of Structurally and Chemically Different Forward Osmosis Membranes—A Study of Cellulose Triacetate and Thin Film Composite Membranes. J. Memb. Sci. 2016, 520, 247–261. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Hai, F.I.; Ansari, A.J.; Roddick, F.A. Mining Phosphorus from Anaerobically Treated Dairy Manure by Forward Osmosis Membrane. J. Ind. Eng. Chem. 2019, 78, 425–432. [Google Scholar] [CrossRef]
- Zhang, J.; She, Q.; Chang, V.W.C.; Tang, C.Y.; Webster, R.D. Mining Nutrients (N, K, P) from Urban Source-Separated Urine by Forward Osmosis Dewatering. Environ. Sci. Technol. 2014, 48, 3386–3394. [Google Scholar] [CrossRef]
Solute | Concentration Range | Osmotic Pressure (atm) * |
---|---|---|
NaCl | 0.2–2 M | |
0–0.2 M | ||
Na2SO4 | 0.2–1 M | |
0–0.2 M | ||
NH4Cl | 0.2–1.5 M | |
0–0.2 M | ||
(NH4)2SO4 | 0.2–1.2 M | |
0–0.2 M | ||
NaOH | 0–0.1 M |
DS * | Lp × 107 (m3/(m2 s atm)) | Ls × 106 (m/s) | k × 106 (m/s) | Etot (-)(−) |
---|---|---|---|---|
NaCl | ||||
0.5 M | 1.01 | 3.37 | 4.8 | 1.53 |
1 M | 0.990 | 3.24 | 5.1 | 2.02 |
1.5 M | 0.985 | 3.10 | 5.8 | 2.55 |
2 M | 0.980 | 3.13 | 5.2 | 1.78 |
Na2SO4 | ||||
0.5 M | 1.06 | 0.0945 | 10.0 | 1.02 |
1 M | 1.04 | 0.0942 | 10.3 | 1.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahgodari, S.; Llorens, J.; Labanda, J. Viability of Total Ammoniacal Nitrogen Recovery Using a Polymeric Thin-Film Composite Forward Osmosis Membrane: Determination of Ammonia Permeability Coefficient. Polymers 2024, 16, 1834. https://doi.org/10.3390/polym16131834
Shahgodari S, Llorens J, Labanda J. Viability of Total Ammoniacal Nitrogen Recovery Using a Polymeric Thin-Film Composite Forward Osmosis Membrane: Determination of Ammonia Permeability Coefficient. Polymers. 2024; 16(13):1834. https://doi.org/10.3390/polym16131834
Chicago/Turabian StyleShahgodari, Shirin, Joan Llorens, and Jordi Labanda. 2024. "Viability of Total Ammoniacal Nitrogen Recovery Using a Polymeric Thin-Film Composite Forward Osmosis Membrane: Determination of Ammonia Permeability Coefficient" Polymers 16, no. 13: 1834. https://doi.org/10.3390/polym16131834
APA StyleShahgodari, S., Llorens, J., & Labanda, J. (2024). Viability of Total Ammoniacal Nitrogen Recovery Using a Polymeric Thin-Film Composite Forward Osmosis Membrane: Determination of Ammonia Permeability Coefficient. Polymers, 16(13), 1834. https://doi.org/10.3390/polym16131834